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Abstract
The therapeutic value of mesenchymal stem cells (MSCs) for the treatment of 
infectious diseases and the repair of disease-induced tissue damage has been 
explored extensively. MSCs inhibit inflammation, reduce pathogen load and 
tissue damage encountered during infectious diseases through the secretion of 
antimicrobial factors for pathogen clearance and they phagocytose certain bacteria 
themselves. MSCs dampen tissue damage during infection by downregulating the 
levels of pro-inflammatory cytokines, and inhibiting the excessive recruitment of 
neutrophils and proliferation of T cells at the site of injury. MSCs aid in the 
regeneration of damaged tissue by differentiating into the damaged cell types or 
by releasing paracrine factors that direct tissue regeneration, differentiation, and 
wound healing. In this review, we discuss in detail the various mechanisms by 
which MSCs help combat pathogens, tissue damage associated with infectious 
diseases, and challenges in utilizing MSCs for therapy.

Key Words: Infectious diseases; Mesenchymal stem cells; Antimicrobial effect; 
Immunomodulation; Tissue repair; COVID-19
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Core Tip: This review discusses the therapeutic benefits of utilizing mesenchymal stem 
cells (MSCs) to treat infectious diseases and repair tissue damage induced by the 
disease-causing infectious agents. The immunomodulatory and regenerative properties 
of MSCs are modulated by the inflammatory milieu generated by the disease and 
should be considered while utilizing MSCs for treatment.
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INTRODUCTION
Infectious diseases are a leading cause of morbidity and mortality worldwide; 
respiratory infections and pneumonia are among the major causes of death globally. 
Failure of commonly used therapies, drugs and the rising number of new infectious 
disease outbreaks have increased the necessity to identify novel therapeutic strategies 
to combat infections, the resulting organ and tissue damage associated with the 
diseases. Mesenchymal stem cells (MSCs) are non-hematopoietic cells found in the 
bone marrow and other tissues such as adipose tissue, placenta, dental pulp, synovial 
membrane, endometrium, umbilical cord blood, Wharton's jelly, and ocular tissues[1-
4]. Tissues are mechanically or enzymatically dissociated to isolate MSCs, giving rise 
to plastic adherent cell populations[5]. MSCs can also be separated by flow cytometry 
sorting based on their cell surface marker expression[6,7]. MSCs possess extensive self-
renewal, proliferative, and multilineage differentiation potential. They are identified 
based on the expression of cell surface markers cluster of differentiation 105 (CD105), 
CD90, CD73, CD 44, CD29 and are negative for markers such as CD45, CD34, CD14, 
CD11b, CD79α, CD19, and human leukocyte antigen (HLA)-DR[1]. However, when 
stimulated with interferon-gamma (IFN-γ), MSCs express HLA-DR[8-10].

MSCs have multilineage differentiation ability and give rise to adipocytes, 
osteoblasts, and chondrocytes under standard differentiation conditions. Additionally, 
MSCs play an important role in tissue repair and homeostasis; thus, they have become 
an attractive therapeutic option for the treatment of several infectious and 
degenerative diseases[11-17]. In addition, MSCs possess immunomodulatory and 
immunosuppressive properties, reduce inflammation, and display immune protective 
functions[1,18,19]. Due to the rising number of infectious diseases and associated 
organ damage, MSCs have been explored as a possible treatment option in recent 
years. Several pre-clinical and clinical trials with MSCs have yielded encouraging 
results, improved therapeutic outcomes, and provided the opportunity to utilize MSCs 
for the treatment of infectious diseases in addition to existing therapeutic options. 
Further, intravenous administration of MSCs is effective in treating pathogen-induced 
organ damage in several disease models[20-22].

This review summarizes various studies that tested the therapeutic advantages of 
MSCs in treating infectious diseases and repairing disease-induced tissue damage. We 
also discuss the various modes in which MSCs function to clear pathogens and rebuild 
the damaged tissue, the signaling pathways modulated by MSCs in the host cells 
during infections, and finally, some of the challenges associated with utilizing MSCs 
for therapy.

METHODOLOGY
The objective of this review was to analyze various pre-clinical and clinical studies that 
utilized MSCs for the treatment of infectious diseases and associated tissue damage. 
PubMed, Scopus, and Web of Science databases were searched without any language 
restrictions. Studies that utilized MSCs with or without modification in disease models 
of infection or pathogen-induced tissue damage were selected for inclusion in the 
review. The research articles were grouped as follows based on their major findings 
when MSCs were injected: direct anti-pathogen effects, immunomodulatory effects, 
differentiation into cells of target tissues, and clinical trials.

DIRECT ANTIMICROBIAL EFFECTS OF MSCS 
Several studies have reported that administration of MSCs during lung injury and 
sepsis significantly reduce the bacterial load. MSCs secrete four types of antimicrobial 
peptides (AMPs): LL-37, hepcidin AMP (HAMP), lipocalin 2 (LCN2), and beta-
defensin-2 (BD2) (Figure 1). Besides AMPs, several other paracrine factors secreted by 
MSCs also contribute to the antimicrobial defense. LL-37 is an amphipathic AMP that 
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Figure 1 Direct bacterial lysis and phagocytosis. Secretion of antimicrobial peptides such as LL-37, β-defensin 2 (BD2), lipocalin 2 (LCN2), hepcidin 
antimicrobial peptide (HAMP), and indoleamine 2, 3-dioxygenase (IDO) by mesenchymal stem cells (MSCs) have bactericidal effects[23,24,30,31]. LCN2 and HAMP 
inhibit iron (Fe) uptake by bacterial cells, and IDO inhibits the uptake of the essential amino acid tryptophan (Trp), leading to growth inhibition and death of bacterial 
cells[27,29]. MSCs can also directly phagocytose bacteria[32].

belongs to the cathelicidin family of AMPs that induces bacterial lysis and enhances 
antibiotic sensitivity. LL-37 directly binds to and inactivates lipopolysaccharides (LPS), 
thereby disrupting the bacterial outer membrane. LL-37 can also neutralize the LPS 
(endotoxin) released by bacteria. LL-37 has chemotactic activity, recruits immune cells 
to enhance pathogen clearance at the site of infection. However, this recruitment of 
immune cells such as macrophages does not increase pro-inflammatory cytokines such 
as tumor necrosis factor α (TNF-α)[23,24]. LL-37 also promotes regeneration and 
angiogenesis by binding to formyl peptide receptor-like 1 expressed on endothelial 
cells[25]. LL-37 secreted by either bone marrow-derived MSCs (BM-MSCs) or adipose 
tissue-derived MSCs (AD-MSCs) increased the effectiveness of antibiotics, enhanced 
pathogen killing, and slowed bacterial growth in a pulmonary infection model of 
cystic fibrosis induced by Pseudomonas aeruginosa, Staphylococcus aureus, and Strepto-
coccus pneumonia[26]. HAMP, another AMP secreted by MSCs, promotes bacterial 
clearance by preventing iron uptake by the pathogens. HAMP promotes transport of 
the cellular iron storage protein, ferritin, into the macrophages and subsequent 
destruction in lysosomes. This causes iron to be stored inside the macrophages, 
making it unavailable for bacterial survival. So, by depleting iron, HAMP hampers the 
growth and survival of bacteria[27]. LCN secreted by MSCs also promotes bacterial 
clearance by blocking iron uptake by the bacterial cells[28,29]. BD2 secreted by MSCs 
reportedly play an important role in pathogen clearance. Sung et al[30] reported that in 
an Escherichia coli-induced pneumonia model, intratracheal administration of human 
umbilical cord-derived MSCs (UC-MSCs) resulted in the attenuation of lung injury 
and led to a significant reduction in inflammation and increase in bacterial clearance 
from the infected site. Microarray analysis found that toll-like receptor 2 (TLR-2), TLR-
4, and BD2 expression levels were significantly upregulated in lung tissue. The TLR-4 
signaling pathway is important for BD2 secretion and silencing of TLR-4 but not TLR-2 
abolished the anti-bacterial effect of MSCs against E. coli[30]. Depletion of the essential 
amino acid, tryptophan, by indoleamine 2,3-dioxygenase (IDO) secreted by MSCs also 
has antimicrobial effects on various pathogens such as toxoplasma, plasmodium, 
chlamydia, rickettsia, streptococci, staphylococci, and herpes virus[31]. In addition, 
MSCs directly phagocytose bacteria through scavenger receptors (Figure 1). Khan et al
[32] found that human MSCs internalized M. tuberculosis through two types of 
scavenger receptors, namely the macrophage receptor with collagenous structure and 
scavenger receptor class B member 1. These endocytosed mycobacteria were killed by 
activation of intrinsic autophagy and nitric oxide secreted by MSCs[32].

In addition to the anti-bacterial properties, MSCs also exert anti-viral effects. 
Rodrigues et al[33] found that MSCs had suppressive effects on human T-lympho-
tropic virus (HTLV)-infected T cells, similar to that seen with healthy T cells. IDO and 
prostaglandin E2 (PGE2) secreted by MSCs suppressed the proliferation of infected T 
cells, and the co-culture of infected T cells with MSCs reduced the expression of 
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HTLV1 pol gene[33]. In a mouse model of lethal herpes simplex virus (HSV-1) 
infection, MSC administration significantly increased the survival percentage and 
exerted anti-viral effects by upregulating IFN-γ levels, while decreasing IL-6 and TNF-
α serum levels[34].

MSCS IN IMMUNOMODULATION 
MSCs reduce the infiltration and accumulation of neutrophils and other immune cells 
at the site of tissue damage and infection. Neutrophils constitute the first line of 
defense against infections, but their excessive accumulation at the site of infection 
results in increased secretion of various proteolytic enzymes, matrix metallopro-
teinases, reactive oxygen species (ROS), and pro-inflammatory cytokines leading to 
neutrophil extracellular traps (NETosis). Although NETosis helps in pathogen 
clearance, it also results in tissue damage due to the exaggerated inflammatory 
response[35]. Excessive NET formation and its poor degradation results in tissue 
damage and has been implicated in sepsis[36,37] and coronavirus disease 2019 
(COVID-19)[38]. MSCs alleviate the excessive influx of neutrophils through TNF-α-
stimulated gene-6 (TSG-6) secretion, which inhibits the recruitment of neutrophils by 
IL-8[39]. In addition, MSCs diminish NET formation by delaying the apoptosis of 
neutrophils and inducing intercellular adhesion molecule 1 expression in neutrophils 
to facilitate their phagocytosis[40]. MSCs also control the tissue damage caused by 
toxic reactive oxygen and nitrogen species produced by neutrophils through the 
secretion of antioxidant enzymes such as superoxide dismutase (SOD)[40].

MSCs regulate the function of macrophages during infection. Macrophages play an 
important role in mediating the inflammatory response and can exist as pro-inflam-
matory M1-type, which mounts the immune response against pathogens, and anti-
inflammatory M2-type, which helps in resolving inflammation through secretion of 
anti-inflammatory cytokines[41]. However, during acute respiratory distress 
syndrome (ARDS), the M1 phenotype is upregulated, disrupting the balance between 
M1 and M2 macrophages[42]. Several studies have reported that MSCs moderate the 
inflammatory response by promoting the polarization of macrophages towards M2 
phenotype through secretion of various factors such as IL-1 receptor antagonist[43], 
decorin[44], stanniocalcin-2[45], and TSG-6[12]. In an LPS-induced acute lung injury 
(ALI) model, transforming growth factor-β3 (TGF-β3) and thrombospondin 1 (TSP-1) 
secreted by dental follicle-derived MSCs upregulated M2 phenotype in alveolar 
macrophages, marked by the increased expression of enzyme arginase 1 and downreg-
ulation of M1 macrophage markers such as inducible nitric oxide synthase and CD86
[46]. Conversely, co-culture of rat BM-MSCs with LPS-treated alveolar macrophages 
promoted the survival of macrophages through the upregulation of anti-apoptotic B-
cell lymphoma 2 (Bcl-2) and inhibition of caspase-3 and Bcl-2-associated X protein 
expression by modulating the Wnt/β-catenin pathway[47]. Furthermore, PGE2 

secreted by MSCs upregulated the bactericidal activity of M1 macrophages through 
phosphoinositide 3-kinase and mediated the increase in NADPH oxidase 2 activity 
and ROS production[41]. Interestingly, in a pre-clinical ARDS model, Jackson et al[48] 
found that MSCs enhanced pathogen clearance and survival of alveolar macrophages 
by donating mitochondria via tunneling microtubules. In addition, intravenous 
injection of murine BM-MSCs overexpressing hepatocyte growth factor (HGF) 
attenuated the damage in an LPS-induced ALI model by modulating the function of 
dendritic cells (DCs). HGF secreted by the MSCs induced mature DCs to differentiate 
into “tolerogenic” regulatory DCs by activation of the HGF/Akt pathway[49].

Injection of MSCs inhibited the proliferation of septic natural killer (sNK) cells and 
significantly improved the survival of the experimental animals in a cecal ligation 
puncture mouse model. Injection of MSCs altered the cytokine profile in the serum 
and altered the sNK cell function, possibly through modulation of the Janus 
kinase/signal transducer and activator of transcription (STAT) pathway[50]. In pre-
clinical models of acute liver injury and liver necrosis, injection of murine MSCs 
significantly downregulated the IL-17 level and decreased IL-17-producing NKT cells 
but enhanced FOXP3+ IL10+ NKT cells[51]. MSCs also suppressed the differentiation of 
CD4+ T cells into IFN-γ-producing T helper type 1 (Th1) cells or IL-17-producing Th17 
cells but increased the number of regulatory T cells (Tregs)[52]. In a mouse model of 
Aspergillus hyphal extract-induced inflammation, administration of human BM-MSCs 
decreased IL-4, IL-5, and IL-17 levels and ameliorated inflammation[53]. In the 
presence of IFN-γ and TNF-α, MSCs enhanced the secretion of programmed death-
ligand 1 (PD-L1) and PD-L2, respectively, which in turn inhibited T-cell proliferation 
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and upregulated FOXO3 expression in these cells[54]. CD200, a cell surface protein 
highly expressed in Wharton’s jelly-derived MSCs (WJ-MSCs), has been implicated in 
inducing immune tolerance by interacting with CD200R present on CD4+ and CD8+ T 
cells[55].

Although MSCs are considered immune privileged, some studies have reported that 
they are susceptible to NK-mediated killing in an IL-2-dependent manner. Stimulation 
of TLRs on MSCs leads to shedding of NK cell-interacting ligands such as major 
histocompatibility complex I (MHC I) and NK group 2 member D, making them less 
susceptible to killing by activated NK cells[56]. TLR4 stimulation increases the survival 
of MSCs under stress conditions through the upregulation of extracellular signal-
related kinase 1/2 (ERK1/2)[57]. Studies that have tracked MSCs in vivo found that 
MSCs died 24 h post-intravenous injection and accumulated in the lungs and liver[58,
59]. de Witte et al[58] reported that the in vivo-injected UC-MSCs were rapidly 
phagocytosed by the monocytes, which then expressed PD-L1 and IL-10 and downreg-
ulated TNF-α expression, resulting in acquisition of the regulatory phenotype by these 
monocytes. Furthermore, phagocytosis of UC-MSCs by lung phagocytes induced the 
production of (C-X-C motif) ligand (CXCL) 9 and CXCL10 by these cells, which helped 
to recruit CXCR3+ Tregs[60]. Keratinocyte growth factor (KGF) secreted by MSCs 
promotes the survival of monocytes by enhancing Akt phosphorylation, thereby 
facilitating bacterial clearance[61]. In a mouse model of Coxsackie virus infection, 
secretion of CX3CL1 by the injected human BM-MSCs inhibited the migration of pro-
inflammatory Ly6Chigh cells but promoted anti-inflammatory LyC6low monocyte 
migration. By modulating monocyte trafficking to the heart, MSCs reduced inflam-
mation and damage in heart tissue[62]. Treatment with BM-MSCs improved lung 
function and reduced inflammatory cytokines in H9N2-[63] and H5N1-infected mice
[64]. However, treatment with UC-MSCs was more effective than BM-MSCs in 
restoring alveolar fluid clearance (AFC) and reducing inflammation in H5N1-infected 
mice[64]. Thus, modulation of immune cells forms the basis for long-term therapeutic 
effects of MSCs in facilitating pathogen clearance and reducing inflammation-
mediated tissue damage (Figure 2).

Several studies have shown that when subjected to an inflammatory environment, 
MSCs secrete higher levels of anti-inflammatory factors such as TSG-6, IL-10, and 
PGE2 and inhibit nuclear factor kappa B (NF-κB) signaling, which leads to the 
decreased expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β
[43,51,65-68]. In the absence of pro-inflammatory stimulus, MSCs secrete low levels of 
cyclooxygenase 2 (COX2), PGE2, TGF-β1, HGF, IL-10, PD-1, PD-L1, and PD-L2[69]. In 
contrast, when subjected to an inflammatory environment consisting of TNF-α and 
IFN-γ, MSCs significantly upregulate the expression of PGE2, COX2, PD1, IDO, HGF, 
and TGF-β1, which contribute to their immunomodulatory properties[67,69]. 
Furthermore, in the presence of pro-inflammatory cytokines, MSCs also supplement 
the production of anti-inflammatory lipid mediator lipoxinA4 (LXA4) by alveolar type 
II epithelial (AT-II) cells[70]. Secretion of IDO by MSCs, a rate-limiting enzyme 
involved in the catabolism of tryptophan via the kynurenine pathway, has been 
implicated in MSCs-mediated reduction of inflammation[33,71]. Inhibition of IDO 
with 1-methyltryptophan abolished the anti-inflammatory effects of MSCs on a murine 
hepatitis model[51], and inhibition of kynurenine, a downstream metabolite of IDO, 
downregulated TSG-6 secretion by MSCs[71]. Similarly, in an ALI mouse model, the 
anti-inflammatory effects of MSCs were abolished when TSG-6 or HGF was silenced
[20,72], indicating the role of MSCs-secreted factors in controlling the inflammation. 
Additionally, netrin-1 expressed by MSCs inhibited neutrophil migration[73]. LXA4 
and PGE2 secreted by MSCs induce heme oxygenase-1 (HO-1) expression in 
macrophages, resulting in cytoprotection during oxidative stress-mediated inflam-
mation[74,75]. HO-1, along with angiopoietin-1 (Ang1), inhibits the TNF-α stimulated 
migration of leukocytes[76,77]. Secretion of antioxidants such as SOD, catalase, 
glutathione peroxidase, and glutathione reductase by MSCs also reduces oxidative 
stress[78].

Some studies have also identified a pro-inflammatory role of MSCs, in which MSCs 
promote the migration of neutrophils, macrophages, and monocytes to the infection 
site and expedite pathogen clearance[79,80]. Petri et al[81] found that secretion of IFN-
γ by MSCs in the early stages of bacterial infection augmented the function of NK cells 
but induced the regulatory phenotype in NK cells at the later stages. In a P. aeruginosa-
induced chronic lung injury model, injection of a high dose of AD-MSCs inhibited 
bacterial load and downregulated bacteria-induced secretion of PGE2 by alveolar cells
[82]. Downregulation of PGE2 levels indirectly enhanced the immune response, leading 
to higher bacterial clearance[26,83]. Further, injection of BM-MSCs in Paracoccidioides 
brasiliensis-infected mice led to increased fungal levels and exaggerated immune 
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Figure 2 Immunomodulation by mesenchymal stem cells. Mesenchymal stem cells (MSCs) secrete various paracrine factors and chemokines to reduce 
inflammation at the site of injury by inhibiting infiltration of neutrophils, pro-inflammatory monocytes, and maturation of dendritic cells[39,62,219]. MSCs promote anti-
inflammatory M2 phenotype in macrophages, improve phagocytic ability and increase their survival via mitochondrial transfer[12,43-45,48]. MSCs under inflammatory 
conditions inhibit T-cell proliferation via secretion of programmed death-ligand 1 (PD-L1) and PD-L2[54]. MSCs induce a “tolerogenic” phenotype in monocytes and 
promote migration of regulatory T cells to the site of infection[58,60]. Ang1: Angiopoietin-1; EVs: Extracellular vesicles; HGF: Hepatocyte growth factor; KGF: 
Keratinocyte growth factor; LXA: LipoxinA4; MMPs: Matrix metalloproteinases; VEGF: Vascular endothelial growth factor.

responses, with increased accumulation of neutrophils, eosinophils, and M2 
macrophages, leading to congestion and edema in lungs[84]. Similarly, treatment with 
BM-MSCs in mice with latent M. bovis infection resulted in significantly higher 
mycobacterial number and granuloma formation[85]. However, if the MSCs were 
conditioned with TLR-3 ligand, poly (A:U) prior to the injection, it significantly 
reduced the pathogen load, suggesting that priming of MSCs was necessary for their 
anti-mycobacterial effect[85].

MSCS PROMOTE REPAIR OF TISSUE DAMAGE 
The regenerative and multipotent differentiation ability of MSCs also aids in the repair 
of tissue damage caused by infection. Despite employing different therapeutic 
strategies, the clinical outcome of ALI and acute respiratory distress syndrome is still 
poor and remains a significant healthcare burden necessitating novel therapeutic 
interventions[21,86]. Apart from controlling infection and inflammation, the paracrine 
factors secreted by MSCs repair and regenerate the damaged epithelial and endothelial 
barriers of the alveoli[64]. In the alveolar region, AT-I and AT-II epithelial cells 
(pneumocytes) constitute the continuous alveolar epithelium, separated from the 
endothelium by a layer of connective tissue. KGF and TSP-1 secreted by MSCs induce 
the proliferation of epithelial cells and induce the differentiation of AT-II cells into AT-
I cells, which further promote the regeneration of alveolar epithelium[87,88]. Under 
normal conditions, tight junctions and other cellular junctions maintain the integrity of 
cellular barriers, allowing the selective flow of fluid. During ALI/ARDS, however, the 
barrier becomes compromised, and disruption of the ion channel proteins and 
aquaporins (AQPs) causes fluid leakage into the interstitium and alveolar spaces 
resulting in edema and compromised gas exchange in the lungs[89,90]. Transepithelial 
ion exchange through Na+ ion channels (ENaC), Na+/K+ ATPase, and cystic fibrosis 
transmembrane conductance regulator (CFTR) present on alveolar epithelial cells 
creates an osmotic gradient that drives the movement of water required for normal 
AFC. Inflammatory cytokines such as TNF-α, TGF-β1, IFN-γ, IL-4, IL-13, and IL-1β 
downregulate the expression of ion channel and junction proteins in the alveolar 
epithelial and endothelial layer leading to the dysregulation of AFC[91]. Lee et al[92] 
found that KGF secreted by MSCs promotes AFC and ameliorates edema during lung 
injury. KGF secreted by MSCs upregulates the expression of catalytic α1 subunit of Na+

/K+ ATPase and surfactant protein (SP A) in AT-II cells[87]. Also, KGF-silenced MSCs 
failed to dampen pulmonary edema in an LPS-induced ALI mice model[93].
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Furthermore, paracrine factors such as LXA4, KGF, Ang1, vascular endothelial 
growth factor (VEGF), and HGF secreted by MSCs induce the expression of ion 
channel, cellular junction, and tight junction proteins in epithelial cells, which facilitate 
repair of alveolar epithelium and restore normal AFC[68,70,94,95]. In an ALI mouse 
model, Fang et al[70] found that intratracheal administration of MSCs significantly 
increased LXA4 level in bronchoalveolar lavage fluid (BALF) and improved the 
survival of the experimental animals. LXA4 was found to enhance CFTR expression in 
AT-II cells damaged by LPS treatment through downregulation of Akt pho-
sphorylation, which led to improved AFC[96]. LXA4 also increases the expression of α 
and γ subunits of ENaC channel[97], and AQP5 in LPS-stimulated epithelial cells[98,
99], which contribute to enhanced fluid clearance, improved gas exchange, and 
pulmonary edema resolution during lung injury. LXA4 improves the integrity of the 
epithelial barrier by upregulating the expression of junction proteins such as zona 
occludens 1, claudin 1, and occludin[100]. ALI stimulates ROS generation in lung 
tissue, which induces mitochondria dysfunction, leading to more ROS release, forming 
a cycle of 'ROS-induced ROS release'[101,102]. LXA4 activates NF-E2-related factor 2, 
which is important for maintaining the redox balance in epithelial cells and rescues E-
cadherin expression[103]. LXA4 increases the proliferation of AT-II cells, reduces 
caspase-3 levels, and inhibits LPS-induced apoptosis[104]. LXA4 secreted by MSCs 
reduces the permeability of alveolar epithelium by restoring the expression and distri-
bution of tight junctions (Figure 3). MSCs when co-cultured with AT-II cells in the 
presence of TNF-α, IFN-γ, and IL-1β had significantly high expression of Ang1, which 
inhibited NF-κB activation and rescued claudin 18 expression in AT-II cells[64,94]. 
Ang1 binding increases active Rac1 levels and subsequently leads to the inactivation of 
Ras homolog family member A (RhoA) in endothelial cells[105]. RhoA activation 
disrupts actin and myosin contraction and promotes stress fiber formation, thereby 
increasing the endothelial permeability, whereas Rac1 counteracts RhoA by activating 
p190GAP and promotes the formation of adherens and tight junctions[106]. Ang1 
increases Rac1/2/3 activity and downregulates active RhoA levels in AT-II cells[94] 
(Figure 4). VEGF and HGF secreted by MSCs reduced endothelial permeability by 
upregulating the expression of junction protein VE-cadherin, and the silencing of 
VEGF or HGF in MSCs inhibited their ability to reduce paracellular and transcellular 
endothelial permeability[107,108]. Yang et al[95] reported that HGF and VEGF secreted 
by MSCs acted synergistically to remodel F-actin, and tight junctions in LPS-
stimulated pulmonary endothelial cells by upregulating Rac1 and downregulating 
RhoA expression.

MSCs were found to enhance the survival of pulmonary epithelial cells, he-
patocytes, and cardiac myocytes by enhancing autophagy in several pre-clinical 
infection models. Autophagy is also associated with reducing inflammatory signals. 
Hu et al[109] reported that LPS stimulation of mouse lung epithelial cells or human 
bronchial epithelial cells led to downregulation of autophagy marker MAP1LC3B 
through activation of mammalian target of rapamycin (mTOR) via TLR4 signaling. 
Silencing of mTOR or overexpression of autophagy-related proteins in epithelial cells 
reduced the production of cytokines IL-6 and IL-8[109]. Chen et al[110] found that 
miR-100 present in human WJ-MSCs-derived exosomes (extracellular vesicles, EVs) 
downregulated mTOR in rat AT-II cells. Treatment with MSCs-derived EVs activated 
autophagy but inhibited apoptosis and secretion of pro-inflammatory cytokines in 
bleomycin-treated rat epithelial cells through mTOR downregulation[110]. The 
protective and repair functions of the MSCs were found to be mediated by p70S6K1
[111], an isoform of S6K1, which is the downstream target of mTOR[65]. The protective 
effects of MSCs on injured alveolar epithelial cells are also mediated by the donation of 
mitochondrial by MSCs to the alveolar epithelial cells. BM-MSCs formed connexin 43 
mediated Ca2+ transporting gap junctions[112] and transferred mitochondrial to the 
alveolar epithelial cells with the help of Miro1, a mitochondrial Rho GTPase[113] 
(Figure 4). In addition to modulating the inflammatory response, treatment with MSCs 
significantly reduced collagen deposition, fibrosis, and scar formation in injury models 
involving various organs such as lungs[114,115], liver[116-118], heart[16], bladder[17] 
and eyes[119]. The anti-fibrotic effects of MSCs were mediated by upregulation of 
matrix metalloproteinases, matrix metalloproteinase 1 (MMP1), MMP13, MMP14, and 
inhibition of tissue inhibitors of MMP 1[118,120].

The ability of MSCs to differentiate into different cell types contributes to the repair 
of damaged tissue during diseases. In LPS-induced ALI models, activation of 
canonical Wnt signaling promoted differentiation of mouse BM-MSCs into AT II cells 
and inhibited lung fibrosis[121]. Liu et al[122,123] found significantly high levels of 
Wnt3a in the lung tissue of ALI mice and in vitro co-culture of mouse BM-MSCs with 
AT-II cells of ALI or normal mice in the presence of Wnt ligands induced the differen-
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Figure 3 Tissue repair and regeneration. Mesenchymal stem cells (MSCs) have multilineage differentiation potential and can differentiate into cells of target 
tissue during injury. MSCs also reduce collagen deposition and fibrosis at the site of injury by secreting matrix metalloproteinases[114,115]. Mitogens secreted 
directly or packaged in extracellular vesicles secreted by MSCs, mitochondrial transfer from MSCs to the injured cells promote proliferation and survival of lung 
epithelial cells[87,88]. MSCs also secrete pro-angiogenic factors such as vascular endothelial growth factor[108] and LL-37 to promote angiogenesis[25]. In the 
context of lung injury, lipoxinA4, angiopoietin-1, keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), and vascular endothelial growth factor promote 
alveolar fluid clearance, which improves gas exchange in the lungs[68,70,94,95]. CXCL: C-X-C motif ligand; DC: Dendritic cell; HGF: Human growth factor; HO-1: 
Heme oxgenase-1; IFNγ: Interferon γ; IL-10: Interleukin 10; IL1RA: Interleukin 1 receptor antagonist; PD-L1: Programmed death-ligand 1; PGE: Prostaglandin E2; 
ROS: Reactive oxygen species; SOD: Superoxide dismutase; SP: Surfactant protein; STC: Stanniocalcin; TSG-6: Tumor necrosis factor α-stimulated gene-6; TNFα: 
Tumor necrosis factor α; TGF: Transforming growth factor; Treg: regulatory T cell; TSP: Thrombospondin.

tiation of MSCs into AT II cells expressing AQP5, SPB and SPC. Further, intratracheal 
transplantation of murine MSCs overexpressing receptor tyrosine kinase-like orphan 
receptor 2 (ROR2), a Wnt5a receptor, into ARDS mice led to differentiation of MSCs 
into AT II cells, suppressed LPS-induced inflammation, and significantly improved the 
alveolar epithelial permeability[114]. However, under non-inflammatory conditions, 
inhibition of Wnt signaling promoted epithelial differentiation of murine lung resident 
MSCs (LR-MSCs)[124]. Fang et al[125] found that resident Dermo1+ LR-MSCs con-
tributed to various lung epithelial cell types during LPS-induced lung injury. Further, 
intratracheal administration of fibroblast growth factor 10 (FGF-10) mobilized the LR-
MSCs, which were more effective in ameliorating the LPS-induced lung injury in rats 
compared to BM-MSCs[126] and also promoted the differentiation of MSCs into AT II 
cells[127]. Silva et al[128] showed that LR-MSCs were better than BM-MSCs in 
reducing neutrophil infiltration, but administration of BM-MSCs or AD-MSCs was 
more effective at reducing inflammatory cytokines and improving lung function than 
LR-MSCs. Li et al[115] reported that downregulation of Hippo signaling through 
silencing of large tumor suppressor kinase 1 in murine BM-MSCs significantly 
increased their differentiation into AT-II cells and decreased pulmonary edema and 
inflammation in ARDS lung tissue.

Few studies have also explored the therapeutic role of MSCs during prion infection 
and found that transplantation of human BM-MSCs intravenously or intrahippo-
campally improved the survival of prion-infected mice. The transplanted MSCs differ-
entiated into neuronal and glial cells[13]. Migration of human MSCs to the site of prion 
infection was found to be mediated by CCR3, CCR5, CXCR3, and CXCR4, and 
blocking these receptors in the MSCs inhibited their migration to the infected site
[129]. Furthermore, treatment with MSCs has been found to promote tissue 
regeneration and reduction of pathogen load in various parasitic infections such as 
malaria[14], Chagas disease[130,131], schistosomiasis[116,132,133], and leishmaniasis
[134]. Thus, MSCs repair pathogen-induced tissue damage by direct differentiation or 
through the secretion of various mitogens and regulatory factors.
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Figure 4 Signaling pathways modified by mesenchymal stem cells in alveolar lung epithelial cells during lung injury. Mesenchymal stem cells 
(MSCs) reduce alveolar permeability and promote survival of alveolar epithelial cells through secretion of lipoxinA4 (LXA4), angiopoietin (Ang1), keratinocyte growth 
factor (KGF), along with extracellular vesicles (EVs). During acute lung injury (ALI), LXA4 inhibits apoptosis of alveolar epithelial cells by inhibiting caspase-3[104]. 
LXA4 also upregulates ion channels like Na+/K+ pump and rescues expression of cystic fibrosis transmembrane conductance regulator and epithelial Na+ channel by 
inhibiting Akt phosphorylation[96]. LXA4 also rescues E-cadherin expression by reducing reactive oxygen species via modulation of nuclear factor erythroid 2–related 
factor 2/heme oxygenase-1 expression[103]. LXA4, as well as Ang1, promote the expression of tight junction proteins like occludin, Zona occludens, and claudin 1
[64,94,100]. Ang1 also rescues the expression of claudin 18 by inhibiting NF-κB. Ang1 upregulates Rac1, which promotes the formation of adherens and tight 
junctions[106]. KGF promotes the secretion of surfactant protein SP-A by alveolar epithelial cells and promotes the expression of Na+/K+ pump[87]. Inhibition of mTOR 
by miR-100 present in EVs secreted by MSCs increases autophagy, thereby promotes survival of epithelial cells during ALI. Ca2+ dependent transfer of mitochondria 
from MSCs, through gap junctions formed by Cx43, increases ATP generation in epithelial cells and improves their survival[112]. Akt: Protein kinase B; Ang1: 
Angiopoietin; AQP5: Aquaporin-5; ATP: Adenosine triphosphate; Cas3: Caspase-3; CFTR: Cystic fibrosis transmembrane conductance regulator; CLD1: Claudin 1; 
ENaC: Epithelial Na+ channel; EVs: Extracellular vesicles; HO-1: Heme oxygenase-1;KGF: Keratinocyte growth factor; LXA4: LipoxinA4; MSC: Mesenchymal stem 
cell; mTOR: Mammalian target of rapamycin; NF-κB: Nuclear factor-kappa B; Nrf2: Nuclear factor erythroid 2-related factor 2; OCLD: Occludin; Rac1: Rac family 
small GTPase 1; RhoA: Ras homolog family member A; ROS: Reactive oxygen species; ZO-1: Zona occludens.

MSCS-DERIVED PARACRINE FACTORS AND EVS
MSCs secrete bilayered lipid microvesicles (100-1000 nm) and exosomes (30-100 nm) 
that contain cytokines, microRNAs (miRNAs), chemokines, and AMPs[135-138]. 
MiRNAs present in MSCs-derived exosomes play an important role in mediating 
therapeutic effects. Exosome-derived miR-27a-3p was found to inhibit NF-κB 
expression and induce M2 polarization in macrophages[139]. miRNA-146a found in 
the exosomes of IL1-β primed MSCs-induced M2 polarization in macrophages by 
modulating IRAK1, TRAF6, and IRF5 signaling[140]. Furthermore, microvesicles from 
IFN-γ-primed MSCs were more efficient than those of naïve MSCs in inducing M2 
phenotype and phagocytosis in macrophages[141]. EVs secreted by MSCs contain 
mRNA of KGF[142] and Ang1[68], which mediate anti-inflammatory effects on LPS-
induced ALI mice models. In an E. coli-induced pneumonia mouse model, MSCs-
derived EVs upregulated the BALF levels of leukotriene B4 (LTB4), a lipid mediator that 
acts as a chemoattractant for T cells, neutrophils, macrophages, and other immune 
cells, thereby facilitating pathogen elimination[143,144]. miRNA-145 present in EVs of 
MSCs was found to suppress the expression of multidrug resistant protein 1, leading 
to increased LTB4 production, which enhanced microbial clearance[143]. miR-100 
found in WJ-MSCs-derived EVs enhanced autophagy through mTOR downregulation 
and improved the survival of alveolar epithelial cells[110] (Figure 4). Treatment with 
MSCs-derived EVs upregulated KGF, PGE2, IL-10 levels and reduced lung inflam-
mation and endothelial permeability in a pre-clinical model of ischemia reperfusion-
induced lung injury[145]. Wang et al[146] reported that HGF present in EVs and 
conditioned media (CM) of BM-MSCs reduced the permeability of endothelial barrier 
by modulating VE-cadherin and occludin expression. Khatri et al[147] reported that 
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swine BM-MSCs and the EVs derived from them have similar surface marker 
expression, and treatment with EVs had similar anti-inflammatory effects as that of 
MSCs themselves in pig ALI.

UC-MSCs-derived EVs inhibited viral replication of hepatitis C virus (HCV) in a 
pre-clinical disease model, and the anti-viral effect was found to be mediated by 
miRNAs let-7f, miR-145, miR-199a, and miR-221[148]. Human BM-MSCs-derived 
exosomes were found to induce autophagy but inhibit D-GalN/LP-induced apoptosis 
of hepatocytes[149] as well as coxsackievirus B3-induced myocarditis[150]. Treatment 
with MSCs-derived exosomes modulated AMPK/mTOR signaling in human 
cardiomyocytes in vitro and promoted their survival[150].

CM derived from MSCs cultured in xenofree conditions has been hypothesized as a 
reasonable approach to cell-free therapy. The CM was found to be rich in exosomes, 
EVs, and several paracrine factors[151]. In an LPS-induced ALI mouse model, Su et al
[152] reported that mice injected intravenously with the CM of MSCs showed reduced 
neutrophil infiltration and accumulation. MSCs-CM was also shown to induce 
apoptosis in neutrophils both in vitro and in vivo by inhibiting NF-κB signaling. BALF 
of MSCs-CM-treated mice had reduced levels of anti-apoptotic proteins such as Bcl-xL 
and Mcl-1[152]. Treatment with MSCs-derived CM reduced TNF-α, IL-6 levels and 
increased IL-10 secretion by macrophages stimulated with TLR ligands or live S. 
pneumoniae[153]. However, Hayes et al[154] showed that administration of MSCs was 
significantly more effective in improving ventilation-induced lung injury than 
treatment with MSCs-CM alone. In an ex-vivo perfusion lung injury model of 
pneumonia, Park et al[155] found that EVs derived from human BM-MSCs treated 
with TLR3 ligand, poly (I:C) significantly reduced the bacterial load, inflammation, 
and protein permeability compared to EVs derived from naïve MSCs. CM of murine 
BM-MSCs was found to exhibit pathogen-related differences in their therapeutic effect, 
where treatment with MSCs-CM inhibited herpes virus replication but not dengue or 
enterovirus[148].

GENETIC MODIFICATIONS AND PRIMING OF MSCS
Several studies have reported that genetic modifications of MSCs improved their 
efficacy and therapeutic potential (Table 1). Martínez-González et al[156] found that 
intravenous injection of MSCs overexpressing sST2, a soluble decoy receptor for IL-33, 
was highly effective at reducing inflammation and preserving the lung architecture 
compared to naïve MSCs in a murine ALI model. IL-33/IL-1 receptor-like (ST2) 
signaling 'alarms' and activates the immune cells upon damage of epithelial or 
endothelial cells[157]. Similarly, administration of MSCs overexpressing Ang1 or HO-1 
reduced vascular endothelial permeability and inflammatory cells in the lungs of LPS-
induced ALI animal models[78,158,159]. Intratracheal administration of TGF-β1 
overexpressing MSCs increased Treg cells but decreased Th17 cells in the lungs of LPS-
induced ARDS mice. MSCs expressing TGF-β1 induced occludin protein expression 
and improved vascular permeability[160]. In an E. coli-induced pneumosepsis experi-
mental model, injection of human UC-MSCs that overexpressed IL-10 were highly 
effective in reducing the percentage of alveolar neutrophils and macrophages and also 
increased the phagocytic function of macrophages compared to naïve MSCs, leading to 
significantly reduced bacterial counts[75]. Murine BM-MSCs overexpressing either 
developmental endothelial locus-1 or FGF2 were found to attenuate lung injury and 
infiltration of immune cells and reduced TNF-α levels compared to control MSCs in an 
LPS-induced ALI mouse model[161,162]. HGF overexpressing MSCs reduced 
apoptosis and cell permeability in LPS-treated pulmonary endothelial cells by upregu-
lating occludin via the mTOR/STAT3 signaling pathway[163]. BM-MSCs overex-
pressing β-catenin, Wnt5a receptor, ROR2, or p130/E2F4 showed higher retention in 
the lungs and differentiation into AT II cells compared to control MSCs, leading to 
significant improvement in lung tissue structure in LPS-induced ARDS mouse models
[114,121,164]. Angiotensin-converting enzyme (ACE) and its homolog ACE2 are cell 
membrane-linked enzymes that have important catalytic functions in the rennin-
angiotensin system. Although ACE, angiotensin II type 1a receptor, and angiotensin II 
are involved in the progression of ARDS by increasing edema and disturbing lung 
function, its homolog ACE2 and angiotensin II type 2 receptor play a protective role 
during sepsis-induced lung injury[165]. He et al[166] reported that treatment with 
MSCs expressing ACE2 led to a significant reduction in neutrophil counts and inflam-
matory cytokines, IL-6, and TNF-α levels in the lungs of LPS-induced ARDS mice 
compared to the control BM-MSCs-treated group. However, ACE2 was found to be the 
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Table 1 Genetic modifications to enhance mesenchymal stem cells potential for treatment of infectious diseases and associated tissue 
injury

Overexpressed genes Source of MSCs Disease model Experimental Outcome Ref.

sST2, Ang1, HO1 Human AD-MSCs, 
Mice BM-MSCs

LPS-induced ALI mouse 
model

Improved preservation of lung 
architecture and reduced 
inflammation

Xu et al[77], Martínez-Gonz
ález et al[156], Mei et al
[159], Chen et al[160], and 
Chen et al[220]

TGF-β1 Mice BM-MSCs LPS-induced ARDS mice Increased Treg, induced occludin 
expression and reduced vascular 
permeability

Chen et al[160]

IL-10 Human UC-MSCs E. coli-induced pneumosepsis 
mouse model

Reduced bacterial load by 
increasing phagocytosis in 
macrophages

Jerkic et al[75]

Del-1, FGF2 Mice BM-MSCs LPS-induced ALI mouse 
model

Reduction in inflammation and 
lung injury

Zhao et al[161], Zhao et al
[161,162]

HGF Mice BM-MSCs In vitro LPS treatment of 
pulmonary endothelial cells 

Upregulated occludin and 
reduced permeability

Meng et al[163]

β-catenin, ROR2, p130/E2F4 Mice BM-MSCs LPS-induced ARDS mouse 
model

Higher retention in lungs and 
increased differentiation into AT 
II cells

Cai et al [114], Cai et al[121], 
Zhang et al[114,121,164]

ACE2 Mice BM-MSCs LPS-induced ALI mouse 
model

Reduced permeability and lung 
Ang-II levels

He et al[166]

CXCR4, EP2 CXCR2 Mice BM-MSCs ALI/ARDS mouse model Increased homing to the site of 
injury

Yang et al [169], Han et al
[170], Shen et al[169-171]

ACE2: Angiotensin-converting enzyme 2; AD-MSCs: Adipose tissue-derived mesenchymal stem cells; ALI: Acute lung injury; Ang1: Angiopoietin-1; 
ARDS: Acute respiratory distress syndrome; AT II: Alveolar epithelial cell type II; BM-MSCs: Bone marrow-derived mesenchymal stem cells; CXCR: (C-X-
C motif) chemokine receptor; Del-1: Developmental endothelial locus-1; E2F4: E2F Transcription Factor 4; EP2: E-prostanoid receptor 2; FGF-2: Fibroblast 
growth factor 2; HGF: Hepatocyte growth factor; HO1: Heme oxygenase-1; IL-10: Interleukin 10; LPS: Lipopolysaccharides; MSCs: Mesenchymal stem cells; 
p130: Retinoblastoma-related protein 2; ROR2: Receptor tyrosine kinase-like orphan receptor 2; sST2: Soluble IL-1 receptor-like 1; TGF-β: Transforming 
growth factor-β; Treg: Regulatory T cell.

functional receptor for coronaviruses including severe acute respiratory syndrome 
(SARS)-associated coronavirus (SARS-CoV-1), and SARS-CoV-2 and has been 
implicated in the progression of SARS-induced ARDS[167,168]. Thus, ACE2 overex-
pressing MSCs might not be a suitable option for the treatment of SARS-induced 
ARDS.

Migration of MSCs to the site of infection and injury is required for MSCs to exhibit 
their therapeutic effects. Overexpression of CXCR4, a receptor for stromal cell-derived 
factor-1α (SDF-1) in MSCs, improved their migration potential to the injured lungs, 
which in turn contributed significantly to controlling the tissue damage compared to 
control MSCs[169]. Because PGE2 levels increase significantly during lung injury, Han 
et al[170] overexpressed the E-prostanoid receptor (EP-2), a receptor for PGE2, in MSCs 
to improve their homing to the injured lung. EP-2 expressing MSCs showed 
significantly high migration to the injured lung and repaired the damaged tissue in the 
ARDS model[171]. In an oral mucositis rat model, Shen et al[172] found that overex-
pression of CXCR2 facilitated the migration of MSCs to the infected site. CXCR2 is a 
receptor for NAP2, secreted by NK cells at the injury site, and can act as a chemoat-
tractant for MSCs expressing CXCR2[171].

MSCs modify their paracrine secretome depending on the environmental cues. Pre-
conditioning MSCs with different environmental cues was found to alter their 
immunomodulation and differentiation abilities. MSCs pre-conditioned with the 
serum of ARDS mice or inflammatory cytokines had high expression of IL-10, IL-6, 
and IL1RA but significantly lower expression of inflammatory cytokines[140,173,174]. 
Similarly, stimulation of MSCs with pro-inflammatory cytokines TNF-α and IL1-β 
induced the expression of HGF, FGF2, heparin-binding EGF-like growth factor that 
contributed to the healing of airway epithelial cells in vitro by modulating ERK1/2 
phosphorylation via EGFR activation[66]. Similarly, MSCs primed with IL1-β were 
more effective at reducing TNF-α and IL-6 levels and increasing IL-10 levels in serum 
of ARDS mice[140]. During co-culture of human BM-MSCs and macrophages, TNF-α 
secreted by activated M1 macrophages induced MSCs into the immunosuppressive 
phenotype. This effect was amplified by IL-10 produced by M2 macrophages, which 
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further increased PGE2 secretion by MSCs[175]. Treatment of MSCs with either IFN-γ 
or TNF-α increased PGE2 expression, but IDO and PD-L1 levels increased only in IFN-
γ-treated MSCs[69], which suggests that the composition of the inflammatory milieu 
alters the function of MSCs and their anti-inflammatory potential. Pre-treatment of 
UC-MSCs with TGF-β1 prior to transplantation improved their long-term survival in 
the lungs[176]. Long-chain fatty acids such as eicosapentaenoic acid treatment 
improved the therapeutic effects of MSCs, which led to a reduction in lung injury and 
increased secretion of inflammation resolving factors such as resolvin D1, IL-10, TGF-
β, and PGE2 in a CLP-induced sepsis model[177]. Exposure to IFN-γ or TLR3 ligand 
poly (I:C) increased HLA-I expression in MSCs, which protected the cells from killing 
by NK cells[56,178]. Furthermore, murine BM-MSCs pre-conditioned with TLR3 
ligand poly (A:U) were more efficient than naïve MSCs in eliminating M. bovis in an 
experimental model[85]. TLR4 activation in LPS-stimulated MSCs expedited wound 
healing by promoting neutrophil migration and NETosis at the site of infection[79]. 
Extracellular vesicles from IFN-γ-primed MSCs significantly increased the phagocytic 
ability of THP1 monocytic cells in vitro and improved the lung histopathology and 
survival of E. coli-induced ARDS mice[141].

In a pre-clinical model, Liu et al[117] reported that transplantation of MSCs 
expressing short hairpin RNA against hepatitis viral proteins (HBV S and HBV X) 
significantly reduced HBV antigens in the liver and serum. Masalova et al[179] tested 
the efficacy of utilizing MSCs as an immunization agent against HCV and found that 
murine BM-MSCs expressing five non-structural HCV proteins induced significantly 
higher proliferation of lymphocytes, IFN-γ secretion, and IgG2a levels compared to 
naked DNA immunizations suggesting the feasibility of utilizing modified MSCs as 
vaccine agents. Hypoxic pre-conditioning also improves the migration, survival, and 
anti-inflammatory properties of MSCs[174,180,181]. MSCs cultured under hypoxic 
conditions (1% O2) had high expression of SDF-1α receptors CXCR4 and CXCR7, 
which promoted their migration to the site of infection[180]. Although both short- and 
long-term hypoxia increased metabolic activity of BM-MSCs compared to normoxic 
conditions, short-term hypoxia was superior to long-term hypoxia in augmenting the 
therapeutic characteristic of MSCs. Hypoxic treatment altered the secretome of porcine 
BM-MSCs and human BM-MSCs differently, indicating species-specific variations in 
MSCs characteristics[181]. Pre-conditioning of MSCs from human bone marrow and 
adipose tissue with hypoxia (2% O2) significantly inhibited the differentiation potential 
but increased the metabolic activity of MSCs. Treatment with cytokine mix consisting 
of IL-1β, TNF-α, and IFN-γ increased the secretion of anti-inflammatory cytokines 
such as IL1RA and IL-10 as well as thrombogenic tissue factor in both AD-MSCs and 
BM-MSCs[174]. Similarly, subpopulations of MSCs selected based on the expression of 
specific cell surface markers showed a higher therapeutic effect compared to the bulk 
population. Masterson et al[7] found that intravenous administration of a homogenous 
population of syndecan2 (CD362)-positive BM-MSCs significantly improved the lung 
function and reduced inflammatory response during lung injury induced by E. coli 
compared to CD362-negative BM-MSCs. Similarly, PDGFR+Sca1+TER119- (PαS) BM-
MSCs with high CFU-F ability were reported to reduce bacterial load, ameliorate 
inflammation, and increase survival in mice model of ALI induced by Klebsiella 
pneumonia[6]; albeit, the results were not compared with the effects seen with bulk 
MSCs population.

The route of administration of MSCs can also modify the therapeutic outcome. 
Danchuk et al[20] found that, whereas administration of human BM-MSCs through 
intravenous, oropharyngeal, or intraperitoneal routes reduced the pulmonary inflam-
mation to a similar extent in an ALI mouse model, MSCs were not detected in the lung 
after intraperitoneal injection during their analysis period. Interestingly, intravenous 
administration of murine BM-MSCs was found to be beneficial in ameliorating ALI 
caused by intratracheal rather than intravenous injection of LPS. Extrapulmonary 
organ damage induced by intravenous LPS injection reduced the migration and 
retention of MSCs in the lungs and accounted for the difference in therapeutic effects 
observed between these two modes of injury[182]. In a mouse model of prion 
infection, intravenous or intrahippocampal administration of human BM-MSCs 
enhanced the survival of infected mice; however, the survival rate was higher in the 
experimental group where MSCs were transplanted intrahippocampally[13].



Sharma A et al. MSCs for infectious diseases

WJSC https://www.wjgnet.com 580 June 26, 2021 Volume 13 Issue 6

CLINICAL TRIALS WITH MSCS
Liver injury
In a clinical trial involving 56 patients with hepatitis B infection, intra-hepatic adminis-
tration of autologous BM-MSCs along with anti-viral drug Entecavir resulted in a 
significant reduction of inflammation and improvement in liver function[183]. Similar 
therapeutic benefits were observed in HBV-induced decompensated liver cirrhosis 
patients when UC-MSCs were intravenously administrated along with standard 
therapy[184]; however, UC-MSCs administration did not alter the prognosis in HBV 
infection-related acute-on-chronic liver failure patients[185]. Conversely, prolonged 
treatment with UC-MSCs for more than 4 wk was found to be effective at improving 
some but not all liver injury markers in HBV-related liver failure and liver cirrhosis 
patients[186]. In a clinical trial involving hepatitis C patients with end-stage liver 
disease, intravenous administration of autologous BM-MSCs was found to be well 
tolerated and effective at reducing liver injury markers and fibrosis[187].

Lung injury
Respiratory tract infections claim more than 1.5 million lives annually, and with 
epidemic and pandemic outbreaks, the number of deaths and disabilities can be 
devastatingly high (SARS outbreak in 2002, H1N1 flu in 2009, Middle East respiratory 
syndrome coronavirus outbreak in 2012, and COVID-19 outbreak in 2020)[188]. Based 
on the successful outcomes observed in pre-clinical models of bacterial pneumonia 
and respiratory infection, the potential benefits of MSCs administration were explored 
for treating infection-associated lung injury. Avian influenza viruses associated with 
high mortalities in poultry pose a risk to cross the interspecies barrier to give rise to 
influenza strains that can cause pandemics[189,190]. In a clinical trial involving 17 
patients infected with H7N9, treatment with allogeneic menstrual blood-derived MSCs 
significantly reduced the death rate (54.5% in control vs 17.6% in MSCs treated) and 
improved lung function without any adverse side effects over a follow-up period of 5 
years[191]. In a case study, intra-atrial injection of allogeneic BM-MSCs facilitated 
resolution of ARDS in a deteriorating critically ill 58-year-old patient with H1N1 
infection[192].

COVID-19
MSCs are immune to infection by SARS-CoV-2 as they lack the expression of ACE2 
and serine protease TMRSS2, which are essential for SARS-CoV-2 infection[193]. In a 
clinical trial of a critically ill 54-year-old man with COVID-19 pneumonia, adminis-
tration of allogeneic WJ-MSCs showed no side effects, improved lung function, and 
diminished the infection by the 6th d of transplantation[194]. In another clinical trial 
involving seven COVID-19 patients with severe pneumonia, MSCs treatment was 
found to be safe and effective at reducing inflammation[193]. MSCs transplantation 
was reported to act synergistically with convalescent plasma therapy and improve 
lung injury in another critically ill 66-year-old COVID-19 patient[195]. Severely ill 
COVID-19 patients are at a risk of thromboembolism that can lead to multiorgan 
failure. The rationale for using MSCs in treating COVID-19 was discussed in several 
reports[196-198]; however, treatment of COVID-19 patients with MSCs requires 
further analysis considering certain aspects of COVID-19-related pathology. Since 
MSCs often have a high expression of procoagulant tissue factor CD142, intravenous 
administration of MSCs can be detrimental in patients at risk of systemic coagulation
[199], and intratracheal or intramuscular administration can obviate this risk. In 
another clinical trial of 25 COVID-19 patients receiving MSCs transplantation once, 
twice, or thrice at intervals of 5 d, three patients developed complications such as liver 
failure, heart failure, and allergic reactions[200].

CHALLENGES IN UTILIZING MSCS
Although MSCs have potent anti-inflammatory and multipotent differentiation 
properties, some studies have reported that MSCs can act as “safe harbors” for some 
bacterial and viral pathogens and help them evade the immune response and 
therapeutic drugs. An in vitro study by Naik et al[201] reported that BM-MCs could be 
infected by both virulent (M. tuberculosis) and avirulent (M. bovis, M. smegmatis) 
mycobacteria. However, MSCs effectively eliminated the intracellular avirulent species 
but not the virulent mycobacteria. M. bovis elimination was mediated by activation of 
TLR2/4 pathway. In contrast, intracellular survival of M. tuberculosis was facilitated by 
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bacteria-induced downregulation of CRAMP, an AMP expressed in BM-MSCs[201]. 
Intracellular M. tuberculosis in MSCs were drug-resistant, attributed to the expression 
of drug-efflux pumps ABCC1 and ABCG2, and immune protected, due to PGE2 

secretion by MSCs[202]. Lopes et al[203] found that CD271+Sca1+ BM-MSCs served as a 
niche for Leishmania infantum in vivo, which protected the parasite from anti-parasite 
drugs, possibly through active drug pump ABCG2 expressed by MSCs.

Qiao et al[204]and Soland et al[205] reported that human MSCs were fully 
permissive to human cytomegalovirus infection, and the highest infection rate was 
observed in lung perivascular MSCs, suggesting that MSCs in different organs might 
act as a viral reservoir in humans. Further, Meisel et al[206] found that MSCs infected 
with CMV lose their immunosuppressive and antimicrobial properties, and Sundin et 
al[207] found that parvovirus B19 persisted in BM-MSCs even after several years of 
infection. Human placenta-derived MSCs were found to be permissible to infection 
with HSV such as HSV1 and HSV2, and fetal membrane-derived MSCs are susceptible 
to infection with Varicella Zoster Virus[208]. Human BM-MSCs were found to be 
susceptible to HBV infection[209], and Wang et al[210] reported that while BM-MSCs 
from patients with chronic HBV infection had defective differentiation potential, AD-
MSCs were not permissible to HBV infection and differentiated effectively into 
functional hepatocyte-like cells. Therefore, AD-MSCs might be a better therapeutic 
option than BM-MSCs in patients with HBV infection. Similarly, avian influenza virus 
H5N1 was also reported to infect and induce cell death in human BM-MSCs and cord 
blood-derived MSCs[211]. MSCs are also susceptible to HIV infection since they 
express receptors and co-receptors for HIV-1. Cotter et al[212] reported that HIV-1 
infection alters the differentiation potential of MSCs, and MSCs exposed to sera from 
patients with high viral load showed proadipogenic phenotype. BM-MSCs from HIV 
transgenic mice showed a reduction in proliferation and therapeutic effects on an 
acute kidney injury model compared to normal BM-MSCs[213]. Cervenakova et al[214] 
reported that BM-MSCs from mice infected with prions were able to propagate TSE 
agents or prions when transplanted into healthy animals. Thus, due considerations on 
the susceptibility of MSCs to various infectious agents should be given while utilizing 
MSCs for therapy.

Although several studies have reported that MSCs are non-immunogenic due to 
lack of MHC II and the co-stimulatory molecules CD40, CD80, or CD86 and that the 
allogenic MSCs are well tolerated[191,192], some studies have found that allogenic 
MSCs elicit an immune response in the recipients leading to transplantation failure
[215-217]. Furthermore, MSCs from different tissue sources have varied differentiation 
ability and secrete a unique set of immunomodulatory factors which might influence 
the clinical outcome, and these source-specific differences are reviewed in detail 
elsewhere[198,218]. Further studies are required to understand the immune response 
elicited by allogeneic MSCs transplantation as well as the diverse effects of utilizing 
MSCs isolated from different tissue sources. An important point to consider is that 
several pre-clinical studies were performed in animal models with non-human MSCs 
or human MSCs from various tissue sources. The non-human inflammatory milieu 
might not exactly resemble the disease conditions seen in humans, and thus additional 
precautions should be taken while interpreting the potential benefits of utilizing MSCs 
for the treatment of infectious diseases.

CONCLUSION
Exaggerated immune response and inflammation during infections cause tissue 
damage, which is one of the major reasons for infectious disease-induced mortality. 
However, treatment with MSCs was reported to provide therapeutic benefits by 
reducing inflammation, pathogen load, and tissue damage in several disease models. 
By expediting pathogen clearance through secretion of AMPs and direct phagocytosis 
and by reducing inflammation through secretion of several anti-inflammatory 
cytokines, MSCs combat tissue damage at the site of infection. MSCs play an important 
role in tissue regeneration by secreting various mitogens as well as differentiating into 
cells of the target tissue. During ARDS, secretion of LXA4, Ang1, HGF, and VEGF by 
MSCs upregulate the expression of ion channel and tight junction proteins and thus 
restore AFC and reduce endothelial permeability. MSCs-derived EVs contain several 
therapeutically beneficial cytokines, miRNAs, and treatment with MSCs-EVs showed 
promising results in clinical trials involving patients with liver injuries and severe 
COVID-19 pneumonia. However, caution should be exercised in utilizing MSCs for 
treatment as they can harbor harmful pathogens and might cause unfavorable 
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outcomes in patients with pre-existing conditions.
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