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Abstract
Artificial intelligence and its primary subfield, machine learning, have started to 
gain widespread use in medicine, including the field of kidney transplantation. 
We made a review of the literature that used artificial intelligence techniques in 
kidney transplantation. We located six main areas of kidney transplantation that 
artificial intelligence studies are focused on: Radiological evaluation of the 
allograft, pathological evaluation including molecular evaluation of the tissue, 
prediction of graft survival, optimizing the dose of immunosuppression, diag-
nosis of rejection, and prediction of early graft function. Machine learning 
techniques provide increased automation leading to faster evaluation and 
standardization, and show better performance compared to traditional statistical 
analysis. Artificial intelligence leads to improved computer-aided diagnostics and 
quantifiable personalized predictions that will improve personalized patient care.

Key Words: Artificial intelligence; Kidney transplantation; Machine learning, Neuronal 
networks; Deep learning; Support vector machines
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Core Tip: Artificial intelligence is used in a large spectrum of areas in kidney transplan-
tation. Developments in those areas will shape the future of medical care with faster 
and more standardized medical evaluations and more accurate personalized judgments.
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INTRODUCTION
Artificial intelligence (AI) is a “buzzword” that has begun to be used increasingly in 
medicine, and the field of transplantation is not exempt from that. AI vests the 
machines with the ability to perform intelligent and cognitive tasks, spanning 
numerous subfields that are current and popular. Machine learning (ML) is one of the 
most important subfields of AI and has recently seen an increase of interest in several 
industries, including the healthcare industry, because of advances in Big Data 
technology and computing power[1].

The process of ML begins with the ability of the program to observe the collected 
data and compare them with previous ones to find patterns and results, and then 
adjust itself accordingly[2]. There are a plethora of statistical-based ML algorithms that 
can be used in the context of three overarching categories: Supervised learning, 
unsupervised learning, and reinforcement learning (Table 1)[2]. Supervised learning 
comprises learning patterns from labeled datasets and decodes the relationships 
between input variables (independent variables) and their known outputs (dependent 
variables). Examples of common algorithms used for supervised learning include 
regression analysis [linear regression, logistic regression (LR), and non-linear 
regression], decision trees (DT), k-nearest neighbors, artificial neural networks (ANN), 
and support vector machines (SVM)[2]. The proper classification of LR is context-
dependent and depends on whether it is used for prediction (ML) or inferential 
statistics to evaluate the associations between the independent variable(s) and 
dependent variables (non-ML)[3]. In the case of unsupervised learning the output 
variables are unlabeled, and this method focuses on analyzing the relationships 
between input variables and revealing hidden patterns that can be obtained to create 
new labels regarding possible outputs[2]. In this way it is possible to discover the 
existing patterns in the data that we are unaware of. K-means clustering is an example 
of the algorithms for unsupervised learning. Reinforcement learning is the most 
advanced category of ML. In this method, a prediction model is built by gaining 
feedback through random trials of a vast number of possible input combinations and 
leveraging insight from previous iterations by grading their performance. Finally, Q-
learning is an example of the algorithms for reinforcement[2].

In this paper, we made a review of the current English literature on the use of AI in 
kidney transplantation.

METHODS
We used the PubMed interface (pubmed.gov) to make a query using the combination 
of the following two keyword groups. The first group included the keywords “kidney 
transplant”, “renal transplant”, “kidney transplantation”, and “renal transplantation” 
and the second group included “artificial intelligence”, “machine learning”, “deep 
learning”, and “neural networks”. Each keyword in the same group was combined 
using the logical operator “OR”, while the two groups were combined using the 
logical operator “AND”. We excluded the review articles and ran the query in January 
2021. We found 114 articles in total and manually examined them. The articles that 
were not directly related to kidney transplantation, dealing with other types of renal 
replacement therapy besides transplantation, solely using LR as the ML method, 
reviews, conference reports, and editorials were excluded. We also examined the 
references of the related articles to locate additional literature. Finally, we found 64 
articles that were eligible for the review.

We grouped the articles in the following categories: Radiological evaluation (n = 6), 
pathological evaluation (n = 14), prediction of graft survival (n = 16), optimizing the 
dose of immunosuppression (n = 7), diagnosis of rejection (n = 6), prediction of early 
graft function (n = 6), and others (n = 9) (Table 2).

APPLICATION OF AI IN KIDNEY TRANSPLANTATION
Radiological evaluation
The first paper using AI techniques for the evaluation of allografts, based on imaging 
techniques, was that of Hamilton et al[4]. The authors used 99mTc-MAG3 captopril 
renography to evaluate the presence of renal artery stenosis in the allograft. The 
authors used a neural network-based classifier, and their gold standard was arterio-
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Table 1 Different machine learning categories

Supervised learning Unsupervised learning Reinforcement learning

Dataset Labeled (input and output are known) Unlabeled (output is not known) No predefined data

Method Analyze the relation between input and 
output. The output is predicted based on 
this relation

Analyze the input parameters to uncover 
hidden patterns. Output is predicted based on 
those patterns

Randomly trialing a vast number of possible 
inputs, then comparing and grading their 
performance

Example Decision trees, support vector machines, 
neutral networks, k-nearest neighbors

k-means clustering, archetype analysis Q-learning

Table 2 Machine learning applications used in different kidney transplantation areas

Kidney transplantation 
category Machine learning methods used Ref.

Radiological evaluation Neural network, convolutional neural network, stacked autoencoders, Bayesian supervised classifier [4-9]

Pathological evaluation Neural network, Bayesian network, convolutional neural network, linear discriminant analysis, support vector 
machines, random forest, archetypal analysis

[10-
23]

Prediction of graft survival Neural network, logistic regression, decision tree, random forest, support vector machines, LASSO, gradient boosting [24-
39]

Optimizing the dose of 
immunosuppression

Neural network (multilayer perceptron, finite impulse response network, and the Elman recurrent network), 
adaptive-network-based fuzzy inference system, conditional inference trees, multiple linear regression, regression 
tree, multivariate adaptive regression splines, boosted regression tree, support vector regression, random forest 
regression, LASSO regression and Bayesian additive regression trees

[40-
46]

Diagnosis of rejection Neural network, support vector machines, Bayesian interference [47-
52]

Prediction of early graft 
function

Neural network, logistic regression, linear discriminant analysis, quadratic discriminant analysis, support vector 
machines, decision tree, random forest, gradient boosting, elastic net

[3,53-
57]

LASSO: Least absolute shrinkage and selection operator.

gram. Following the training of the neural network, they found that an accuracy of 
95% could be achieved[4].

Some other papers also used AI techniques for the radiological evaluation of 
allografts with the aim of diagnosing acute rejection. El-Baz et al[5] investigated the 
early detection of acute rejection using dynamic contrast-enhanced magnetic reso-
nance imaging (MRI). The researchers automated data acquisition from the MRI using 
a three-step algorithmic approach and this data feed was linked to a Bayesian 
supervised classifier to diagnose acute rejection[5]. The authors also studied motion 
correction models to account for the local motion of the kidney due to patient moving 
and breathing. Then, they used the perfusion curves to feed the Bayesian supervised 
classifier with the aim of distinguishing normal and acute rejection[6].

Three additional papers from the same group examined the utility of computer-
aided diagnostic (CAD) systems for the diagnosis of acute rejection[7-9]. In their first 
study[7], the authors used deep-learning algorithms, namely, ‘stacked non-negative 
constrained auto-encoders’, for the prediction of acute rejection. Their data feed was 
the outcomes of diffusion-weighted MRI (DW-MRI). In their second study[8], in 
addition to DW-MRI, creatinine clearance and creatinine values were also used for the 
data feed of convolutional neural network (CNN) based classifiers. In both papers, the 
overall accuracy for correct diagnosis of acute rejection was above 90%. The authors 
proposed that their results demonstrated the potential of this new CAD system to 
reliably diagnose renal transplant rejection.

In a third study[9], they again assessed the utility of the CAD system for the 
diagnosis of acute rejection using DW-MRI and blood oxygen level-dependent MRI as 
the image-based sources. The authors also used laboratory data consisting of 
creatinine and creatinine clearance. In addition, they utilized a deep learning-based 
classifier, namely, ‘stacked autoencoders’, to differentiate non-rejection from acute 
rejection in renal transplants[9]. The overall accuracy of the CAD system in detection 
of acute rejection was around 90%[9].
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Pathological evaluation
AI applications have also been used to assess allograft biopsies, where data feed for 
the classification algorithms was histological findings, molecular biomarkers, or a 
combination of the two.

Kazi et al[10] used 12 histological features to train a Bayesian network with 110 
transplant biopsies. Using the Bayesian network, a relatively inexperienced pathologist 
was able to make the correct diagnosis in 19 out of 21 cases. The researchers suggested 
that the integration of data with a computer can give a more consistent diagnosis of 
early acute rejection[10]. In a follow-up study, the same researchers used a simple 
neural network for the decision process and the authors pointed out that in Bayesian 
networks the ‘importance’ attached to each histological feature had to be calculated 
and programmed into the network at the onset and because of this approach, they 
have the disadvantage of relative inflexibility[11]. A neural network has the potential 
of greater flexibility, because the process of ‘training’ a neural network would 
automatically calculate what ‘weight’ should be allocated to each histological feature. 
The authors used 12 histological features, 100 transplant biopsies (43 with definite 
rejection), and 25 additional cases to train a single-layer simple neural network. 
Eventually, the network was able to correctly classify 19 out of the 21 new cases, 
leading to the conclusion that neural network technology can dramatically improve 
the accuracy in histological diagnosis of early acute renal allograft rejection[11].

Marsh et al[12] used deep learning algorithms to evaluate intraoperative donor 
kidney biopsies with the aim of determining which kidneys were eligible for trans-
plantation. The authors used CNNs as a deep learning algorithm. The primary 
advantage of CNN is that the models can automatically discover prominent features 
from the data alone, without requiring a set of handcrafted parameters and extensive 
input normalization. Most recently, CNNs have been explored as primary tools for 
glomeruli detection[13]. Different models were shown to be able to differentiate image 
patches containing isolated normal glomeruli from non-glomerular structures[13]. 
Marsh et al[12] trained the network with a total of 870 sclerosed and 2997 non-
sclerosed glomeruli that were labeled. The images were acquired from hematoxylin 
and eosin (HE)-stained frozen wedge donor biopsies. The fully conventional model in 
the study showed a high correlation with percent global glomerulosclerosis (R2 = 
0.828). The authors concluded that the performance of the CNN alone was equivalent 
to that of a board-certified clinical pathologist.

Liu et al[14] examined the diagnosis of T-cell-mediated kidney rejection using a data 
feed acquired by RNA sequencing. The authors used three ML methods called linear 
discriminant analysis (LDA), SVM, and random forest (RF). The molecular signature 
discovery data set involved five kidney transplant patients with T-cell-mediated 
rejection (TCMR) and five with stable renal function. The forecast models were tested 
on 703 biopsies with Affymetrix GeneChip expression profiles available in the public 
domain. The LDA predicted TCMR in 55 of the 67 biopsies labeled TCMR, and 65 of 
the 105 biopsies designated as antibody-mediated rejection (ABMR). The RF and SVM 
models showed comparable performances. These data illustrated the feasibility of 
using RNA sequencing for molecular diagnosis of TCMR.

Halloran et al[15] and Reeve et al[16] used molecular microscopy techniques to 
evaluate allograft biopsies, including molecular phenotyping with platforms such as 
microarrays that measure the expression of thousands of genes. To express the 
likelihood that particular diseases are present in the biopsy, the authors developed the 
TCMR score and the ABMR score assigned by classifiers (using weighted equations) 
built by standard ML methods. The authors also developed the Molecular Microscope 
Diagnostic System (MMDx) that assesses the TCMR and ABMR in a reference set of 
biopsy samples using ML-derived classier algorithms[17]. Archetypal analysis and an 
additional 12 ML methods (individually or in ensembles) were used during the 
development of the MMDx. Archetype analysis is a probabilistic data-driven 
unsupervised statistical approach that categorizes separate groups of patients 
(archetypes)[17]. The ensembles made diagnoses that were both more accurate than 
the best individual classifiers and almost as stable as the best, in line with the previous 
studies from the ML literature[17]. Human experts had about 93% agreement 
(balanced accuracy) signing out the reports, while RF-based automated sign-outs 
showed similar levels of agreement (92% and 94% for predicting the expert MMDx 
sign-outs for TCMR and ABMR, respectively)[17].

In 451 biopsy samples where a feedback was obtained, clinicians indicated that the 
MMDx agreed more commonly with the clinical decision (87%) than histology (80%) (
P = 0.0042)[18]. In another study, the same group of researchers explored the 
frequency of rejection in areas of interstitial fibrosis and tubular atrophy (i-IFTA) in 
kidney transplant biopsies by using histology Banff 2015 and an MMDx and con-
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cluded that i-IFTA in indication biopsies reflected current parenchymal injury, often 
with simultaneous ABMR but seldom with TCMR[19].

Hermsen et al[20] used whole-slide images of stained kidney transplant biopsies to 
develop and validate a CNN for histologic analysis in renal tissue stained with 
periodic acid Schiff. The researchers assessed the segmentation performance for 
different tissue classes and found that the best-segmented class was “glomeruli”, 
followed by “tubuli combined” and “interstitium”. The network detected 92.7% of all 
glomeruli in nephrectomy samples, with 10.4% of false positives. The authors also 
suggested that the CNN may have utility for quantitative studies involving kidney 
histopathology across.

Aubert et al[21] used archetype analysis to identify distinct groups of patients with 
transplant glomerulopathy. The researchers examined data from 552 biopsy samples 
taken from 385 patients with transplant glomerulopathy, using unsupervised 
archetypal analysis that integrated clinical, functional, immunologic, and histologic 
parameters. The authors identified five archetypes with distinct clinical, histologic, 
and immunologic features, as well as different outcomes (kidney allograft survival 
rates). The authors suggested that their approach permitted to decrease patient hetero-
geneity and created meaningful groups in terms of morphologic patterns, disease 
activity/progression, and risk of failure.

Kim et al[22] used a fully automated system using CNN to identify regions of 
interest and to detect C4d positive and negative peritubular capillaries in gigapixel 
immune-stained slides. The authors used deep-learning-assisted labeling to enhance 
the performance of the detection method. Using this approach, they were able to train 
the CNN with a small number of samples. They suggested that their system was 
highly reliable, efficient, and effective for the detection of renal allograft rejection.

Finally, Ligabue et al[23] evaluated the role of a CNN as a support tool for kidney 
immunofluorescence reporting and found that CNNs were 117 times faster than 
human inspectors in analyzing 180 test images. The accuracy of the CNN was 
comparable with that of experienced pathologists in the field.

Graft survival
Simic-Ogrizovic et al[24] used data from 27 patients and 33 variables to train an ANN 
to predict chronic rejection progression, and suggested that ANN seemed more 
reliable in the prediction of the chronic rejection course than the usual statistical 
methods.

Lin et al[25] examined single time-point models (LR and single-output ANNs) vs 
multiple time-point models (Cox models and multiple-output ANNs) to predict 
kidney transplant outcomes. The authors concluded that single time-point and 
multiple time-point models can achieve comparable area under the curve (AUC), 
except for multiple-output ANNs, which may perform poorly when a large proportion 
of observations are censored. LR can achieve similar performance as ANNs if there are 
no strong interactions or non-linear relationships among the predictors and the 
outcomes.

Akl et al[26] developed an ANN model to predict the 5-year graft survival in living-
donor kidney transplants. Estimates from the validated ANNs were compared using 
Cox regression-based nomograms. Researchers used data from 1581 patients for 
training and 319 patients for validation. The positive predictive value of graft survival 
was 82.1% and 43.5% for the ANNs and Cox regression-based nomogram, respec-
tively. The authors concluded that ANNs were more accurate and sensitive than the 
Cox regression-based nomogram in predicting 5-year graft survival.

Lofaro et al[27] used two different classification trees to predict chronic allograft 
nephropathy (CAN) within 5 years after transplantation by evaluating 80 renal 
transplant patients’ routine blood and urine tests collected after 6 mo of follow-up, and 
concluded that the use of classification trees is an acceptable alternative to traditional 
statistical models, especially for the evaluation of interactions of risk factors.

Greco et al[28] also used DTs to build predictive models of graft failure and 
retrospectively studied 194 renal transplant patients with 5 years of follow-up. The 
primary endpoint was graft loss within 5 years of follow-up. In the classification 
algorithm, the researchers studied the following parameters: Age, gender, time on 
dialysis, donor type, donor age, human leukocyte antigen (HLA) mismatches, delayed 
graft function (DGF), acute rejection episode, CAN, and body mass index and 
concluded that the use of DTs in clinical practice may be an acceptable alternative to 
the traditional statistical methods.

For the evaluation of the 3-year graft survival in kidney recipients with systemic 
lupus erythematosus (SLE), Tang et al[29] applied classification trees, LR, and ANNs to 
the data describing kidney recipients with SLE retrieved from the United States Renal 
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Data System database. The 95% confidence interval of the area under the receiver-
operator characteristic curve (AUROC) was used to quantify the discrimination 
capacity of the prediction models. The authors concluded that the performance of LR 
and classification trees was not inferior to that of more complex ANN.

Yoo et al[30] assessed the predictive power of ensemble learning algorithms 
[survival DT, bagging, RF, and ridge and least absolute shrinkage and selection 
operator (LASSO)] and compared their outcomes to those of the conventional models 
(DT and Cox regression) to predict graft survival in a retrospective analysis of the data 
from a multicenter cohort of 3117 kidney transplant recipients. By means of a survival 
DT model, the index of concordance was found as 0.80, with the episode of acute 
rejection during the 1-year post-transplant being associated with a 4.27-fold increase in 
the risk of graft failure. In conclusion, the authors reported that ML methods may 
provide flexible and practical tools for predicting graft survival.

In a cross-sectional study, Nematollahi et al[31] examined the 5-year graft survival 
in 717 patients, using a multilayer perceptron of ANN (MLP-ANNs), LR, and SVMs to 
construct prediction models. The authors assessed the validity of the models using 
different evaluation tools such as AUC, accuracy, sensitivity, and specificity and 
concluded that the SVM and MLP-ANN models could efficiently be used for survival 
prediction in kidney transplant recipients.

Tapak et al[32] compared the LR and ANN approaches to predict graft survival in 
their data set from a retrospective study of 378 patients. According to their analysis, 
the ANN model outperformed LR in the prediction of kidney transplantation failure. 
The ANN model showed a higher total accuracy (0.75 vs 0.55) and better area under 
the ROC curve (0.88 vs 0.75) when compared to LR.

Zhou et al[33] assessed the association of 17 proteins with allograft rejection in a 
cohort of 47 patients. The researchers used the LASSO variable selection method to 
select the significant proteins that predict the hazard of allograft loss. Conventional 
model selection techniques accept the strategy of best subset selection or some of the 
stepwise variants. Though, such a strategy is computationally unreasonable when the 
number of predictors is large. As demonstrated, the subset selection method may be 
numerically unstable, thus the developing model may suffer from poor prediction 
accuracy. As one of the most popular variable selection methods, LASSO is able to 
overcome the computational hurdle of the subset selection approach. The authors 
deduced that KIM-1 and VEGF-R2 had individual significant positive associations 
with the hazard of renal failure.

In a study conducted to predict the future values of estimated glomerular filtration 
rate (eGFR) for kidney recipients, Rashidi Khazaee at al[34] developed and validated 
an ANN-based model (multilayer perceptron network) using three static covariates of 
the recipients’ gender and the donors’ age and gender, as well as 11 dynamic 
covariates of the recipients including current age, time since transplant, serum 
creatinine, fasting blood sugar, weight, and blood pressures available at each visit. The 
development and validation datasets included 72.7% and 27.3% of the 25811 records 
from the historical visit data of 675 adult kidney recipients. The ANN-based model 
dynamically predicted a future eGFR value based on a number of fixed and time-
dependent longitudinal data. The authors suggested that using such analytical tools 
may help in realizing the administration of personalized medicine in kidney 
transplantation.

In another study, Mark et al[35] used an ensemble of methods including random 
survival forests constructed from conditional inference trees. The benefit of combining 
diverse models to predict kidney transplant survival is that different models may 
work better than others on different cohorts of the data. The dataset was provided by 
the United Network for Organ Sharing and consisted of recipients who had kidney 
transplant surgery in the United States from 1987 to 2014[36,37]. The authors used 73 
variables of the 163199 observations available during the chosen 10-year time period 
and proposed that the model achieved a better performance than the estimated post-
transplant survival model used in the kidney allocation system in the United States.

In a multicenter study, Raynaud et al[38] analyzed 403497 eGFR measurements of 
14132 patients using a number of different ML techniques and identified eight distinct 
eGFR trajectories with latent class mixed models. Using a validation cohort of 9992 
individuals, the authors suggested that their results provided the base for a trajectory-
based assessment of kidney transplant patients for risk stratification and monitoring.

In a critical paper, Bae et al[39] examined whether ML techniques are superior to 
conventional regression analysis. Studying the records of 133431 adult deceased donor 
kidney transplant recipients from the national registry data, the authors randomly 
selected 70% of the transplant centers for training and 30% for validation. They used 
different ML procedures (gradient boosting and RF) and regression analysis, with the 
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aim of predicting DGF, 1-year acute rejection, death-censored graft failure, all-cause 
graft failure, and death in the training set. After comparing the performances of 
different models in the validation set, the authors asserted that ML does not 
outperform the conventional regression-based approaches in predicting various 
kidney transplant outcomes.

Optimizing the dose of immunosuppression
McMichael et al[40] developed an intelligent dosing system for optimizing FK 506 
therapy, and suggested that the computerized dosing algorithm for FK 506 is as an 
“expert system” using stochastic open loop control theory[41]. They developed an AI 
dosing system (IDS) that would predict the drug dosages and levels. This IDS was 
programmed with hundreds of dosing histories, i.e., previous dose, previous level, 
current dose, and current level. The system was then used as a model to develop an 
equation that relates the current FK 506 dose and level with the desired dose and level. 
The IDS calculates the FK 506 dose required to achieve the target level. A prospective 
validation study shown that the model was 95% accurate in describing the relationship 
between FK 506 dosage and FK 506 plasma level, and that there were no biases in the 
dosing predictions[40].

Camps-Valls et al[42] used neural networks for personalizing the dosage of 
cyclosporine A (CyA) in patients who had undergone kidney transplantation. The 
researchers used three kinds of networks [multilayer perceptron, finite impulse 
response (FIR) network, and the Elman recurrent network] while the formation of 
neural-network ensembles was used in a scheme of two chained models where the 
blood concentration predicted by the first model constituted an input to the dosage 
prediction model. After using 364 samples from 22 patients for training and 217 
samples from 10 patients for testing, the authors decided that the best model was an 
ensemble of FIR and the Elman network. This model yielded an r value of 0.977 in the 
validation set. The authors also suggested that neural models have proven to be well 
suited to this problem not only because of the accuracy of their estimations but also 
because of their precision and robustness.

In Gören et al[43]’s study, 654 CyA measurements and 20 input parameters from 138 
patients were used to train (473 samples) and validate (181 samples) an adaptive-
network-based fuzzy inference system. The model aimed at predicting CyA concen-
tration based on 20 input parameters which included concurrent use of drugs, blood 
levels, sampling time, age, gender, and dosing intervals. The authors measured the 
performance of the developed model using root-mean square error, which was 
calculated as 0.057 for the validation set. In conclusion, the researchers suggested that 
their model could effectively assist physicians in choosing the best therapeutic drug 
dose in the clinical setting.

In two consecutive papers, Seeling at al[44] described the development of a 
computer-aided decision system for planning tacrolimus therapy and then the 
integration of this system to the hospital information system. The authors used data 
from 492 patients and 13053 examinations, and created a classification model (con-
ditional inference trees) using patient profiles, associated distributions, and intervals 
of medication adaption (decrease, increase, or maintain). The theoretical model 
resulted in 16 classes of patients and associated distributions, which were then 
translated to a medical logic module. Eventually, a method for determining semi-
automated immunosuppressive therapy was created to guide nephrologists.

In their study where they used data from 1045 renal transplant patients, Tang et al
[45] utilized 80% of the randomly selected data to develop a dose prediction algorithm, 
and employed 20% of the data for validation. Multiple linear regression, ANN, 
regression tree (RT), multivariate adaptive regression splines, boosted RT, support 
vector regression, RF regression, lasso regression, and Bayesian additive RT were 
applied, and their performances were compared in this work. Among all the ML 
models, RT performed best in both the derivation [0.71 (0.67-0.76)] and validation 
cohorts [0.73 (0.63-0.82)]. The authors suggested that the ML models used to predict 
the tacrolimus dose may facilitate the administration of personalized medicine.

In Thishya et al[46]’s study, the ANN and LR models were used to predict the 
bioavailability of tacrolimus and the risk of post-transplant diabetes based on the 
ABCB1 and CYP3A5 genetic polymorphism status. Besides polymorphism, the authors 
used the age, gender, BMI, and creatinine data from 129 patients for the input layer of 
their ANN and concluded that the ANN and multifactor dimensionality reduction 
analysis models explored both the individual and synergistic effects of variables in 
modulating the bioavailability of tacrolimus and risk for post-transplant diabetes.
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Diagnosis of rejection
Hummel et al[47] examined 145 patients who had kidney biopsy for the differential 
diagnosis of nephrotoxicity and acute cellular rejection using 18 different clinical and 
laboratory values for the input parameters, including tacrolimus dose, serum 
creatinine, and histocompatibility, to train the ANN. The classification results were 
considered significant by the experts who evaluated the classifiers. However, the 
researchers asserted that higher rates of sensitivity would be required to apply the 
classifier in clinical practice. In a separate paper, the same group of authors used the 
same database to examine the performance of different AI techniques to screen the 
need for biopsy among patients suspected of having nephrotoxicity or acute cellular 
rejection during the first year after transplantation[48]. They used the ANN, SVM, and 
Bayesian interference (BI) to indicate if the clinical course of the event suggested the 
need for biopsy. The technique that showed the best sensitivity value as an indicator 
for biopsy was the SVM with an AUC of 0.79. The authors suggested that this 
technique could be used in clinical practice[48].

In Metzger et al[49]’s study, SVM-based classification was used for resection and 
non-rejection. The researchers examined 103 patients (39 for training and 64 for 
validation) with a kidney biopsy and used CE-MS-based urinary proteome analysis for 
the data feed. The application of the rejection model to the validation set resulted in an 
AUC value of 0.91. In total, 16 out of the 18 subclinical rejections and all 10 clinical 
rejections (BANFF grades Ia/Ib) and 28 of the 36 controls without rejection were 
correctly classified.

Pineda et al[50] developed an integrative computational approach leveraging 
donor/recipient (D/R) exome sequencing and gene expression to predict the clinical 
post-transplant outcome. The authors made a statistical analysis of 28 D/R kidney 
transplant pairs with biopsy-proven clinical outcomes with rejection, identifying a 
significantly higher number of mismatched non-HLA variants in antibody mediated 
rejection (AMR). They also identified 123 variants associated mainly with the risk of 
AMR and applied an ML technique to circumvent the issue of statistical power. 
Eventually, they found a subset of 65 variants using RF that predicted post-transplant 
AMR with a very low error rate.

In another study, the same group of authors evaluated 37 biopsy-paired peripheral 
blood samples from a cohort with stable kidney function with AMR and TCMR by 
RNA sequencing[51]. The authors used ML tools to identify the gene signatures 
associated with rejection and found that 102 genes (63 coding genes and 39 noncoding 
genes) associated with AMR (54 upregulated), TCMR (23 upregulated), and stable 
kidney function (25 upregulated) perfectly clustered with each rejection phenotype 
and highly correlated with main histologic lesions (P = 0.91). Their analysis identified 
a critical gene signature in peripheral blood samples from kidney transplant patients 
who underwent AMR, and this signature was sufficient to differentiate them from 
patients with TCMR and immunologically quiescent kidney allografts.

Wittenbrink et al[52] used a pretransplant HLA antigen bead assay data set to 
predict the risk of post-transplant ACR risk. Employing an SVM-based algorithm to 
process and analyze the HLA data, the model achieved the prediction of 38 graft 
recipients who experienced ACR with an accuracy of 82.7%. The authors reported that 
this was one of the highest prediction accuracy rates in the literature for pre-transplant 
risk assessment of ACR.

Prediction of early graft function
Shoskes et al[53] used retrospective data from 100 cadaveric transplants to train an 
ANN with the aim of predicting DGF. For input, the authors used donor and recipient 
characteristics and then validated the model in 20 prospective cadaveric transplants. In 
the validation cohort, the ANN was able to predict DGF with an 80% accuracy. The 
authors suggested that the use of such a model could help improve donor/recipient 
selection and perioperative immunosuppression and reduce overall costs.

In Brier et al[54]’s study, the researchers used an ANN and LR to predict DGF. In the 
examination of 304 cadaveric kidney transplantations, the researchers used data from 
198 patients for training and 106 patients for validation. The results of the study 
showed that LR analysis was more sensitive in predicting ‘no DGF’ (91 vs 70%), while 
the ANN predicted ‘DGF’ with a higher sensitivity (56% vs 37%). The neural network 
was 63.5% sensitive and 64.8% specific. In conclusion, the authors deduced that ANN 
may be used for prediction of DGF in cadaveric renal transplants.

Santori et al[55] assessed the efficiency of a neural network model to forecast a 
delayed decrease of serum creatinine in pediatric kidney recipients. In this study, the 
neural network was constructed with a training set of 107 pediatric kidney recipients, 
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using 20 input variables. The model was validated in a second set of 41 patients. The 
overall accuracies of the neural network for the training set, the validation set, and the 
whole patient cohort were 89.1%, 76.92%, and 87.14% respectively. The developed 
ANN model had a higher sensitivity compared to LR analysis. The authors inferred 
that the neural network model could be used to predict a delayed decrease in serum 
creatinine among pediatric kidney recipients.

In another study, Decruyenaere et al[56] constructed eight different ML methods to 
predict DGF and compared them to LR by using the data from 475 cadaveric kidney 
transplantations. Besides LR, the authors employed the following methods to construct 
the prediction models: LDA, quadratic discriminant analysis, and SVMs using linear, 
radial basis function and polynomial kernels, DT, RF, and stochastic gradient boosting. 
The performance of the models was assessed by computing sensitivity, positive 
predictive value, and AUROC after a 10-fold-stratified cross-validation. The authors 
found that the linear SVM had the highest discriminative capacity (AUROC: 84.3%), 
outperforming each of other methods, except for the radial SVM, polynomial SVM, 
and LDA. However, it was the only method superior to LR. Eventually, the authors 
asserted that the linear SVM was the most appropriate ML method to predict DGF.

In Costa et al[57]’s evaluation of the impact of donor maintenance-related (arterial 
blood gas pH, serum sodium, blood glucose, urine output, mean arterial pressure, 
vasopressors use, and reversed cardiac arrest) variables on the development of DGF, 
data from 443 cadaveric donors ML methods that included DT, neural network, and 
SVM to locate donor maintenance-related parameters that were predictive of DGF 
were used. However, according to the multivariable LR analysis, the donor main-
tenance-related variables did not have any impact on DGF occurrence.

In a large scale study, Kawakita et al[3] aimed to build personalized prognostic 
models based on ML methods to predict DGF. Using the data obtained from the 
United Network for Organ Sharing/Organ Procurement and Transplantation 
Network, their development set included a total of 55044 patients and the validation 
set included 6176 patients. Of the selected 26 predictors, 13 were donor-related, eight 
were recipient-related, and five were transplant-related. The authors used a 
development dataset with the selected features to train five ML algorithms: LR, elastic 
net, RF, extreme gradient boosting (XGB), and ANN. For performance comparison, a 
baseline model based on LR was developed. After training the ML algorithms, the 
authors assessed each model for three performance measures: Discrimination, 
calibration, and clinical utility using different metrics. All of the algorithms trained 
with the new predictors performed better or equally well in these characteristics 
compared to the baseline model, especially the ANN and XGB. The XGB is an 
ensemble learning method, which assembles DT as its building blocks to build a strong 
learner that is able to learn the nonlinear relationships between the predictors and the 
outcome. The authors suggested that ML was a valid alternative approach for the 
prediction and identification of the predictors of DGF, adding an important piece of 
evidence to support the use of ML in driving medical progressions.

Other areas
In addition to the above-mentioned areas, AI techniques are used in kidney 
transplantation for different purposes. We located different articles in the following 
topics: Assessment of risk for various complications such as cardiovascular risk[58], 
pneumonia[59,60], and CMV infection[61], prediction of changes in lipid parameters
[62], prediction of HLA response[63-65], and assessment of the risk of kidney 
transplantation during the coronavirus disease 2019 pandemic[66].

CONCLUSION
AI is used in a large spectrum of studies in kidney transplantation, ranging from 
pathological evaluation to outcome predictions. Those studies pave the way for 
increased automation, which will increase standardization and speed in medical 
evaluations. CAD and quantifiable personalized predictions are developing at a great 
pace that will enhance precision medicine.

REFERENCES
Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science 2015; 349: 
255-260 [PMID: 26185243 DOI: 10.1126/science.aaa8415]

1     

http://www.ncbi.nlm.nih.gov/pubmed/26185243
https://dx.doi.org/10.1126/science.aaa8415


Seyahi N et al. AI and kidney transplantation

WJT https://www.wjgnet.com 286 July 18, 2021 Volume 11 Issue 7

Theobald O.   Machine Learning for Absolute Beginners: A Plain English Introduction. 3rd ed. 
Scatterplot Press; 2020

2     

Kawakita S, Beaumont JL, Jucaud V, Everly MJ. Personalized prediction of delayed graft function 
for recipients of deceased donor kidney transplants with machine learning. Sci Rep 2020; 10: 18409 
[PMID: 33110142 DOI: 10.1038/s41598-020-75473-z]

3     

Hamilton D, Miola UJ, Mousa D. Interpretation of captopril transplant renography using a feed 
forward neural network. J Nucl Med 1996; 37: 1649-1652 [PMID: 8862301]

4     

El-Baz A, Fahmi R, Yuksel S, Farag AA, Miller W, El-Ghar MA, Eldiasty T. A new CAD system for 
the evaluation of kidney diseases using DCE-MRI. Med Image Comput Comput Assist Interv 2006; 9: 
446-453 [PMID: 17354803 DOI: 10.1007/11866763_55]

5     

El-Baz A, Gimel'farb G, El-Ghar MA. New motion correction models for automatic identification of 
renal transplant rejection. Med Image Comput Comput Assist Interv 2007; 10: 235-243 [PMID: 
18044574 DOI: 10.1007/978-3-540-75759-7_29]

6     

Shehata M, Khalifa F, Soliman A, Ghazal M, Taher F, El-Ghar MA, Dwyer AC, Gimel'farb G, 
Keynton RS, El-Baz A. Computer-Aided Diagnostic System for Early Detection of Acute Renal 
Transplant Rejection Using Diffusion-Weighted MRI. IEEE Trans Biomed Eng 2019; 66: 539-552 
[PMID: 29993503 DOI: 10.1109/TBME.2018.2849987]

7     

Abdeltawab H, Shehata M, Shalaby A, Khalifa F, Mahmoud A, El-Ghar MA, Dwyer AC, Ghazal M, 
Hajjdiab H, Keynton R, El-Baz A. A Novel CNN-Based CAD System for Early Assessment of 
Transplanted Kidney Dysfunction. Sci Rep 2019; 9: 5948 [PMID: 30976081 DOI: 
10.1038/s41598-019-42431-3]

8     

Shehata M, Shalaby A, Switala AE, El-Baz M, Ghazal M, Fraiwan L, Khalil A, El-Ghar MA, 
Badawy M, Bakr AM, Dwyer A, Elmaghraby A, Giridharan G, Keynton R, El-Baz A. A multimodal 
computer-aided diagnostic system for precise identification of renal allograft rejection: Preliminary 
results. Med Phys 2020; 47: 2427-2440 [PMID: 32130734 DOI: 10.1002/mp.14109]

9     

Kazi JI, Furness PN, Nicholson M. Diagnosis of early acute renal allograft rejection by evaluation of 
multiple histological features using a Bayesian belief network. J Clin Pathol 1998; 51: 108-113 
[PMID: 9602682 DOI: 10.1136/jcp.51.2.108]

10     

Furness PN, Levesley J, Luo Z, Taub N, Kazi JI, Bates WD, Nicholson ML. A neural network 
approach to the biopsy diagnosis of early acute renal transplant rejection. Histopathology 1999; 35: 
461-467 [PMID: 10583562 DOI: 10.1046/j.1365-2559.1999.035005461.x]

11     

Marsh JN, Matlock MK, Kudose S, Liu TC, Stappenbeck TS, Gaut JP, Swamidass SJ. Deep 
Learning Global Glomerulosclerosis in Transplant Kidney Frozen Sections. IEEE Trans Med Imaging 
2018; 37: 2718-2728 [PMID: 29994669 DOI: 10.1109/TMI.2018.2851150]

12     

Pedraza A, Gallego J, Lopez S, Gonzalez L, Laurinavicius A, Bueno G. Glomerulus classification 
with convolutional neural networks. Medical Image Understanding and Analysis. Springer 2017; 723: 
839-849 [DOI: 10.1007/978-3-319-60964-5_73]

13     

Liu P, Tseng G, Wang Z, Huang Y, Randhawa P. Diagnosis of T-cell-mediated kidney rejection in 
formalin-fixed, paraffin-embedded tissues using RNA-Seq-based machine learning algorithms. Hum 
Pathol 2019; 84: 283-290 [PMID: 30296518 DOI: 10.1016/j.humpath.2018.09.013]

14     

Halloran PF, Reeve JP, Pereira AB, Hidalgo LG, Famulski KS. Antibody-mediated rejection, T cell-
mediated rejection, and the injury-repair response: new insights from the Genome Canada studies of 
kidney transplant biopsies. Kidney Int 2014; 85: 258-264 [PMID: 23965521 DOI: 
10.1038/ki.2013.300]

15     

Reeve J, Böhmig GA, Eskandary F, Einecke G, Lefaucheur C, Loupy A, Halloran PF;  MMDx-
Kidney study group. Assessing rejection-related disease in kidney transplant biopsies based on 
archetypal analysis of molecular phenotypes. JCI Insight 2017; 2 [PMID: 28614805 DOI: 
10.1172/jci.insight.94197]

16     

Reeve J, Böhmig GA, Eskandary F, Einecke G, Gupta G, Madill-Thomsen K, Mackova M, Halloran 
PF;  INTERCOMEX MMDx-Kidney Study Group. Generating automated kidney transplant biopsy 
reports combining molecular measurements with ensembles of machine learning classifiers. Am J 
Transplant 2019; 19: 2719-2731 [PMID: 30868758 DOI: 10.1111/ajt.15351]

17     

Halloran PF, Reeve J, Akalin E, Aubert O, Bohmig GA, Brennan D, Bromberg J, Einecke G, 
Eskandary F, Gosset C, Duong Van Huyen JP, Gupta G, Lefaucheur C, Malone A, Mannon RB, 
Seron D, Sellares J, Weir M, Loupy A. Real Time Central Assessment of Kidney Transplant 
Indication Biopsies by Microarrays: The INTERCOMEX Study. Am J Transplant 2017; 17: 2851-
2862 [PMID: 28449409 DOI: 10.1111/ajt.14329]

18     

Halloran PF, Matas A, Kasiske BL, Madill-Thomsen KS, Mackova M, Famulski KS. Molecular 
phenotype of kidney transplant indication biopsies with inflammation in scarred areas. Am J 
Transplant 2019; 19: 1356-1370 [PMID: 30417539 DOI: 10.1111/ajt.15178]

19     

Hermsen M, de Bel T, den Boer M, Steenbergen EJ, Kers J, Florquin S, Roelofs JJTH, Stegall MD, 
Alexander MP, Smith BH, Smeets B, Hilbrands LB, van der Laak JAWM. Deep Learning-Based 
Histopathologic Assessment of Kidney Tissue. J Am Soc Nephrol 2019; 30: 1968-1979 [PMID: 
31488607 DOI: 10.1681/ASN.2019020144]

20     

Aubert O, Higgins S, Bouatou Y, Yoo D, Raynaud M, Viglietti D, Rabant M, Hidalgo L, Glotz D, 
Legendre C, Delahousse M, Shah N, Sis B, Campbell P, Mengel M, Jouven X, Duong Van Huyen JP, 
Lefaucheur C, Loupy A. Archetype Analysis Identifies Distinct Profiles in Renal Transplant 
Recipients with Transplant Glomerulopathy Associated with Allograft Survival. J Am Soc Nephrol 
2019; 30: 625-639 [PMID: 30872323 DOI: 10.1681/ASN.2018070777]

21     

http://www.ncbi.nlm.nih.gov/pubmed/33110142
https://dx.doi.org/10.1038/s41598-020-75473-z
http://www.ncbi.nlm.nih.gov/pubmed/8862301
http://www.ncbi.nlm.nih.gov/pubmed/17354803
https://dx.doi.org/10.1007/11866763_55
http://www.ncbi.nlm.nih.gov/pubmed/18044574
https://dx.doi.org/10.1007/978-3-540-75759-7_29
http://www.ncbi.nlm.nih.gov/pubmed/29993503
https://dx.doi.org/10.1109/TBME.2018.2849987
http://www.ncbi.nlm.nih.gov/pubmed/30976081
https://dx.doi.org/10.1038/s41598-019-42431-3
http://www.ncbi.nlm.nih.gov/pubmed/32130734
https://dx.doi.org/10.1002/mp.14109
http://www.ncbi.nlm.nih.gov/pubmed/9602682
https://dx.doi.org/10.1136/jcp.51.2.108
http://www.ncbi.nlm.nih.gov/pubmed/10583562
https://dx.doi.org/10.1046/j.1365-2559.1999.035005461.x
http://www.ncbi.nlm.nih.gov/pubmed/29994669
https://dx.doi.org/10.1109/TMI.2018.2851150
https://dx.doi.org/10.1007/978-3-319-60964-5_73
http://www.ncbi.nlm.nih.gov/pubmed/30296518
https://dx.doi.org/10.1016/j.humpath.2018.09.013
http://www.ncbi.nlm.nih.gov/pubmed/23965521
https://dx.doi.org/10.1038/ki.2013.300
http://www.ncbi.nlm.nih.gov/pubmed/28614805
https://dx.doi.org/10.1172/jci.insight.94197
http://www.ncbi.nlm.nih.gov/pubmed/30868758
https://dx.doi.org/10.1111/ajt.15351
http://www.ncbi.nlm.nih.gov/pubmed/28449409
https://dx.doi.org/10.1111/ajt.14329
http://www.ncbi.nlm.nih.gov/pubmed/30417539
https://dx.doi.org/10.1111/ajt.15178
http://www.ncbi.nlm.nih.gov/pubmed/31488607
https://dx.doi.org/10.1681/ASN.2019020144
http://www.ncbi.nlm.nih.gov/pubmed/30872323
https://dx.doi.org/10.1681/ASN.2018070777


Seyahi N et al. AI and kidney transplantation

WJT https://www.wjgnet.com 287 July 18, 2021 Volume 11 Issue 7

Kim YG, Choi G, Go H, Cho Y, Lee H, Lee AR, Park B, Kim N. A Fully Automated System Using 
A Convolutional Neural Network to Predict Renal Allograft Rejection: Extra-validation with Giga-
pixel Immunostained Slides. Sci Rep 2019; 9: 5123 [PMID: 30914690 DOI: 
10.1038/s41598-019-41479-5]

22     

Ligabue G, Pollastri F, Fontana F, Leonelli M, Furci L, Giovanella S, Alfano G, Cappelli G, Testa F, 
Bolelli F, Grana C, Magistroni R. Evaluation of the Classification Accuracy of the Kidney Biopsy 
Direct Immunofluorescence through Convolutional Neural Networks. Clin J Am Soc Nephrol 2020; 
15: 1445-1454 [PMID: 32938617 DOI: 10.2215/CJN.03210320]

23     

Simic-Ogrizovic S, Furuncic D, Lezaic V, Radivojevic D, Blagojevic R, Djukanovic L. Using ANN 
in selection of the most important variables in prediction of chronic renal allograft rejection 
progression. Transplant Proc 1999; 31: 368 [PMID: 10083146 DOI: 
10.1016/s0041-1345(98)01665-0]

24     

Lin RS, Horn SD, Hurdle JF, Goldfarb-Rumyantzev AS. Single and multiple time-point prediction 
models in kidney transplant outcomes. J Biomed Inform 2008; 41: 944-952 [PMID: 18442951 DOI: 
10.1016/j.jbi.2008.03.005]

25     

Akl A, Ismail AM, Ghoneim M. Prediction of graft survival of living-donor kidney transplantation: 
nomograms or artificial neural networks? Transplantation 2008; 86: 1401-1406 [PMID: 19034010 
DOI: 10.1097/TP.0b013e31818b221f]

26     

Lofaro D, Maestripieri S, Greco R, Papalia T, Mancuso D, Conforti D, Bonofiglio R. Prediction of 
chronic allograft nephropathy using classification trees. Transplant Proc 2010; 42: 1130-1133 
[PMID: 20534242 DOI: 10.1016/j.transproceed.2010.03.062]

27     

Greco R, Papalia T, Lofaro D, Maestripieri S, Mancuso D, Bonofiglio R. Decisional trees in renal 
transplant follow-up. Transplant Proc 2010; 42: 1134-1136 [PMID: 20534243 DOI: 
10.1016/j.transproceed.2010.03.061]

28     

Tang H, Poynton MR, Hurdle JF, Baird BC, Koford JK, Goldfarb-Rumyantzev AS. Predicting three-
year kidney graft survival in recipients with systemic lupus erythematosus. ASAIO J 2011; 57: 300-
309 [PMID: 21701272 DOI: 10.1097/MAT.0b013e318222db30]

29     

Yoo KD, Noh J, Lee H, Kim DK, Lim CS, Kim YH, Lee JP, Kim G, Kim YS. A Machine Learning 
Approach Using Survival Statistics to Predict Graft Survival in Kidney Transplant Recipients: A 
Multicenter Cohort Study. Sci Rep 2017; 7: 8904 [PMID: 28827646 DOI: 
10.1038/s41598-017-08008-8]

30     

Nematollahi M, Akbari R, Nikeghbalian S, Salehnasab C. Classification Models to Predict Survival 
of Kidney Transplant Recipients Using Two Intelligent Techniques of Data Mining and Logistic 
Regression. Int J Organ Transplant Med 2017; 8: 119-122 [PMID: 28959387]

31     

Tapak L, Hamidi O, Amini P, Poorolajal J. Prediction of Kidney Graft Rejection Using Artificial 
Neural Network. Healthc Inform Res 2017; 23: 277-284 [PMID: 29181237 DOI: 
10.4258/hir.2017.23.4.277]

32     

Zhou L, Tang L, Song AT, Cibrik DM, Song PX. A LASSO Method to Identify Protein Signature 
Predicting Post-transplant Renal Graft Survival. Stat Biosci 2017; 9: 431-452 [PMID: 29399205 DOI: 
10.1007/s12561-016-9170-z]

33     

Rashidi Khazaee P, Bagherzadeh J, Niazkhani Z, Pirnejad H. A dynamic model for predicting graft 
function in kidney recipients' upcoming follow up visits: A clinical application of artificial neural 
network. Int J Med Inform 2018; 119: 125-133 [PMID: 30342680 DOI: 
10.1016/j.ijmedinf.2018.09.012]

34     

Mark E, Goldsman D, Gurbaxani B, Keskinocak P, Sokol J. Using machine learning and an 
ensemble of methods to predict kidney transplant survival. PLoS One 2019; 14: e0209068 [PMID: 
30625130 DOI: 10.1371/journal.pone.0209068]

35     

Organ Procurement and Transplantation Network.   Data-OPTN. 2016 [cited 10 January 2021]. 
[Internet]. Available from: https://optn.transplant.hrsa.gov/data/

36     

United Network for Organ Sharing.   2016 [cited 10 January 2021]. [Internet]. Available from: 
https://unos.org/data/

37     

Raynaud M, Aubert O, Reese PP, Bouatou Y, Naesens M, Kamar N, Bailly É, Giral M, Ladrière M, 
Le Quintrec M, Delahousse M, Juric I, Basic-Jukic N, Gupta G, Akalin E, Yoo D, Chin CS, Proust-
Lima C, Böhmig G, Oberbauer R, Stegall MD, Bentall AJ, Jordan SC, Huang E, Glotz D, Legendre 
C, Montgomery RA, Segev DL, Empana JP, Grams ME, Coresh J, Jouven X, Lefaucheur C, Loupy A. 
Trajectories of glomerular filtration rate and progression to end stage kidney disease after kidney 
transplantation. Kidney Int 2021; 99: 186-197 [PMID: 32781106 DOI: 10.1016/j.kint.2020.07.025]

38     

Bae S, Massie AB, Caffo BS, Jackson KR, Segev DL. Machine learning to predict transplant 
outcomes: helpful or hype? Transpl Int 2020; 33: 1472-1480 [PMID: 32996170 DOI: 
10.1111/tri.13695]

39     

McMichael J, Irish W, McCauley J, Shapiro R, Gordon R, Van Thiel DH, Lieberman R, Warty VS, 
Fung J, Starzl TE. Evaluation of a novel "intelligent" dosing system for optimizing FK 506 therapy. 
Transplant Proc 1991; 23: 2780-2782 [PMID: 1721275]

40     

Townsend C.   Advanced Techniques in Turbo Prolog. Longman Higher Education. Sybex; 198741     
Camps-Valls G, Porta-Oltra B, Soria-Olivas E, Martín-Guerrero JD, Serrano-López AJ, Pérez-Ruixo 
JJ, Jiménez-Torres NV. Prediction of cyclosporine dosage in patients after kidney transplantation 
using neural networks. IEEE Trans Biomed Eng 2003; 50: 442-448 [PMID: 12723055 DOI: 
10.1109/TBME.2003.809498]

42     

Gören S, Karahoca A, Onat FY, Gören MZ. Prediction of cyclosporine A blood levels: an application 43     

http://www.ncbi.nlm.nih.gov/pubmed/30914690
https://dx.doi.org/10.1038/s41598-019-41479-5
http://www.ncbi.nlm.nih.gov/pubmed/32938617
https://dx.doi.org/10.2215/CJN.03210320
http://www.ncbi.nlm.nih.gov/pubmed/10083146
https://dx.doi.org/10.1016/s0041-1345(98)01665-0
http://www.ncbi.nlm.nih.gov/pubmed/18442951
https://dx.doi.org/10.1016/j.jbi.2008.03.005
http://www.ncbi.nlm.nih.gov/pubmed/19034010
https://dx.doi.org/10.1097/TP.0b013e31818b221f
http://www.ncbi.nlm.nih.gov/pubmed/20534242
https://dx.doi.org/10.1016/j.transproceed.2010.03.062
http://www.ncbi.nlm.nih.gov/pubmed/20534243
https://dx.doi.org/10.1016/j.transproceed.2010.03.061
http://www.ncbi.nlm.nih.gov/pubmed/21701272
https://dx.doi.org/10.1097/MAT.0b013e318222db30
http://www.ncbi.nlm.nih.gov/pubmed/28827646
https://dx.doi.org/10.1038/s41598-017-08008-8
http://www.ncbi.nlm.nih.gov/pubmed/28959387
http://www.ncbi.nlm.nih.gov/pubmed/29181237
https://dx.doi.org/10.4258/hir.2017.23.4.277
http://www.ncbi.nlm.nih.gov/pubmed/29399205
https://dx.doi.org/10.1007/s12561-016-9170-z
http://www.ncbi.nlm.nih.gov/pubmed/30342680
https://dx.doi.org/10.1016/j.ijmedinf.2018.09.012
http://www.ncbi.nlm.nih.gov/pubmed/30625130
https://dx.doi.org/10.1371/journal.pone.0209068
https://optn.transplant.hrsa.gov/data/
https://unos.org/data/
http://www.ncbi.nlm.nih.gov/pubmed/32781106
https://dx.doi.org/10.1016/j.kint.2020.07.025
http://www.ncbi.nlm.nih.gov/pubmed/32996170
https://dx.doi.org/10.1111/tri.13695
http://www.ncbi.nlm.nih.gov/pubmed/1721275
http://www.ncbi.nlm.nih.gov/pubmed/12723055
https://dx.doi.org/10.1109/TBME.2003.809498


Seyahi N et al. AI and kidney transplantation

WJT https://www.wjgnet.com 288 July 18, 2021 Volume 11 Issue 7

of the adaptive-network-based fuzzy inference system (ANFIS) in assisting drug therapy. Eur J Clin 
Pharmacol 2008; 64: 807-814 [PMID: 18458894 DOI: 10.1007/s00228-008-0490-x]
Seeling W, Plischke M, Schuh C. Knowledge-based tacrolimus therapy for kidney transplant patients. 
Stud Health Technol Inform 2012; 180: 310-314 [PMID: 22874202]

44     

Tang J, Liu R, Zhang YL, Liu MZ, Hu YF, Shao MJ, Zhu LJ, Xin HW, Feng GW, Shang WJ, Meng 
XG, Zhang LR, Ming YZ, Zhang W. Application of Machine-Learning Models to Predict Tacrolimus 
Stable Dose in Renal Transplant Recipients. Sci Rep 2017; 7: 42192 [PMID: 28176850 DOI: 
10.1038/srep42192]

45     

Thishya K, Vattam KK, Naushad SM, Raju SB, Kutala VK. Artificial neural network model for 
predicting the bioavailability of tacrolimus in patients with renal transplantation. PLoS One 2018; 13: 
e0191921 [PMID: 29621269 DOI: 10.1371/journal.pone.0191921]

46     

Hummel AD, Maciel RF, Rodrigues RG, Pisa IT. Application of artificial neural networks in renal 
transplantation: classification of nephrotoxicity and acute cellular rejection episodes. Transplant Proc 
2010; 42: 471-472 [PMID: 20304167 DOI: 10.1016/j.transproceed.2010.01.051]

47     

Hummel AD, Maciel RF, Sousa FS, Cohrs FM, Falcão AE, Teixeira F, Baptista R, Mancini F, da 
Costa TM, Alves D, Rodrigues RG, Miranda R, Pisa IT. Artificial intelligence techniques: predicting 
necessity for biopsy in renal transplant recipients suspected of acute cellular rejection or 
nephrotoxicity. Transplant Proc 2011; 43: 1343-1344 [PMID: 21620125 DOI: 
10.1016/j.transproceed.2011.02.029]

48     

Metzger J, Chatzikyrkou C, Broecker V, Schiffer E, Jaensch L, Iphoefer A, Mengel M, Mullen W, 
Mischak H, Haller H, Gwinner W. Diagnosis of subclinical and clinical acute T-cell-mediated 
rejection in renal transplant patients by urinary proteome analysis. Proteomics Clin Appl 2011; 5: 322-
333 [PMID: 21538920 DOI: 10.1002/prca.201000153]

49     

Pineda S, Sigdel TK, Chen J, Jackson AM, Sirota M, Sarwal MM. Corrigendum: Novel Non-
Histocompatibility Antigen Mismatched Variants Improve the Ability to Predict Antibody-Mediated 
Rejection Risk in Kidney Transplant. Front Immunol 2018; 9: 107 [PMID: 29406538 DOI: 
10.3389/fimmu.2018.00107]

50     

Pineda S, Sur S, Sigdel T, Nguyen M, Crespo E, Torija A, Meneghini M, Gomà M, Sirota M, Bestard 
O, Sarwal MM. Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and 
Noncoding Genes by Types of Kidney Allograft Rejection. Kidney Int Rep 2020; 5: 1706-1721 
[PMID: 33102963 DOI: 10.1016/j.ekir.2020.07.023]

51     

Wittenbrink N, Herrmann S, Blazquez-Navarro A, Bauer C, Lindberg E, Wolk K, Sabat R, Reinke P, 
Sawitzki B, Thomusch O, Hugo C, Babel N, Seitz H, Or-Guil M. A novel approach reveals that HLA 
class 1 single antigen bead-signatures provide a means of high-accuracy pre-transplant risk 
assessment of acute cellular rejection in renal transplantation. BMC Immunol 2019; 20: 11 [PMID: 
31029086 DOI: 10.1186/s12865-019-0291-2]

52     

Shoskes DA, Ty R, Barba L, Sender M. Prediction of early graft function in renal transplantation 
using a computer neural network. Transplant Proc 1998; 30: 1316-1317 [PMID: 9636534 DOI: 
10.1016/s0041-1345(98)00257-7]

53     

Brier ME, Ray PC, Klein JB. Prediction of delayed renal allograft function using an artificial neural 
network. Nephrol Dial Transplant 2003; 18: 2655-2659 [PMID: 14605292 DOI: 10.1093/ndt/gfg439]

54     

Santori G, Fontana I, Valente U. Application of an artificial neural network model to predict delayed 
decrease of serum creatinine in pediatric patients after kidney transplantation. Transplant Proc 2007; 
39: 1813-1819 [PMID: 17692620 DOI: 10.1016/j.transproceed.2007.05.026]

55     

Decruyenaere A, Decruyenaere P, Peeters P, Vermassen F, Dhaene T, Couckuyt I. Prediction of 
delayed graft function after kidney transplantation: comparison between logistic regression and 
machine learning methods. BMC Med Inform Decis Mak 2015; 15: 83 [PMID: 26466993 DOI: 
10.1186/s12911-015-0206-y]

56     

Costa SD, de Andrade LGM, Barroso FVC, Oliveira CMC, Daher EF, Fernandes PFCBC, Esmeraldo 
RM, Sandes-Freitas TV. The impact of deceased donor maintenance on delayed kidney allograft 
function: A machine learning analysis. PLoS One 2020; 15: e0228597 [PMID: 32027717 DOI: 
10.1371/journal.pone.0228597]

57     

Heston TF, Norman DJ, Barry JM, Bennett WM, Wilson RA. Cardiac risk stratification in renal 
transplantation using a form of artificial intelligence. Am J Cardiol 1997; 79: 415-417 [PMID: 
9052342 DOI: 10.1016/s0002-9149(96)00778-3]

58     

Peng B, Gong H, Tian H, Zhuang Q, Li J, Cheng K, Ming Y. The study of the association between 
immune monitoring and pneumonia in kidney transplant recipients through machine learning models. 
J Transl Med 2020; 18: 370 [PMID: 32993687 DOI: 10.1186/s12967-020-02542-2]

59     

Luo Y, Tang Z, Hu X, Lu S, Miao B, Hong S, Bai H, Sun C, Qiu J, Liang H, Na N. Machine learning 
for the prediction of severe pneumonia during posttransplant hospitalization in recipients of a 
deceased-donor kidney transplant. Ann Transl Med 2020; 8: 82 [PMID: 32175375 DOI: 
10.21037/atm.2020.01.09]

60     

Sheppard D, McPhee D, Darke C, Shrethra B, Moore R, Jurewitz A, Gray A. Predicting 
cytomegalovirus disease after renal transplantation: an artificial neural network approach. Int J Med 
Inform 1999; 54: 55-76 [PMID: 10206429 DOI: 10.1016/s1386-5056(98)00169-5]

61     

Stachowska E, Gutowska I, Strzelczak A, Wesołowska T, Safranow K, Ciechanowski K, Chlubek D. 
The use of neural networks in evaluation of the direction and dynamics of changes in lipid parameters 
in kidney transplant patients on the Mediterranean diet. J Ren Nutr 2006; 16: 150-159 [PMID: 
16567272 DOI: 10.1053/j.jrn.2006.01.003]

62     

http://www.ncbi.nlm.nih.gov/pubmed/18458894
https://dx.doi.org/10.1007/s00228-008-0490-x
http://www.ncbi.nlm.nih.gov/pubmed/22874202
http://www.ncbi.nlm.nih.gov/pubmed/28176850
https://dx.doi.org/10.1038/srep42192
http://www.ncbi.nlm.nih.gov/pubmed/29621269
https://dx.doi.org/10.1371/journal.pone.0191921
http://www.ncbi.nlm.nih.gov/pubmed/20304167
https://dx.doi.org/10.1016/j.transproceed.2010.01.051
http://www.ncbi.nlm.nih.gov/pubmed/21620125
https://dx.doi.org/10.1016/j.transproceed.2011.02.029
http://www.ncbi.nlm.nih.gov/pubmed/21538920
https://dx.doi.org/10.1002/prca.201000153
http://www.ncbi.nlm.nih.gov/pubmed/29406538
https://dx.doi.org/10.3389/fimmu.2018.00107
http://www.ncbi.nlm.nih.gov/pubmed/33102963
https://dx.doi.org/10.1016/j.ekir.2020.07.023
http://www.ncbi.nlm.nih.gov/pubmed/31029086
https://dx.doi.org/10.1186/s12865-019-0291-2
http://www.ncbi.nlm.nih.gov/pubmed/9636534
https://dx.doi.org/10.1016/s0041-1345(98)00257-7
http://www.ncbi.nlm.nih.gov/pubmed/14605292
https://dx.doi.org/10.1093/ndt/gfg439
http://www.ncbi.nlm.nih.gov/pubmed/17692620
https://dx.doi.org/10.1016/j.transproceed.2007.05.026
http://www.ncbi.nlm.nih.gov/pubmed/26466993
https://dx.doi.org/10.1186/s12911-015-0206-y
http://www.ncbi.nlm.nih.gov/pubmed/32027717
https://dx.doi.org/10.1371/journal.pone.0228597
http://www.ncbi.nlm.nih.gov/pubmed/9052342
https://dx.doi.org/10.1016/s0002-9149(96)00778-3
http://www.ncbi.nlm.nih.gov/pubmed/32993687
https://dx.doi.org/10.1186/s12967-020-02542-2
http://www.ncbi.nlm.nih.gov/pubmed/32175375
https://dx.doi.org/10.21037/atm.2020.01.09
http://www.ncbi.nlm.nih.gov/pubmed/10206429
https://dx.doi.org/10.1016/s1386-5056(98)00169-5
http://www.ncbi.nlm.nih.gov/pubmed/16567272
https://dx.doi.org/10.1053/j.jrn.2006.01.003


Seyahi N et al. AI and kidney transplantation

WJT https://www.wjgnet.com 289 July 18, 2021 Volume 11 Issue 7

Togninalli M, Yoneoka D, Kolios AGA, Borgwardt K, Nilsson J. Pretransplant Kinetics of Anti-
HLA Antibodies in Patients on the Waiting List for Kidney Transplantation. J Am Soc Nephrol 2019; 
30: 2262-2274 [PMID: 31653784 DOI: 10.1681/ASN.2019060594]

63     

Clark BD, Leong SW. Crossmatch prediction of highly sensitized patients. Clin Transpl 1992; 435-
455 [PMID: 1306717]

64     

Vittoraki AG, Fylaktou A, Tarassi K, Tsinaris Z, Petasis GC, Gerogiannis D, Kheav VD, Carmagnat 
M, Lehmann C, Doxiadis I, Iniotaki AG, Theodorou I. Patterns of 1,748 Unique Human Alloimmune 
Responses Seen by Simple Machine Learning Algorithms. Front Immunol 2020; 11: 1667 [PMID: 
32849576 DOI: 10.3389/fimmu.2020.01667]

65     

Massie AB, Boyarsky BJ, Werbel WA, Bae S, Chow EKH, Avery RK, Durand CM, Desai N, 
Brennan D, Garonzik-Wang JM, Segev DL. Identifying scenarios of benefit or harm from kidney 
transplantation during the COVID-19 pandemic: A stochastic simulation and machine learning study. 
Am J Transplant 2020; 20: 2997-3007 [PMID: 32515544 DOI: 10.1111/ajt.16117]

66     

http://www.ncbi.nlm.nih.gov/pubmed/31653784
https://dx.doi.org/10.1681/ASN.2019060594
http://www.ncbi.nlm.nih.gov/pubmed/1306717
http://www.ncbi.nlm.nih.gov/pubmed/32849576
https://dx.doi.org/10.3389/fimmu.2020.01667
http://www.ncbi.nlm.nih.gov/pubmed/32515544
https://dx.doi.org/10.1111/ajt.16117


Published by Baishideng Publishing Group Inc 

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA 

Telephone: +1-925-3991568 

E-mail: bpgoffice@wjgnet.com 

Help Desk: https://www.f6publishing.com/helpdesk 

https://www.wjgnet.com

© 2021 Baishideng Publishing Group Inc. All rights reserved.

mailto:bpgoffice@wjgnet.com
https://www.f6publishing.com/helpdesk
https://www.wjgnet.com

