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Abstract
Dopaminergic neurotoxicity is characterized by damage and death of 
dopaminergic neurons. Parkinson's disease (PD) is a neurodegenerative disorder 
that primarily involves the loss of dopaminergic neurons in the substantia nigra. 
Therefore, the study of the mechanisms, as well as the search for new targets for 
the prevention and treatment of neurodegenerative diseases, is an important focus 
of modern neuroscience. PD is primarily caused by dysfunction of dopaminergic 
neurons; however, other neurotransmitter systems are also involved. Research 
reports have indicated that the glutamatergic system is involved in different 
pathological conditions, including dopaminergic neurotoxicity. Over the last two 
decades, the important functional interplay between dopaminergic and glutama-
tergic systems has stimulated interest in the possible role of metabotropic 
glutamate receptors (mGluRs) in the development of extrapyramidal disorders. 
However, the specific mechanisms driving these processes are presently unclear. 
The participation of the universal neuronal messenger nitric oxide (NO) in the 
mechanisms of dopaminergic neurotoxicity has attracted increased attention. The 
current paper aims to review the involvement of mGluRs and the contribution of 
NO to dopaminergic neurotoxicity. More precisely, we focused on studies 
conducted on the rotenone-induced PD model. This review is also an outline of 
our own results obtained using the method of electron paramagnetic resonance, 
which allows quantitation of NO radicals in brain structures.

Key Words: Dopaminergic neurotoxicity; Metabotropic glutamate receptors; Nitric oxide; 
Rotenone; Parkinson's disease
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dopaminergic neurons. Chronic systemic exposure to rotenone (an inhibitor of 
mitochondrial complex I and a commonly used pesticide) induced dopaminergic 
degeneration and reproduced many features of human Parkinson's disease in rats. The 
current paper aims to review the involvement of metabotropic glutamate receptors and 
the contribution nitric oxide to dopaminergic neurotoxicity.

Citation: Bashkatova V. Metabotropic glutamate receptors and nitric oxide in dopaminergic 
neurotoxicity. World J Psychiatr 2021; 11(10): 830-840
URL: https://www.wjgnet.com/2220-3206/full/v11/i10/830.htm
DOI: https://dx.doi.org/10.5498/wjp.v11.i10.830

INTRODUCTION
The dopaminergic system is a part of the brain that plays a key role in the control of 
locomotor activity, stress reactions, aggressive behavior, and mechanisms of the 
formation of dependence in humans and animals[1,2]. Dopaminergic neurotoxicity is 
characterized by damage and death of dopaminergic neurons. The contribution of 
dopaminergic neurotoxicity to the pathogenesis of several disorders of the central 
nervous system (CNS), such as Parkinson's disease (PD)[3,4], Tourette syndrome[5], 
drug abuse[6,7], and schizophrenia[8,9], has been postulated. Currently, neurodegen-
erative diseases are a major cause of disability around the world. PD is the second-
leading cause of neurodegenerative disorder after Alzheimer's disease (AD)[4]. PD is 
manifested primarily by movement disturbances. Mental health disorders are also a 
serious nonmotor feature of PD[10,11]. Thus, psychotic symptoms are not uncommon 
among individuals with PD, with a prevalence rate of approximately 25%-30%[12,13]. 
In this regard, the study of mechanisms, as well as the search for ways to prevent and 
treat PD, is not only an important medical problem but also a social problem[14].

A growing body of evidence has demonstrated that glutamatergic neurotrans-
mission plays an important role in the mechanisms of dopaminergic brain damage[15,
16]. Previous studies have shown that modulation of metabotropic glutamate 
receptors (mGluRs) may be considered a more promising way to alter the activity of 
the brain glutamatergic system than direct action on ionotropic glutamate receptors of 
the N-methyl-D-aspartate and amino-methyl-phosphonic acid subtypes[17]. However, 
the neurochemical and neuropsychological effects of mGluRs on dopaminergic 
neurotoxicity remain poorly understood.

The association between the neurotransmitter function of glutamate and the 
formation of neuronal messenger nitric oxide (NO) has received increased attention in 
recent years. NO is considered to be the first representative of a novel family of 
signaling molecules with neurotransmitter properties[18,19]. NO is a labile free radical 
that is involved in many physiological processes[20]. It is assumed that together with 
some important physiological functions in the CNS, NO can have either neuropro-
tective or neurotoxic actions, depending on its redox state[21]. There are growing 
numbers of studies concerning the involvement of NO in the mechanisms of 
dopaminergic neurotoxicity[22-24]. Measurement of NO is technically difficult due to 
its rapid chemical reactions with a wide range of molecules, such as free radicals, 
metals, thiols, etc[25]. Thus, accurate detection and quantification are critical to 
understanding health and disease[26]. Most of the NO measurement techniques in the 
literature are indirect[27,28]. In our work, we used the direct electron paramagnetic 
resonance (EPR) method, which allows us to estimate the generation of NO radicals 
directly in brain tissue[29-31]. The current paper aims to review the involvement of 
mGluRs and the contribution of NO to dopaminergic neurotoxicity. More precisely, 
we focused on studies conducted on the rotenone-induced Parkinson's disease model. 
This review is also an outline of our own results obtained using the EPR method, 
which allows quantitation of NO radicals in brain structures.

MODELS OF DOPAMINERGIC NEUROTOXICITY
The use of animal models to study neurological diseases associated with dopaminergic 
neurotoxicity allows for in-depth study of their neuropathophysiology[32,33]. Patholo-
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gically, the hallmark of idiopathic PD is the loss of dopaminergic neurons in the 
substantia nigra (SN). However, in the absence of nigral involvement, noncatecholam-
inergic neurons are also affected[34]. Agents that selectively damage or disrupt 
catecholaminergic systems, such as reserpine, methamphetamine (METH), 6-hydroxy-
dopamine (6-OHDA), and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), have 
been used to develop PD models of PD[35,36]. Based on experimental and clinical 
evidence, PD was the first neurological disease to be modeled and subsequently 
treated with neurotransmitter replacement therapy[35]. Recent studies have shown 
that nigrostriatal dopamine degeneration can be induced via overexpression of α-
synuclein using viral vectors or transgenic techniques. In addition, protein aggregation 
pathology can be triggered by inoculating preformed fibrils of α-synuclein in the SN or 
the striatum[37,38]. Transgenic animals that overexpress α-synuclein were used to 
study the role of this protein in dopaminergic degeneration[39,40]. Nevertheless, 
although transgenic models offer insight into the causes of the pathogenesis of PD or 
Lewy body (LB)-like formation, the lack of sequential loss of neurons in the SNc 
remains a major limitation for these models[40]. Conversely, toxin-based models 
recreate selective nigrostriatal cell death and show extensive motor dysfunction. 
However, these toxin models do not reproduce the extranigral degeneration that also 
occurs as part of the disease and lack the pathological hallmark of LB inclusions[39,
41]. Betarbet et al[42] reported that chronic, systemic introduction of rotenone, an 
inhibitor of mitochondrial complex I, accurately replicates many aspects of the 
pathology of PD. Additionally, in rotenone-treated animals, α-synuclein-and polyubi-
quitin-positive aggregates were observed in dopamine neurons of the SN[43,44]. The 
advantages of this model include a slow and specific loss of DA neurons. The 
disadvantages of the model include the duration of drug administration, as well as 
sometimes high animal mortality[36]. Currently, several modifications of rotenone-
induced Parkinson's disease models have been created. These modifications are 
different in the mode of administration as well as in the dosage and duration of 
treatment with rotenone[44-46]. The fact that rotenone is still widely used in 
agriculture as a pesticide increases the relevance of studying this model[47-49]. 
However, while the behavioral effects of rotenone administration are well charac-
terized, the mechanisms of rotenone action are still poorly understood.

MGLURS IN MODELS OF DOPAMINERGIC NEUROTOXICITY
A significant number of studies have revealed that the excitotoxicity of glutamate 
contributes to the development of dopaminergic neurotoxicity[50-52]. It has been 
reported that various neurotoxic agents, including rotenone and METH, can severely 
damage both ionotropic and metabotropic glutamate receptors, which leads to the 
progression of toxic effects[53]. An important functional interplay between the 
dopaminergic and glutamatergic systems has stimulated the consideration of mGluRs 
as potential therapeutic targets in PD[54-56]. Eight mGluRs (GRM1 to GRM8) have 
been identified and divided into three groups based on their sequence similarity and 
pharmacology[57,58]. All mGluRs are family C G-protein-coupled receptors that 
participate in the modulation of synaptic transmission and neuronal excitability 
throughout the CNS[59]. Studies have shown that mGluR-mediated mechanisms have 
been implicated in both neuroprotection and neurotoxicity. The involvement of 
mGluRs in the control of movement, spatial and olfactory memory and nociception 
has been demonstrated[57,60,61]. Studies have shown the antiparkinsonian potential 
of mGluR modulation in groups I, II and III in experimental MPTP and 6-OHDA 
models of PD[56,62]. It has been reported that group I mGluR antagonism and groups 
II and III mGluR activation improve some motor symptoms of PD by regulating 
excitatory and inhibitory transmission in the basal ganglia[55]. However, the 
mechanism by which these mGluR ligands may alleviate the symptoms of parkin-
sonism in animal models is largely unknown.

Involvement of mGluRs in neurotoxicity induced by rotenone
Because the rotenone model of PD has attracted much attention, we searched the 
PubMed and Google Scholar databases for articles concerning the effect of mGluR on 
the rotenone model of neurotoxicity. In the end, by consensus, primary articles were 
selected as relevant to our goals (Table 1). Thus, it has been reported that the 
application of a group III mGluR agonist (L-AP-4) significantly reduced the toxicity of 
rotenone in a culture of TH+ midbrain neurons[63]. The authors hypothesized that 
activation of group III mGluR decreases the selective toxicity of rotenone to dopamine 
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Table 1 Main findings on metabotropic glutamate receptors involvement in rotenone-induced neurotoxicity

Ref. Object of study mGluR type Ligand

Luo et al[67], 2019 Cell culture; rats mGluR5 Antagonist MPEP 

Bai et al[66], 2018 Cell culture mGluR5 Agonist CHPG; antagonist MPEP

Xia et al[65], 2015 Cell culture, rats mGluR5 Antagonist MPEP

Bashkatova et al[69], 2012 Rats mGluR5 Antagonist MPEP 

Sun et al[64], 2012 Cell culture, rats Group I mGluR Agonist DHPG

Zhu et al[68], 2012 Cell culture, rats mGluR5 Antagonist MPEP

Alam et al[70], 2009 Rats mGluR5 Antagonist MPEP 

Jiang et al[63], 2006 Cell culture Group III mGluR Agonist L-AP-4

mGluR: Metabotropic glutamate receptors; MPEP: 2-methyl-6-(phenylethynyl) pyridine; CHPG: (RS)-2-chloro-5-hydroxyphenylglycine; DHPG: (S)-3,5-
dihydroxyphenylglycine.

neurons by activating the MAP kinase pathway to stabilize microtubules[63]. In 
contrast, activation of group I mGluRs enhances rotenone-induced toxicity in MN9D 
cells[64]. The modulation of the mGluR5 type in rotenone-induced PD models has 
attracted much attention from researchers. Pharmacological inhibition of mGluR5 has 
beneficial anti-akinetic effects in animal models of PD; however, the mechanism by 
which these antagonists alleviate PD symptoms is largely unknown[65]. Previous 
studies have shown that downregulation of mGluR5 promotes cell apoptosis in a 
model of rotenone-induced cellular PD. Moreover, conditioned media derived from 
rotenone-treated dopaminergic MN9D neuronal cells have been found to enhance the 
production of reactive oxygen species (ROS), which can be further attenuated by an 
mGlu5 agonist[66]. The selective mGluR5 antagonist 2-methyl-6-(phenylethynyl) 
pyridine (MPEP) prevented rotenone-induced DNA damage in MN9D dopaminergic 
neurons through a mechanism involving ROS-related mitochondrial dysfunction[65]. 
It has been demonstrated that mGluR5 expression is decreased in a time- and dose-
dependent manner in rotenone-treated MN9D cells[67]. It has been reported that 
oxidized extracellular cysteine/cystine redox potential plays a role in mGluR5 activity 
in the rotenone rat model of PD[68]. In our studies, MPEP (3 mg/kg) reduced the 
intensity of catalepsy in rats after long-lasting administration of rotenone at a dose of 
1.5 mg/kg[69]. We observed that the mGluR5 antagonist partially prevented the 
increase in NO generation evoked by rotenone[69]. In another study, it was shown that 
the behavioral effects of MPEP (2.5 mg/kg) were less pronounced in rats receiving a 
higher dose of rotenone (2.5 mg/kg) following the same duration of neurotoxin 
administration[70]. It has been reported that coadministration of MPEP with rotenone 
reduces the descent latency in the grid test at day 60 but does not block the decrease in 
DA and serotonin levels induced by treatment with this neurotoxin[70]. Thus, the 
behavioral effects of mGluR5 were notably dependent on the dose of rotenone 
administered. The above findings indicate that mGluR5 inhibition produces an 
inhibitory effect on ROS and NO activity[65,66,69]. In summary, an analysis of the 
literature data supports the notion that antagonists of mGluR5 are considered 
promising targets for the treatment of pathological conditions induced by 
dopaminergic neurotoxicity.

INVOLVEMENT OF NO IN DOPAMINERGIC NEUROTOXICITY
NO as neuronal messenger
Currently, mitochondrial dysfunction is thought to be associated with NO pathways in 
glutamate neurotoxicity[71]. NO is a gaseous chemical messenger that modulates 
many functions of the nervous system, including the release of neurotransmitters, 
interneuronal communication, synaptic plasticity, receptor state, and intracellular 
signal transduction[20,72]. The role of NO as a biological mediator is primarily 
determined by its physical and chemical properties. NO is generated by the enzyme 
NO synthase (NOS), which is widely distributed in the brain[19,73]. One of the 
possible mechanisms of the neurotoxic effect of NO may be the reaction of NO with 
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ROS, leading to the formation of a highly toxic product peroxynitrite[24,74,75]. The 
short half-life of the NO radical is 2-5 s[20]. There are several indirect methods for 
determining NO and its products/metabolites in biological fluids and tissues. One of 
the most frequently used indirect methods for the determination of NO is the 
measurement of nitrite and nitrate by spectroscopy using the Griess reagent[27]. 
Another well-known method for indirect measurement of NO is the quantitative 
determination of 3-nitrotyrosine (a product of tyrosine nitration)[76]. The applicability 
of these indirect methods seems to be problematic. Quantitative determination of 
nitrites by the Griess method is falsified in the presence of reducing agents as well as 
thiol groups[77]. These data are consistent with our opinion that only direct methods 
may be used for reliable determination of NO levels. One of the most accurate and 
correct ways to measure these data is through use of the EPR method[26,31,78,79].

Participation of no in dopaminergic neurotoxicity
Recent reports claim that NO is involved in neurotoxicity elicited by dopaminergic 
neurotoxins[24,74,79]. Over the past two decades, significant advances have been 
made in improving knowledge about the role of NO in the mechanisms of PD 
pathogenesis[21,80,81]. Thus, in brains from victims of PD, a nitrosyl species, 
identified as nitrosyl hemoglobin, has been observed in the SN[82]. Previous studies 
have shown that neurotoxic agents such as MPTP[83], 6-OHDA[84] or METH[74] 
induce a significant increase in the production of 3-nitrotyrosine in the striatum. The 
protective effect of neuronal NOS inhibitors has been demonstrated in the MPTP 
neurotoxicity model in mice[85].

Involvement of no in neurotoxicity induced by rotenone
NO is cytotoxic, partly due to its effects on mitochondria[86]. Research reports have 
shown that NO is involved in rotenone-induced neurotoxicity (Table 2). However, the 
detailed mechanisms of this process are not well understood. Our data indicate that 
following a single injection of rotenone (1.5 mg/kg), the levels of NO in all studied 
brain areas were indistinguishable from those in control animals[78]. The data 
obtained correspond with the results of other authors. Thus, acute administration of 
rotenone at a significantly higher dose (15 mg/kg) did not affect the level of hydroxyl 
radical generation[87]. The NO level reached its maximum in dopaminergic structures, 
the prefrontal cortex, and the NAc 60 d after administration of rotenone[78]. We 
observed a more than 2-fold elevation in NO generation in all studied brain structures 
of rats only after repeated injections of rotenone[78]. These results are consistent with 
other studies investigating NO metabolites/products in the brains of rats treated with 
rotenone (Table 2). Thus, a significant increase (by 200.0%) in the concentration of 
nitrite determined by the spectrophotometric method was observed[88]. Authors 
suggest that overproduction of NO may be associated with Snitrosylation or nitration 
of certain important proteins[88]. It was reported that the production of 3-nitrotyrosine 
in the brains of rats treated with rotenone for 40 d increased significantly[76]. In recent 
years, several studies have investigated the potential neuroprotective properties of 
various plant extracts[89-91], polyphenolic agents[92] and flavonoids[93] in a rotenone 
model of PD. The authors measured the level of nitrites as a marker of neurotoxicity in 
the dopaminergic brain structures of animals after long-lasting administration of 
rotenone (Table 2). The above studies indicate that the content of NO and its 
metabolites in the brain is currently considered one of the markers of rotenone-
induced neurotoxicity.

In our opinion, it seems to be critical to study the dynamics of NO changes in 
various brain structures during long-term administration of rotenone. This issue is 
practically not studied. Our results demonstrated a significant enhancement of NO 
generation in the NAc after 20 d of treatment with rotenone, while the NO level was 
not elevated yet in the frontal cortex[78]. These data may indicate that dopaminergic 
neurons in the NAc may be intrinsically susceptible to oxidative damage compared to 
other neurons. Taken together, our results, as well as literature data, allow us to 
conclude that rotenone can produce a neurotoxic effect and cause an increased 
production of free radicals, including NO, only with long-lasting chronic adminis-
tration. This, in turn, confirms the assumption that the cascade of biochemical 
reactions causing the development of neurotoxic processes can be triggered only after 
repeated injections of rotenone[35,78,87,94]. In summary, the data obtained indicate 
prospects for further research on the interaction of dopaminergic, mGluR and NO 
systems in rotenone models of PD to search for and study the mechanism of action of 
substances with neuroprotective properties (Figure 1).
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Table 2 Main finding on the determination of nitric oxide and its products/metabolites in the rotenone model of neurotoxicity

Ref. Dose of rotenone Duration NO or its products/metabolites Method of NO determination

Kumar et al[91], 2021 2.0 mg/kg 28 Nitrite Spectrophotometry

Parkhe et al[92], 2020 2.0 mg/kg 21 Nitrite Spectrophotometry

Sharma et al[93], 2020 2.0 mg/kg 28 Nitrite Spectrophotometry

Sun et al[80], 2019 1.5 mg/kg 28 Nitrate/nitrite NO assay kit

Jayaraj et al[90], 2019 1.5 mg/kg 28 Nitrite Spectrophotometry

Abdel-Salam et al[89], 2017 1.5 mg/kg × 3 7 Nitrite Spectrophotometry

Javed et al[86], 2016 2.5 mg/kg 28 Nitrite Spectrophotometry

Xiong et al[88], 2015 1.5 mg/kg 6 Nitrite Spectrophotometry

Tapias et al[23], 2014 3.0 mg/kg Individually1 3-NT (3-nitrotyrosine) Immunofluorescence

Bashkatova et al[69], 2012 1.5 mg/kg 60 NO (Nitroxyl radical) EPR

Bashkatova et al[78], 2004 1.5 mg/kg 60 NO (Nitroxyl radical) EPR

He et al[76], 2003 2 mg/kg × 3 40 3-NT (3-nitrotyrosine) HPLC

1Tissue collection was carried out when each individual animal had reached endpoint (when the behavioral phenotype became debilitating, i.e., when 
akynesia, rigidity, and postural instability were manifested)[23]. NO: Nitric oxide; EPR: Electron paramagnetic resonance; HPLC: High performance liquid 
chromatography.

Figure 1 Proposed scheme for the involvement of nitric oxide and metabotropic glutamate receptor subtype 5 in rotenone-induced 
dopaminergic neurotoxicity. It is now generally accepted that rotenone in low doses of rotenone specifically binds complex I and induces mitochondrial 
dysfunction. The action of rotenone can be mediated by an increase in the N-methyl-D-aspartate current, which leads to the activation of metabotropic glutamate 
receptor subtype 5. Complex I, in combination with excitation of glutamate receptors, induces the generation of reactive oxygen species and nitric oxide. In summary, 
these key cellular events induce progressive death of dopaminergic neurons in the substantia nigra pars compacta via apoptosis and necrosis. It is important to note 
that at each stage, the action of rotenone becomes regionally limited so that inhibition of complex I ultimately lead to highly selective degeneration and loss of 
dopaminergic neurons of the nigrostriatal pathway. NO: Nitric oxide; ROS: Reactive oxygen species.

CONCLUSION
This review summarizes several newly discovered mechanisms of dopaminergic 
neurotoxicity (Figure 1). Current treatments for PD are mainly the administration of 
dopaminergic drugs. However, dopaminergic drugs are only symptomatic treatments 
and are limited by several side effects. Understanding the pathogenetic mechanisms of 
the onset and development of PD is of great clinical importance. Recent studies on 
drug development have focused on emerging new molecular mechanisms, including 
modulation of mGluRs and NO formation. Despite the growing number of studies 
demonstrating the positive effect of some mGluR ligands on motor symptomatology in 
PD models, there are still no drugs in clinical practice targeting mGluRs to restore 
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neurological disorders of PD. Treatment with NO scavengers/NOS inhibitors may be 
another potential neuroprotective strategy for diseases associated with dopaminergic 
neurotoxicity. In addition, our preliminary results and literature data suggest that an 
increase in the formation of NO radicals in some brain structures may precede the 
onset of behavioral disorders in rats treated with rotenone. Therefore, finding a 
possible correlation between the generation of NO radicals and the onset of 
neurological disturbances during long-term application of rotenone can be an 
important step in understanding the pathogenesis of rotenone-induced neurotoxicity 
We can assume that in the future, the determination of NO generation may become a 
test for the early diagnosis of PD in patients who do not yet have specific symptoms of 
the disease.

Additionally, long-term application and widespread use of synthetic insecticides 
have resulted in the accumulation of their residues in food, milk, water, and soil and 
have adverse health effects for humans[95]. Although all natural insecticides are not 
completely safe, it seems necessary to phase out the use of rotenone pesticides in 
agriculture and replace them with natural (“organic”) pesticides with maximum 
safety.

In summary, alternative treatment strategies beyond dopaminergic drugs might be 
a major topic of future PD therapy. In conclusion, the findings demonstrate that 
modulation of mGluR and NO formation suggests the possibility of developing new 
treatment strategies for PD.
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