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Abstract
Even though immune checkpoint inhibitors (ICIs) are effective on multiple cancer 
types, there are still many non-responding patients. A possible factor put forward 
that may influence the efficacy of ICIs is the gut microbiota. Additionally, faecal 
microbiota transplantation may enhance efficacy of ICIs. Nevertheless, the data 
available in this field are insufficient, and relevant scientific work has just 
commenced. As a result, the current work reviewed the latest research on the 
association of gut microbiota with ICI treatments based on anti-programmed cell 
death protein 1 antibody and anti- cytotoxic T-lymphocyte-associated protein 4 
antibody and explored the therapeutic potential of faecal microbiota tran-
splantation in combination with ICI therapy in the future.

Key Words: Gut microbiome; Immunotherapy; Programmed cell death protein 
1/programmed cell death protein ligand 1; Cytotoxic T-lymphocyte-associated protein 4; 
Immune checkpoint inhibitors resistance; Faecal microbiota transplantation
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Core Tip: Gut microbiota composition is closely associated with the efficacy of immune 
checkpoint inhibitors (ICIs). Specific species among the intestinal commensal bacteria 
may play a key role in the efficacy of ICIs against cancer. Faecal microbiota 
transplantation may enhance efficacy of ICIs.
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INTRODUCTION
Immune checkpoint molecules can modulate the immune system in the host via the 
transduction of immunosuppressive co-signals into the immunocompetent cells[1-5]. 
Typically, Programmed cell death protein 1 (PD-1)/programmed cell death protein 
ligand 1 (PD-L1) (CD274), PD-L2 (CD273), and cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4, CD152) are the most well-known examples[6-13]. These molecules 
are expressed in suitable cells at the suitable timing to exert their vital parts in the 
prevention of over-activated immune system in the host and the maintenance of 
immunological tolerance and homeostasis[1,2,5]. At the same time, immune 
checkpoint molecules show abnormal expression within tumour tissues[3,14-16]. 
Therefore, a strong immunosuppressive environment will be produced within tumour 
tissues, leading to resistance to treatment of numerous cancers. Immune checkpoint 
inhibitors (ICIs) mainly function to alleviate or destroy the immunosuppression 
mechanisms involved in tumour microenvironment (TME) by the use of inhibitory 
agents targeting the immune checkpoint molecules[2,5,17]. At present, anti-CTLA-4 
(like ipilimumab), anti-PD-1 (such as pembrolizumab, nivolumab, and anti-PD-L1 
(such as atezolizumab, durvalumab, avelumab) antibodies have been applied in 
treating several cancers in the word[18-23].

At present, checkpoint blockade still shows high effectiveness on certain cases, but 
just about 10%-30% cancers can achieve treatment responses. The combined used of 
ICIs is associated with a higher response rate and greater toxicity[24], regardless of the 
limited research on the ICI treatment. There are several ICI resistance mechanisms 
related to the low response rate, which are low PD-L1 expression, low tumour 
mutational burden, local immunosuppression, weak tumuor cell antigenicity, tumour-
infiltrating lymphocytes (TILs) functional exhaustion, no priming, and defected 
antigen presentation in the process of priming[25].

In addition, gut microbiome is suggested to be the potential factor that determines 
ICI efficacy. There are more than 100 trillion bacteria in the human gut, among which 
500-1000 bacterial species have been identified to affect the mucosal immune system 
and exert vital parts in immune system operation under the normal or disease state
[26]. Intestinal symbiotic bacteria may exert inflammatory or beneficial function while 
interacting with host immune system in intestinal lymphoid tissues. Therefore, faecal 
microbiota transplantation (FMT) can potentially improve the ICI efficacy. 
Nonetheless, there is only limited information on this topic, and related scientific work 
is merely at the beginning stage. The emergence of novel techniques has made it 
possible to investigate systemically the gut microbiota, which also sheds more light on 
the gut microbial compositions and their pathological variance. The present work 
aimed to review the latest research on the associations of gut microbiota with immune 
systems and ICI treatments based on anti-PD-1 antibody (Ab) and anti-CTLA-4 Ab 
and to explore the therapeutic potential of FMT combined with ICI therapy in the 
future.

ICIS
Two steps are necessary to activate tumour-specific T cells. Firstly, the selective 
binding of T cell receptor (TCR) to major histocompatibility complex I that has 
antigen-anchoring peptides[27]. Secondly, further amplification of the activation signal 
of TCR/CD3 complex is performed after the synergistic effect with co-stimulatory 
signals like OX40, CD28, and inducible T cell co-stimulator, which finally results in T 
cell priming and activation[27]. By contrast, co-inhibitory signals (also known as the 
immune checkpoints), including PD-1, CTLA-4, T cell immunoglobulin domain, mucin 
domain-3, and lymphocyte activation gene-3, inhibit T cell activation via offsetting 
CD28- or TCR/CD3-mediated tyrosine phosphorylation through the intracellular 
immunoreceptor tyrosine–based inhibition motif[28-30]. Tumour cells are likely to 
enhance the co-inhibitory signalling pathway activity for the sake of immune escape
[31,32]. ICIs can decrease the tumour antigen immune tolerance and restore the 
anticancer response. Anti-CTLA-4 and anti-PD-1/PD-L1 are used to treat several 
cancers[33-38]. Nevertheless, there is a great potential to enhance the anticancer effect 
of ICI.

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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EFFECT OF GUT MICROBIOME ON THE EFFICACY OF ICIS
It has been recognized that gut microbiome is involved in cancer genesis and the 
immune surveillance that suppresses tumour progression[39-42]. Certain commensals 
may display the synergetic effects with treatments such as surgery, chemotherapy, 
radiotherapy, and immunotherapy after affecting the immune homeostasis in the 
intestine and immune adjustment of secondary immune organs[43-52]. ICIs can 
regulate tumour regression through enhancing the immune activation in the host. A 
series of studies suggested that gut microbiota composition shows close association 
with the efficacy of ICIs (Tables 1 and 2). At the same time, we revealed the potential 
mechanisms by which gut microbiome may be involved in the ICI efficacy (Figures 1 
and 2).

Effect of gut microbiota on anti-PD-1/PD-L1 therapy
The PD-1/PD-L1 blockage treatment blocks the negative signals transduced by the 
PD-1 intracellular domains (like immunoreceptor tyrosine–based inhibition motif, 
immunoreceptor tyrosine–based switch motif)[53]. Typically, PD-1/PD-L1 blockage 
has been identified to promote T cell activation resulting from CD28 and TCR/CD3 
while promoting T cell growth and survival by the activation of Ras-Raf-mitogen 
activated protein kinase and phosphatidylinositol 3 kinase-AKT signalling[54,55]. The 
PD-1/PD-L1 blockage treatment has been approved to treat certain malignant 
tumours, including non-small cell lung cancer (NSCLC), colorectal cancer (CRC), 
kidney cell cancer, and melanoma[56,57]. Biomarkers that contain the TIL status, PD-
L1 expression, or deficiency of the mismatch repair system are tightly associated with 
the efficacy of PD-1/PD-L1 blockage treatment[58]. Besides those above-mentioned 
factors, gut microbiota contributes to difference in treatment responses as well[59].

In 2015, some investigators discover the relationship of gut microbiota with the 
efficacy of anti-PD-1 therapy using a mouse model[60]. Sivan et al[60] explored the 
therapeutic effect of anti-PD-1 therapy on C57BL/6 mice with genetic similarity, mice 
bearing the subcutaneous B16. SIY melanoma were obtained from two distinct mouse 
facilities [namely, Taconic Farms (TAC) and Jackson Laboratory (JAX)], which had 
markedly heterogeneous gut microbial compositions[60]. As a result, among the JAX 
populations, tumour growth was slower with higher sensitivity to the PD-1 blockage 
treatment. Such difference might be associated with the immune response. To be 
specific, JAX mice showed markedly enhanced CD8+ T cell aggregation within the 
tumour and tumour-specific T cell responses compared with the TAC counterparts. 
Further study suggested that the difference was abrogated by cohousing. In addition, 
when faecal microbiome was transferred from JAX to TAC, specific TILs increased and 
tumour development was suppressed. It was interesting that, in TAC, just the faecal 
microbiome transferred from JAX was able to suppress tumour development in the 
same degree with PD-1 blockage therapy, and it had synergistically regressed tumour 
development with PD-1 blockade therapy[60]. Gut microbiome analysis demonstrated 
that the abundance of Bifidobacterium was markedly increased in JAX. Meanwhile, the 
abundance of Bifidobacterium was significantly related to tumour specific immune 
cytotoxicity[60]. Administrating the commercial Bifidobacterium cocktail (namely, 
Bifidobacterium longum and Bifidobacterium breve) significantly suppressed tumour 
growth, particularly when it was used in combination with the PD-1 blockage 
treatment[60]. It was suggested that such increased anticancer activity was associated 
with the higher interferon (IFN)-γ production, greater tumour-specific CD8+ T cell 
proportion, and alterations of dendritic cell (DC) functions[60].

Xu et al[61] investigated the roles of gut microbiome within the MSS-type mice 
bearing CRC that received diverse antibiotic treatments in the response to PD-1 Ab 
therapy. Following PD-1 Ab therapy, injecting antibiotics offset the therapeutic effect 
of PD-1 Ab on suppressing tumour development relative to control group[61]. Besides, 
control group showed enrichment of Bacteroidales_S24-7 and Bacteroides_sp._CAG:927. 
At the same time, mice receiving colistin treatment showed enrichment of 
Bacteroides_sp._CAG:927, Bacteroides and Prevotella_sp._CAG: 1031, whereas mice 
receiving vancomycin treatment showed enrichment of Akkermansia_muciniphila and 
Prevotella_sp._CAG:485. For mice receiving vancomycin treatment, most metabolites 
were associated with the glycerophospholipid metabolic pathway, confirming to the 
metagenomic prediction pathway. Additionally, Akkermansia and Prevotella_sp.
_CAG:485 contributed to maintaining the therapeutic effect of PD-1 Ab through 
impacting glycerophospholipid metabolism[61]. Gut microbial alteration resulted in 
alterations of the glycerophospholipid metabolism degree, thereby affecting immune 
cytokine expression [such as interleukin (IL)-2 and IFN-γ] within TME, giving rise to 
the diverse PD-1 Ab efficacy[61]. The above results reveal that gut microbial alter-
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Table 1 Changes in microbiota composition associated with anti-programmed cell death protein 1/programmed cell death protein 
ligand 1 treatment efficacy against cancer and potential strategies for improving efficacy

Models Disease Implicated microbiota New strategies Implicated microbiota Ref.

Mice Melanoma Bifidobacterium↑ (1) FMT; and (2) 
Commercial cocktail 
of Bifidobacterium 
including 
Bifidobacterium breve 
and B. longum

NO Sivan et al[60], 
2015

Mice CRC Bacteroides_sp._CAG:927↑, 
Bacteroidales_S24-7↑, Akkermansia 
muciniphila↑

NO NO Xu et al[61], 2020

Mice CT26 
tumours

NO GQD s__Bacteroides acidifaciens↑, 
s__uncultured_organism_g__norank_f__Bacteroidales_
S24-7↑

Lv et al[62], 2019

Mice RCC NO (1) FMT; (2) A. 
muciniphila; and (3) 
Bacteroides salyersiae

NO Derosa et al[66], 
2020

Mice Melanoma NO FMT NO Matson et al[68], 
2018

Mice MCA-205 
sarcoma 

NO (1) FMT; (2) A. 
muciniphila; and (3) 
A. muciniphila with 
Enterococcus hirae; 
Alistipes indistinctus

NO Routy et al[69], 
2018

Mice (1) RET; 
and (2) 
Melanoma

NO (1) A. muciniphila; 
and (2) A. 
muciniphila with 
Enterococcus hirae; 

NO Routy et al[69], 
2018

Human NSCLC Parabacteroides↑, 
Methanobrevibacter↑, Veillonella↓, 
Selenomonadales↓, Negativicutes↓

NO NO Song et al[63], 
2020

Human NSCLC Gut microbial diversity↑, 
Alistipes putredinis↑, B. longum↑, 
Prevotella copri↑, Ruminococcus 
unclassified↓

NO NO Jin et al[64], 2019

Human NSCLC Altered gut microbiota 
metabolome

NO NO Botticelli et al
[65], 2020

Human RCC A. muciniphila ↑, Bacteroides 
salyersiae↑, Clostridium hathewayi↓

NO NO Derosa et al[66], 
2020

Human Melanoma Gut microbial diversity↑, 
Clostridiales/Ruminococcaceae↑, 
Faecalibacterium↑, Anaerotruncus 
colihominis↓, Bacteroides 
thetaiotaomicron↓, Escherichia coli↓

NO NO Gopalakrishnan 
et al[67], 2018

Human Melanoma Bifidobacterium adolescentis↑, B. 
longum↑, Collinsella aerofaciens↑, 
Enterococcus faecium↑, Klebsiella 
pneumoniae↑, Lactobacillus species↑
, Parabacteroides merdae↑, 
Veillonella parvula↑, Ruminococcus 
obeum↓, Roseburia intestinalis↓

NO NO Matson et al[68], 
2018

Human NSCLC 
and RCC 

A. muciniphila ↑ NO NO Routy et al[69], 
2018

Human Melanoma NO FMT NO Baruch et al[83], 
2021

NO: No test or no research; FMT: Faecal microbiota transplantation; CRC: Colorectal cancer; RCC: Renal cell carcinoma; NSCLC: Non-small cell lung 
cancer; GQD: Gegen Qinlian decoction.

ations have certain impacts on the glycerophospholipid metabolic pathway, thus 
modulating the efficacy of PD-1 Ab immunotherapy in treating MSS-type mice bearing 
CRC.
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Table 2 Changes in microbiota composition associated with anti-cytotoxic T-lymphocyte-associated protein 4 efficacy treatment 
against cancer and potential strategies for improving efficacy

Models Disease Implicated microbiota New strategies Implicated 
microbiota Ref.

Mice MCA205 
sarcomas

Clostridiales↑, Bacteroides thetaiotaomicron↑, B. uniformis↑, 
Bacteroidales↓, Burkholderiales↓,

(1) B. thetaiotaomicron; (2) B fragilis; 
and (3) Burkholderia cepacia

NO Vétizou et 
al[70], 
2015

Mice CRC NO Lactobacillus acidophilus cell lysates NO Zhuo et al
[73], 2019

Mice CRC NO (1) Bifidobacterium pseudolongum; (2) 
Lactobacillus johnsonii; (3) Olsenella 
spp; and (4) Metabolite inosine

NO Mager et al
[74], 2020

Huamn Melanoma Faecalibacterium genus↑, unclassified Ruminococcus↑, 
Lachnospiraceae genus↑, Clostridium XIVa↑, Blautia↑, Butyrate 
producing bacterium↑, Gemmiger formicilis↑, Bacteroides↓, B. 
fragilis↓, B. thetaiotaomicron↓

NO NO Chaput et 
al[72], 
2017

NO: No test or no research; CRC: Colorectal cancer.

Recently, Lv et al[62] discovered that when Gegen Qinlian decoction (GQD) (one of 
the representative traditional Chinese medicine prescriptions) was used in conjunction 
with the anti-mouse PD-1 therapy in the xenograft model, it had potent effect on 
suppressing CT26 tumour growth. Besides, analysis on the gut microbiota also 
suggested that GQD used in combination with anti-mouse PD-1 therapy markedly 
enriched s__uncultured_organism _g__norank_f__Bacteroidales_ S24-7_and 
s__Bacteroides_acidifaciens group[62]. As indicated by metabolomic analysis results, 
metabolites with profound changes were detected in the combined treatment group
[62]. Furthermore, the sphingolipid metabolism and glycerophospholipid metabolism 
metabolic pathways were examined[62]. Particularly, GQD combined with anti-mouse 
PD-1 treatment markedly promoted the fraction of CD8+ T cell subset within tumour 
tissue and peripheral blood samples and up-regulated IFN-γ level (an important factor 
of the anticancer immunotherapy)[62]. Moreover, GQD combined with anti-mouse 
PD-1 treatment decreased PD-1 expression while increasing IL-2 expression, revealing 
that such combined treatment suppressed the inhibitory checkpoints to restore 
efficiently T-cell functions[62]. Taken together, such findings revealed that GQD 
remodels gut microbiota to promote the anti-CRC efficacy of PD-1 blockade, and 
microsatellite stability was achieved.

Inspired by these results obtained from mouse models, many articles have been 
conducted to examine the association of gut microbiota with anti-PD-1 therapy among 
cancer cases. Song et al[63] explored the association of gut microbial structure and 
metabolomic features in the context of NSCLC with the anti-PD-1 therapy efficacy. 
According to analysis results of gut microbiome, cases from progression-free survival 
(PFS) ≥ 6-mo group showed markedly increased β-diversity within gut microbiota 
relative to that of PFS < 6-mo group[63]. Besides, those from PFS ≥ 6-mo group 
showed enrichment of Methanobrevibacter and Parabacteroides, whereas those from PFS 
< 6-mo group showed enrichment of Selenomonadales, Negativicutes, and Veillonella[63]. 
Furthermore, the protein families of function groups were studied using the COG, 
CAZy, and KO databases. As a result, 264, 859, and 390 functional groups were 
enriched in the above three databases, respectively, and significant differences were 
detected between the two groups. As revealed by analysis on bacterial metabolites, 
differences in the metabolic potentials of methane and methanol were significant 
between the two groups[63].

Jin et al[64] examined the association of gut microbiome with the clinical outcomes 
among the Chinese NSCLC cases receiving the anti–PD-1 therapy. Thereafter, patients 
were grouped as non-responder and responder groups based on the clinical response 
evaluated by the Response Evaluation Criteria in Solid Tumor version 1.1[64]. As a 
result, responders showed a greater gut microbial diversity at the beginning and stable 
composition in the process of treatment[64]. Besides, those showing higher microbial 
diversity were associated with the remarkably longer PFS in comparison with patients 
showing a lower diversity[64]. Differences in composition were detected between both 
groups, among which, Alistipes putredinis, Prevotella copri, and Bifidobacterium longum 
were enriched in responder group, while Ruminococcus unclassified was enriched in 
non-responder group[64]. In addition, the author applied multicolor flow cytometry to 
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Figure 1 The potential mechanism of gut microbiome regulating anti-programmed cell death protein 1/programmed cell death protein 
ligand 1 treatment efficacy. (1) Gut microbiota may increase interleukin (IL)-12 production by dendritic cells (DCs), thereby increasing the CCR9+CXCR3+CD4+ 

central memory T cells and CXCR3+CD4+ tumour-infiltrating lymphocytes (TILs); (2) Gut microbiota may shift in the function of DCs; (3) Gut microbiota may increase 
CD8+ T cells, effector T Cells, memory CD8+ T cells, natural killer cells, CD8+ TILs, and CD4/Foxp3 ratio; (4) Gut microbiota may decrease numbers of regulatory T 
cells and myeloid-derived suppressor cells; gut microbiota may downregulate programmed cell death protein 1 expression; (5) Gut microbiota may induce 
Th1/Tc1and Tc1 immune response, thereby increasing the interferon-γ and IL-2 secretion; (6) Gut microbiota may enhance glycerophospholipid metabolic pathway, 
thereby increasing the interferon-γ and IL-2 secretion; (7) Gut microbiota may decrease 2-pentanone and tridecane production; and (8) Gut microbiota may increase 
sphingolipid metabolism, methane metabolism, methanol metabolism, short chain fatty acids production, lysine production and nicotinic acid production. Altogether, 
all of these approaches may eventually improve anti-programmed cell death protein 1-1/programmed cell death protein ligand 1 treatment efficacy. DCs: Dendritic 
cells; TCM: Central memory T; Treg: Regulatory T; MDSCs: Myeloid-derived suppressor cells; SCFAs: Short chain fatty acids; PD-1: Programmed cell death protein 1; 
IFN-γ: Interferon.

analyzed the systemic immune responses, which suggested that patients showing a 
greater gut microbial diversity were associated with higher proportions of peripheral 
blood natural killer cell and unique memory CD8+ T cell subsets upon anti–PD-1 
treatment[64]. Botticelli and coworkers[65] also investigated the impact of gut 
microbial metabolome on anti-PD-1 therapy efficacy among NSCLC cases. As a result, 
36% cases presented early progression, whereas the rest 64% showed progression at 12 
mo later[65]. Besides, as revealed by gut microbiota metabolomic profiling, tridecane 
(alkane) and 2-Pentanone (ketone) were tightly related to early progression; by 
contrast, nicotinic acid, lysine and short chain fatty acids (namely, butyrate, 
propionate) were closely related to long-term benefits[65].

Recently, Derosa et al[66] assessed the significance of faecal bacterial composition in 
the anti-PD-1 treatment effect among patients with advanced renal cell carcinoma 
(RCC). Relative to RCC cases who received PD-1 blockage treatment with no use of 
antibiotics, RCC cases who received anti-PD-1 treatment in the presence of antibiotic 
treatment had evidently decreased objective response rates, which remarkably 
impacted the microbial composition. As a result, certain species like Clostridium 
hathewayi were dominant, and their abundances were higher in faecal samples of RCC 
cases relative to normal subjects. Tyrosine kinase inhibitors administered before 
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Figure 2 The potential mechanism of gut microbiome regulating anti-cytotoxic T-lymphocyte-associated protein 44 treatment efficacy. (1) 
Gut microbiota may induce dendritic cells maturation; (2) Gut microbiota may inhibit the M2 polarization, thereby decreasing M2 macrophages (F4/80+CD206+); (3) 
Gut microbiota may decrease regulatory T cells, CD4+ CD25+ Foxp3+ regulatory T cells, and CD4+/CD8+ T cells; (4) Gut microbiota increase CD8+ T cells and CD44+

CD8+CD62L+ effector memory T cells; (5) Gut microbiota may increase inducible T cell co-stimulator expression on CD4+ T cells; (6) Gut microbiota may induce T 
helper 1 immune response; (7) Gut microbiota may reduce interleukin (IL)-6; IL-8; IL-10, and sCD25 level; and (8) Gut microbiota may increase inosine production. 
Altogether, all of these approaches may eventually improve anti- cytotoxic T-lymphocyte-associated protein 4 treatment efficacy. DCs: Dendritic cells; Treg: 
Regulatory T; TEM: Effector memory T cells; ICOS: Inducible T cell co-stimulator; sCD25: Soluble CD25; IL: Interleukin.

nivolumab were related to the shift of microbial composition. For establishing the 
cause-effect relation of gut microbial composition with the anti-PD-1 therapy efficacy, 
some preclinical studies discovered that RCC-bearing mice receiving FMT from RCC 
cases developed resistance to anti–PD-1 therapy (NR-FMT). At the same time, both 
beneficial commensals (Bacteroides salyersiae and A. muciniphila) verified through whole 
genome sequencing and FMT successfully compensated the NR-FMT mice.

Conforming to the above results, Gopalakrishnan et al[67] evaluated the gut 
microbiota in melanoma cases who received the PD-1 blockage treatment (faecal 
samples from 43 cases, including 13 non-responders and 30 responders). As a result, 
responders exhibited a greater gut microbial diversity. Besides, in faecal samples, α-
diversity showed positive correlation with PFS[67]. Further analysis indicated that the 
level of Clostridiales/Ruminococcaceae, Faecalibacterium (belonging to the Ruminococ-
caceae family, Clostridiales order) was higher in responders, while Anaerotruncus 
colihominis, Bacteroides thetaiotaomicron (belonging to Bacteroidales order), and Escherichia 
coli were significantly enriched in non-responders[67]. Additionally, the abundance of 
Faecalibacterium and Bacteroidales showed positive and negative relationships with 
tumour infiltrating CD8+ T cell level, respectively. The high abundances of 
Faecalibacterium, Ruminococcaceae, and Clostridiales in peripheral blood were accom-
panied with the increased effector T cell proportion, whereas Bacteroidales abundance 
showed positive relationship with regulatory T cells (Tregs) and myeloid-derived 
suppressor cell proportions. As revealed by multiple immunohistochemistry analyses, 
there were greater abundances of immune markers enriched in Faecalibacterium of the 
melanoma cases[67]. Such conclusions were verified by FMT experiments carried out 
in mouse models[67]. Matson et al[68] also found that gut microbiota affected anti-PD-
1 therapy efficacy among the melanoma cases who developed metastasis. Meanwhile, 
as suggested by gut microbial analysis, the abundances of B. longum, Bifidobacterium 
adolescentis, Enterococcus faecium, Collinsella aerofaciens, Lactobacillus species, Klebsiella 
pneumoniae, Veillonella parvula, and Parabacteroides merdae were higher among 
responders, whereas those of Roseburia intestinalis and Ruminococcus obeum were 
significantly higher among the non-responders[68]. In addition, germ-free (GF) mice 
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subjected to gavage with responders-derived faecal materials showed significantly 
elevated IFN-γ and CD8+ TIL levels and suppressed tumour growth, which facilitated 
to form the immunosupportive microenvironment[68]. Meanwhile, Routy et al[69] 
suggested that gut microbiota played a certain role in the resistance to anti-PD-1 
therapy. Investigators discovered that, cancer cases who received anti-PD-1 therapy 
with antibiotics treatment had markedly reduced overall survival and PFS relative to 
those with no antibiotic treatment.

For investigating the association of antibiotic-induced dysbiosis with the reduced 
efficacy, investigators compared the compositions of gut microbiota in responders 
with those in non-responders[69]. Across the enriched bacterial species in the 
responders, A. muciniphila showed the highest correlation with the response rate of 
patients[69]. In addition, the IFN-γ production-induced immune reactions between 
Tc1 and Enterococcus hirae as well as between Th1/Tc1 and Akkermansia muciniphila 
predicted better patient survival[69]. In addition, clinical trial conducted using the 
mouse model suggested that mice that received FMT from responders showed 
superior response to the anti-PD-1 therapy and had higher proportion of CXCR3+CD4+

TILs, whereas those that received FMT from non-responders, underwent antibiotic 
treatments and those in the GF status developed resistance to anti-PD-1 therapy[69]. 
Interestingly, antibiotic treatment reversed the efficacy of PD-1 blockade treatment 
through A. muciniphila recolonization in the presence or absence of Enterococcus hirae. 
Administration of E. hirae and A. muciniphila through oral gavage can increase CCR9+

CXCR3+CD4+central memory T cells, promote IL-12 and IFN-γ secretion, and increase 
the CD4/Foxp3 ratio within tumour bed[69].

Role of gut commensals in the anti-CTLA-4 therapy
CTLA-4 is also a research hotspot apart from PD-1/PD-L1. The anti-CTLA-4 therapy 
can reverse the CTLA-4-hijacked activity of the co-stimulatory signal transduction 
pathway (CD28-CD80/86). Therefore, it is important to identify factors that modulate 
the anti-CTLA-4 therapy efficacy, so as to mitigate drug resistance and promote the 
treatment response.

Vétizou et al[70] carried out a trial for investigating the gut microbial impact on the 
efficacy of anti-CTLA-4 therapy[70]. In the mouse model of MCA205 sarcomas, 
compared with GF mice and those receiving broad-spectrum antibiotic treatment, 
specific pathogen-free mice showed higher efficacy in anti-CTLA-4 therapy[70], and 
commensal flora perturbation was observed after anti-CTLA-4 therapy. For certain 
species (B. uniformis and Bacteroides thetaiotaomicron), their abundances increased, 
while those of Burkholderiales and Bacteroidales declined[70]. Notably, Bacteroides 
fragilis, which was verified to be the immune-modulating bacteria, remained almost 
unchanged in the process of treatment[70,71]. Additionally, B. thetaiotaomicron, 
Burkholderia cepacian, and B fragilis recolonization in GF mice or those receiving 
antibiotic treatment reversed the resistance to anti-CTLA-4 therapy[70]. Moreover, it 
was further detected that B fragilis administered by oral gavage promoted DC 
maturation and elicited Th1 immune response within the tumour-draining lymph 
nodes[70]. Furthermore, adoptive Th1 cell transfer of cells specific to B. fragilis 
reversed the anti-CTLA-4 sensitivity in GF mice or those receiving antibiotic treatment 
to some extent[70]. In addition to the promoted anti-CTLA-4 effect, the treatment-
related colitis was also alleviated by recolonizing Burkholderia cepacia and B. fragilis
[70]. By FMT from melanoma cases, investigators discovered that the high abundance 
of B. fragilis was associated with tumour regression[70]. In addition, it was interesting 
to find that vancomycin treatment enhanced the ipilimumab efficacy, while alleviating 
side reactions that were not parallel to the promoted efficacy. To explore the reason, 
vancomycin might show indirect effect on promoting the abundance of Bacteroidales 
through suppressing Clostridiales proliferation[70].

Nonetheless, another trial examining the association of baseline gut microbiome 
with the clinical outcomes among the melanoma cases who developed metastasis came 
to different results from those obtained by Marie Vétizou[72]. Different from the 
results obtained from the clinical trial on mouse models, the low baseline abundances 
of B. thetaiotaomicron and B. fragilis but high abundance of Bacteroides were detected 
among the enrolled cases, which restricted the anticancer activity of CTLA-4. In 
addition, certain Firmicutes species, such as unclassified Ruminococcus, Faecalibacterium 
genus, Clostridium XIVa, Lachnospiraceae genus, Gemmiger formicilis, butyrate producing 
bacterium, and Blautia were associated with the increased response rates and superior 
clinical outcomes (prolonged overall survival and PFS). For exploring the underlying 
mechanisms, parameters associated with the immune status were analyzed, which 
suggested that cases exhibiting increased response to treatment had reduced baseline 
proportions of systemic proinflammatory cytokines (sCD25, IL-6, IL-8), CD4+/CD8+ T 
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cells, and Tregs while increased inducible T cell co-stimulator level in CD4+ T cells. 
Different from the above-mentioned clinical trials, antibiotic treatment made no 
difference to the composition of predominant microbiota or bacteria that potentially 
affected the efficacy[72]. It was previously suggested that antibiotic treatment reduced 
the efficacy of ICI treatment, and such findings should be further investigated. Such 
different results among different trials might be associated with certain factors such as 
the heterogeneities between human and mouse models and the bias in FMT.

Recently, Zhuo et al[73] assessed the protection of anti-CTLA-4 blocking Ab (CTLA-
4 mAb) in combination with Lactobacillus acidophilus cell lysates in the syngeneic 
BALB/c mouse model with CRC. Compared with CTLA-4 mAb monotherapy, the 
body weight loss was mitigated by L. acidophilus lysates. Meanwhile, CRC growth was 
suppressed in mice receiving combined administration, suggesting the effect of lysates 
on enhancing the anticancer effect of CTLA-4 mAb detected using the mouse model
[73]. Such improved therapeutic effect was related to the higher proportions of effector 
memory T cells (CD44+CD8+CD62L+) and CD8+ T cells, but the lower proportions of M2 
macrophages (F4/80+CD206+) and Treg (CD4+CD25+Foxp3+) cells within TME[73]. 
Additionally, L. acidophilus lysates showed a certain immunomodulatory activity by 
inhibiting IL-10 expression in lipopolysaccharide-activated Raw264.7 macrophages 
and M2 polarization[73]. Finally, faecal microbiota was subjected to 16S ribosomal 
RNA gene sequencing, demonstrating that combined administration markedly 
suppressed the abnormally increased proteobacteria abundance and partially offset 
the CRC-caused dysbiosis among the model mice[73]. Consistently, Mager et al[74] 
isolated three bacterial species—Bifidobacterium pseudolongum, Lactobacillus johnsonii, 
and Olsenella species—that significantly enhanced the efficacy of anti-CTLA-4 
treatment in CRC mouse models. Based on further research, intestinal B. pseudolongum 
improved immunotherapy response by producing the metabolite inosine. Decreased 
gut barrier function induced by immunotherapy enlarged systemic translocation of 
inosine and activated antitumour T cells. The effect of inosine relied on T cell 
expression of the adenosine A2A receptor as well as the required co-stimulation.

In general, alterations of intestinal bacteria exert a significant influence in ensuring 
the efficacy of cancer with ICIs treatments, with specific changes of the commensal 
microbes standing for a potential way that can be used to improve or to weaken ICIs 
efficacy. As a result, manipulating gut microbiota composition may provide a direct 
and effective method to strengthen the therapeutic effect of cancer ICIs.

FUTURE PROSPECTS OF FMT COMBINED WITH ICIS THERAPY IN CAN-
CER TREATMENT
FMT refers to the process where the faecal suspension obtained from a normal subject 
is injected to the gastrointestinal tract of another subject for the sake of curing a certain 
disease. FMT is a direct and superior approach to enhance the efficacy of ICIs through 
modulating the gut microbiota in human beings. FMT has been adopted for more than 
50 years. Faeces was initially adopted by Ge Hong in China in the 14th century to treat 
various conditions, such as diarrhea[75]. Eiseman et al[76] adopted faecal enemas to 
treat pseudomembranous colitis in 1958 [probably because of Clostridium difficile 
infection (CDI)], and this was also the first time to introduce FMT to the mainstream 
medicine. Thereafter, FMT has become more and more popular because of its simple 
use and effects on treating CDI. In recent years, FMT has been investigated in 
numerous other fields[77]. FMT has been found to be effective on certain disorders, 
like irritable bowel syndrome, inflammatory bowel disease, anorexia nervosa, 
metabolic disorders, multiple sclerosis, autoimmune disorders cancer, cardiovascular 
diseases, and neuropsychiatric disorders[78-82]. Similarly, FMT may represent an 
efficient approach to increase response rate in ICIs therapy. Currently, only a few 
clinical trials have studied the effects of FMT on PD-1 Ab immunotherapy response in 
cancer patients. Recently, Baruch et al[83] carried out one phase I trial for evaluating 
whether it was safe and feasible to perform FMT and re-induction of PD-1 blockage 
treatment among 10 melanoma cases who developed PD-1-refractory metastases 
(Table 2). Clinical responses were detected among 3 cases, including 2 with partial 
responses and 1 with complete response[83]. Obviously, treatment with FMT showed 
association with favorable changes in immune cell infiltrates and gene expression 
profiles in both the gut lamina propria and the TME[83]. Additionally, an ongoing 
single-center phase 2 clinical trial (NCT03341143) investigates the therapeutic effect of 
FMT combined with pembrolizumab on melanoma patients who develop resistance to 
the anti-PD-1 treatment[84]. However, results are not reported at present. In 
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conclusion, such preliminary results shed more lights on the effect of FMT on 
anticancer treatment. As a result, FMT combined with ICIs has been regarded as the 
potential anticancer treatment.

CONCLUSION
Accumulating evidence has demonstrated the shift in gut microbiome composition 
influencing ICIs efficacy. Nevertheless, it obviously shows that in-depth studies on the 
mechanism(s) of interaction between gut microbiota and ICI efficacy need to be 
performed in different caner populations. Additionally, FMT combined with ICIs may 
serve as a new anticancer treatment that requires more investigation. Scientific 
research in this field is just at the beginning stage, and more relevant information is 
needed. To this end, first of all, it is of great importance to determine the mechanism 
by which FMT re-establishes the balanced gut microbiota, finally achieving the 
remarkable cure rate among cancer cases who receive ICI therapy. Secondly, well-
designed randomized controlled trials are required to ensure the safety and efficacy of 
FMT for cancer patients with ICIs treatment. Besides, additional high-quality data (
e.g., longitudinal study) are also necessary to explore potential adverse effects. 
Moreover, it is of importance to study the composition of the small intestinal and 
faecal microbiota before and after FMT. These studies can contribute to better 
understanding the mechanisms of this therapy as well as identify microbes and their 
products involved in the pathogenesis of cancer. Thirdly, the best gut microbiota 
composition to enhance ICIs efficiency need to be recognized. On this basis, it is 
important to choose the right donors. Finally, FMT represents a relatively simple 
procedure during short duration. Compared with the repeated hospitalization and 
conventional therapy, FMT has low costs. Thus, the most appropriate method and 
duration for FMT needs to be determined. For this reason, besides conventional 
approaches, FMT is promising as an alternative therapy for cancer in the future.
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