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Abstract
The genetic variants of orosomucoid-like protein 3 (ORMDL3) gene are associated 
with highly significant increases in the number of human rhinovirus (HRV)-
induced wheezing episodes in children. Recent investigations have been focused 
on the mechanisms of ORMDL3 in rhinovirus infection for asthma and asthma 
exacerbations. ORMDL3 not only regulates major human rhinovirus receptor 
intercellular adhesion molecule 1 expression, but also plays pivotal roles in viral 
infection through metabolisms of ceramide and sphingosine-1-phosphate, 
endoplasmic reticulum (ER) stress, ER-Golgi interface and glycolysis. Research on 
the roles of ORMDL3 in HRV infection will lead us to identify new biomarkers 
and novel therapeutic targets in childhood asthma and viral induced asthma 
exacerbations.
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Core tip: Orosomucoid-like protein 3 (ORMDL3) gene has been identified to have a 
strong association with childhood asthma. The gene has also been found to link with 
human rhinovirus (HRV) infection in children. ORMDL3 mediates HRV infection 
through regulating expression of HRV receptor intercellular adhesion molecule 1, 
metabolisms of ceramide and sphingosine-1-phosphate, endoplasmic reticulum (ER) 
stress, ER-Golgi interface and glycolysis.
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INTRODUCTION
Asthma is one of the major health and economic burdens in the world. It is a 
syndrome characterised by airway inflammation and intermittent symptoms of 
wheeze and shortness of breath. The combinations of genetic and environment factors 
cause the disease[1]. The disease has a high prevalence as well as a chronic relapsing 
course. Acute asthma exacerbations are the major cause of high morbidity and 
mortality whilst severe asthma remains difficult to treat.

In 2007, single nucleotide polymorphisms (SNPs) flanking ORMDL3 gene on 
chromosome 17 were found to be highly associated with asthma in a genome-wide 
association study[2]. This association has subsequently been replicated in many 
studies, including a multi-ancestry global meta-analysis[3]. The locus has also been 
found to be associated with many asthma related traits. Expression quantitative trait 
loci analysis revealed that SNPs in the locus regulate transcript levels of potential 
asthma genes[4]. The locus is associated with eosinophil account in blood and frac-
tional exhaled nitric oxide levels[5]. ORMDL3 locus is now considered as the major 
predisposing factor for childhood-onset asthma. Children with enhanced transcription 
genotypes at ORMDL3 locus have been found to have significant increases in the 
number of wheezing illnesses. Early symptomatic human rhinovirus (HRV) infection 
is a risk factor for subsequent asthma, and the infection causes nearly two thirds of 
childhood asthma exacerbations[6]. The genetic variants on chromosome 17q21 and 
early environmental tobacco smoke exposure enhance the association between early 
respiratory infection and early-onset asthma. Individuals who were homozygous for 
the risk alleles at the ORMDL3-associated SNPs had a greater than twofold difference 
in the association between early viral infection and asthma[7].

The symptoms of virial respiratory infection are most caused by rhinoviruses[8]. 
More than twenty years ago, as the development of molecule techniques of identifying 
pathogens, rhinoviruses were found to be the major virus types in mild and severe 
wheezing illness in all age groups of children, but particularly over one year of age[9]. 
The most common symptoms for HRV infection include rhinorrhea, sore throat, nasal 
congestion, sneezing, cough, and headache[10]. HRV infection is also the major cause 
for exacerbations of chronic obstructive pulmonary disease (COPD) and cystic fibrosis
[11,12]. In this review, I will update the recent developments for research on potential 
mechanisms that ORMDL3 regulates HRV infection in asthma. I will also discuss the 
research strategies to identify novel therapeutic targets for HRV infection in human 
airway diseases.

HRVS
HRVs were identified in the 1950s for exploring the causes of the common cold[13,14] 
and are positive-sense, single-stranded-RNA (ssRNA) viruses with approximate 7200 
base pairs. The viruses belong to the family Picornaviridae and the genus enterovirus. 
The genome consists of a single gene whose translated a protein peptide. The protein 
peptide then is cleaved by protease to 11 proteins[15]. Among them, four proteins 
including VP1, VP2, VP3, and VP4 consist the viral capsid encasing the RNA genome, 
while the rest are non-structural proteins (2A, 2B, 2C, 3A, 3B, 3C, 3D) for functioning 
in viral replication and assembly[11].

SEROTYPES AND PHYLOGENETICS OF HRVS
Serotypes are defined as groups within a single species of microorganisms that share 
distinctive surface structures. The four capsid proteins of HRVs provide the virion an 
icosahedral structure, with a canyon in VP1 of attachment to cell surface receptors. 
More than 90% of known HRV serotypes are classified as major group, utilizing the 
cell surface receptor intercellular adhesion molecule 1 (ICAM1), while the minor group 
HRVs attach cells via the low-density lipoprotein receptor (LDLR). Some of the major-
group HRVs can use heparan sulphate as an additional receptor for cell attachment 
and entrance[16-18]. More than 100 serotypes of HRVs were discovered and the 
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diversities of serotypes of HRVs make the specific vaccine against the virus infection 
very difficult to create.

Phylogenetics is the study of the evolutionary relatedness among organisms. 
Molecular phylogenetics applies sequence data to infer these relationships. Based on 
sequence, phylogenetic sequence HRVs are classified into three species, HRV-A, HRV-
B and HRV-C. HRV-A (containing 77 serotypes) and HRV-B (containing 30 serotypes) 
species can be cultured in normal cells culture[19]. HRV-C strains do not grow in 
standard cell culture although the genomic organization of HRV-C strains is similar to 
that of HRV-A and HRV-B. At least 50 different types of HRV-C have been identified
[20,21]. In 2011, HRV-C was found to grow in sinus mucosal tissue, and the species 
used a distinct cell attachment mechanism[22]. It was then identified that HRV-C 
entrance of cells by cadherin related family member 3 (CDHR3) receptor[23].

RECEPTORS FOR HRVS
ICAM1
ICAM1 is a cell surface ligand for the lymphocyte function antigen 1 adhesion receptor
[24,25]. It was cloned and sequenced in 1988[26]. ICAM1 is a 90 kD inducible surface 
glycoprotein. It promotes adhesion in immunological and inflammatory reactions. In 
1989, ICAM1 was then found as a receptor for HRVs major group entrance to the cell 
by using ICAM1 monoclonal antibody blocking the cytopathic effect in HeLa cells[27]. 
It binds to integrins of CD11a/CD18, or CD11b/CD18 and it is a prominent molecule 
in leukocyte trafficking, immunological synapse formation, and cellular immune 
responses[28]. ICAM1 is expressed on essentially all leukocyte subsets, epithelial cells, 
endothelial cells, fibroblasts, platelets and others[29]. For most cell types under non-
inflammatory conditions, ICAM1 expression is constitutively low, it is detectable only 
on endothelial cells[30,31]. On the condition of stimulations of IL-1β, TNF-α, IFN-γ and 
other cytokines, ICAM1 can increase expression in a cytokine- and cell-specific manner
[28,32]. Soluble ICAM1 can be detectable in the plasma and it increases in patients 
with various inflammatory conditions. HRVs upregulate membrane-bound ICAM1 
expression via a NFKB-dependent mechanism[33] and downregulate the release of 
soluble ICAM1[34]. ICAM1 upregulation was also founded in vivo on nasal epithelial 
cells in an experimental HRV39 infection of healthy volunteers[35].

LDLR
LDLR family members were identified as the receptors for minor group rhinoviruses, 
that consists of only 12 known HRV-A types. The members are evolutionarily ancient 
proteins that are expressed on the surface of many cell types[36]. The LDLR family 
includes at least three members that can bind and internalize HRV as the LDLR, the 
LDLR related protein and the very low density lipoprotein receptor. Receptors in this 
family are recognized by the presence of several structural modules and overall 
similar domain arrangements. The structural characters include ligand-binding 
repeats, epidermal growth factor precursor repeats, a single transmembrane domain, β
-propeller modules and a relatively short cytoplasmic tail[37]. LDLR uptakes its 
natural ligand, cholesterol-carrying lipoprotein particles by endocytosis, and their 
release upon delivery to the low pH milieu of the endosome[38]. The cytoplasmic tail 
of the LDLR family members contains specific motifs that can interact with a number 
of cytoplasmic adaptor and scaffold proteins to mediate signal transduction[37].

CDHR3 
CDHR3 is a member of cadherin superfamily of transmembrane glycoproteins. The 
biological function remains unclear. Other members of this family such as desmosomal 
cadherins and classical cadherins are responsible for communications between 
identical cells through calcium-dependent interactions. Protocadherins are involved in 
neuronal plasticity and tissue development[39]. Cadherins are the major components 
of adherens junctions and desmosomes and also have other functions including 
signalling and mechanical transduction[40].

OTHER RECEPTORS
Some major-group HRVs also use heparan sulphate as an additional receptor[11]. 
Airway epithelial cells infected by HRV can detect and respond to the virus via toll-
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like receptors (TLRs) to activate signalling pathways and generate pro-inflammatory 
cytokines and type I interferons[41]. The HRV6 capsid was found to be recognized via 
TLR2. With HRV6 ssRNA internalization, the virus genome is recognized by 
endosomally located TLR7 and TLR8[42].

HRV INFECTION AND RESPIRATORY DISEASES
HRVs not only are highly associated with asthma, COPD and cystic fibrosis, the 
viruses also have been found to cause upper respiratory infection including common 
cold, acute otitis media and rhinosinusitis. They can be responsible for lower 
respiratory infection including coup, bronchiolitis, community-acquires pneumonia. 
Based on antigenic cross-reactivity in serum neutralization tests, clinical isolates of 
HRV-A and HRV-B identified by 1987[43] were classified into 100 serotypes. More 
recently isolated A and B types were assigned solely on sequence identity criteria[44], 
HRV-A and HRV-C isolates are more virulent in infants, and are more likely to cause 
exacerbations of childhood asthma compared to HRV-B[45,46]. HRVs cause res-
piratory illness throughout the world and throughout the year. Longitudinal studies of 
the epidemiology and clinical features reported a peak incidence of HRV infection in 
the early fall and a smaller peak in the spring[47]. HRVs are the most common cause of 
respiratory viral illness during the spring, summer, and fall months. Infections with 
influenza virus and RSV predominate in the winter[11]. Not like other respiratory 
viruses, such as influenza virus and respiratory syncytial virus that cause cyto-
pathology of the upper respiratory tract; for HRV infection, the epithelial cell lining 
and borders remained structurally intact although the cells were sloughed[48]. 
However, HRVs can still cause damage of epithelial cell barrier function[49], which 
can facilitate the transmigration of bacteria and exposing basolateral epithelial cell 
receptors such as TLRs[50]. Direct infection of the lower airway or the stimulation of 
inflammatory, immunological, or neurogenic mechanisms are the mechanisms of low 
airway dysfunction or diseases. Impaired innate and acquired immune responses for 
Th1 responses were found in asthma patients[51,52]. Epidermal growth factor (EGF) 
promotes viral replication by suppressing antiviral related immune mediators and has 
prominent role of EGF in the immune response to HRVs[53]. There are currently no 
approved antiviral therapies for HRVs, and treatments majorly are supportive.

ORMDL3 AND HRV INFECTION
After the association of the polymorphism of ORMDL3 and asthma has been 
established[2,54], the subsequent research found it was linked to the frequency of 
rhinoviral wheezing illness and then subsequent development of childhood asthma
[6]. Inhalation allergen could induce a significant increase in levels of expression of 
ORMDL3 in airway epithelium and in macrophages in an allergen-induced mouse 
model[55]. The research on the roles of ORMDL3 in HRV infection just begun and 
most results were from mouse models and cellular models. In a transgenic mice that 
express increased levels of human ORMDL3 showed that ORMDL3 contributes to 
antiviral defence to HRV infection through pathways that may include interferons 
(IFNα, IFNβ, IFNλ), OAS, and RNAse L[56]. In a human epithelial cell model, 
ORMDL3 was found to be required in supporting HRV replication via SPT inhibition
[57]. Human ORMDL3 is a trans-membrane protein anchoring in the endoplasmic 
reticulum (ER). The ER is the site responsible for protein folding, storage of calcium 
and synthesis of lipids. ER stress can reduce the capacity for protein folding and 
thereby regulate cellular responses to inflammation. ORMDL3 facilitates the unfolded 
protein response to cellular stress by influencing ER calcium ATPase and ER-mediated 
Ca2+ flux[58]. It interacts with the serine SPT enzyme complex in sphingolipid 
synthesis especially for ceramide and sphingosine-1-phosphate (S1P) levels[59]. 
ORMDL3 could work in multiple pathways in regulating HRV infection[60].
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THE POTENTIAL REGULTATING MECHANISMS OF ORMDL3 FOR HRV 
INFECTION 
Regulating ICAM1 expression levels
To explore the roles of ORMDL3 in epithelial cells, our lab established ORMDL3 
knockdown and ORMDL3 over-expression immortalised epithelial cell lines and 
human primary bronchial epithelial cells. Knockdown of ORMDL3 led to a steroid-
independent reduction of both IL8 and IL6 release and reduced ER stress after 
stimulation of IL1β. Global gene expression analysis revealed that knockdown of 
ORMDL3 resulted in the reduction of expression of genes regulating host-pathogen 
interactions, stress responses and ubiquitination. Metabolomic analyses showed that 
knockdown led to changes in levels of metabolites integral to glycolysis. Additionally, 
knockdown increased concentrations of the immune mediators such as ceramides. The 
multiple effects of ORMDL3 in cellular inflammation are consistent with its substantial 
genetic influence on childhood asthma. Of particular interest is that ORMDL3 
knockdown strongly reduced expression of the HRV receptor ICAM1 during the 
inflammatory response[61]. In an eosinophil ORMDL3 knockdown experiment, a 
significant reduction in adhesion of ORMDL3-siRNA-treated eosinophils to ICAM1 
was noted compared to control-siRNA-treated cell, and ORMDL3 regulates eosinophil 
trafficking, recruitment[62]. The results indicate ORMDL3 can regulate ICAM1 
expression level, then influence HRV infection in human epithelial cells and immune 
cells.

Regulating ER stress
ORMDL3 is a protein anchored on the ER of the cell. The ER in eukaryotes is the site of 
protein folding as well as the site for synthesis of lipids and sterols and the storage of 
free calcium. Stresses on ER can therefore lead to an imbalance between the capacity 
for protein folding and the demand. It is linked to cellular responses to inflammation. 
ER stress happens when the capacity of the ER to fold proteins becomes saturated. ER 
stress induces the evolutionarily conserved signalling pathways, defined as the 
unfolded protein response, which compromises the stimulus and then determines 
whether the cell die or survives. It may be caused by factors that impair protein 
glycosylation, disulphide bond formation, mutations or overexpression. We 
previously experiments showed ORMDL3 was a regulator of ER stress in mouse and 
in cellular models[61,63]. There are three signal transduction pathways for ER stress, 
including protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 
(ATF6) and inositol-requiring enzyme 1 (IRE1)[64]. Both non-structural protein 2B and 
HRV16 can induce an ER stress response through the PERK and ATF6 pathways[65]. 
Different viruses can modulate these mechanisms to escape the host immune response 
to their advantages[66].

Regulating sphingolipids metabolism
ORMDL3 was first identified as a regulator for de nove synthesis of sphingolipids in 
cells[59]. Sphingolipids are amphipathic molecules derived from sphingosine. 
Ceramides are the central molecules of sphingolipids metabolism. Sphingosine 
phosphorylation leads to S1P. S1P and ceramides mediate cell proliferation, survival, 
apoptosis, differentiation and cell-cycle arrest[67,68]. Ceramide-rich platforms affect 
signalling cascades in immune cells, including activation of B cells, bacterial pathogen 
infection. S1P drives the differentiation of immune cells, inducing changes in their 
phenotypes and regulating production of eicosanoids and inflammatory cytokines
[69]. Clinical studies showed that sphingosines and ceramide were increased in 
asthmatic airways[70]. Sphingolipid pathways offer many opportunities for pharma-
cologic intervention and investigations of anti-inflammatory effects have been centred 
on S1P[69]. Importantly, modulating sphingolipids is known to affect ICAM1 
expression in epithelial cells (keratinocytes)[71] so that the ICAM1/sphingolipid axis 
may provide novel prevention strategies for viral-induced childhood asthma. 
Ceramide levels were greatly affected by the expression of ORMDL3 in mouse model
[72,73] and in airway epithelial cells[61]. Decreased sphingolipid synthesis was found 
in children with 17q21 asthma–risk genotype[74]. Ceramides activate protein 
phosphatase 2 to cause endothelial dysfunction[75]. Ceramides suppress the electron 
transport chain to induce production of reactive oxygen species in mitochondria[76]. 
Imbalance of ceramides and impaired TLR4-mediated autophagy were reported in an 
ORMDL3-overexpressing mouse model[77]. S1P receptors inhibition was found to be 
critical for immunomodulation. S1P can directly suppress TLR mediated immune 
response from T cells. S1P extracellular actions are mediated by its interaction with a 
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family of five specific G-protein-coupled receptors, S1P1-S1P5[78]. Ceramide kinase and 
sphingosine kinases control many aspects of cell physiology, including inflammatory 
response and cell survival[79]. S1P was found to be important in immunoglobulin E-
mediated mast cell migration and degranulation[80], allergic asthma, and secretion of 
inflammatory cytokines[81]. In allergic models of asthma, S1P and ceramide are 
important signalling molecules for airway hyperreactivity, mast cell activation, and 
inflammation[82].

Regulating ER-Golgi interface
Golgi apparatus is a cell organelle that facilities process and package proteins and lipid 
molecules to be exported from the cell. Infection of human epithelial cells with several 
rhinovirus strains triggers a rapid activation of the acid sphingomyelinase. The activity 
of the acid sphingomyelinase results in the formation of ceramide in the cell 
membrane. Acid sphingomyelinase is also a key molecule for the infection of human 
cells with rhinoviruses[83,84]. The ability of replicating picornaviruses to influence the 
function of the secretory pathway has important implications for host defence. 
Individual non-structural protein B2 and HRV16 can both fragment the Golgi 
apparatus and block secretion, whereas viral infection fragments the Golgi apparatus 
without blocking secretion[84]. HRV uses a phosphatidylinositol 4-phosphate/ 
cholesterol counter-current for the formation of replication compartments at the ER-
Golgi interface[85]. ORMDL3 regulates ER stress and lipid membrane synthesis and 
that could directly influence ER-Golgi interface to response HRV infection.

Regulating glycolysis
Glycolysis is a cytoplasmic pathway that breaks down glucose into two three-carbon 
compounds and generates energy. Glucose is trapped by phosphorylation, with the 
assistance of the enzyme hexokinase. Glycolysis is one of major energy-yielding 
pathways that glucose is converted into pyruvate in the glycolytic process[86]. Recent 
research showed that IL-1β/inhibitory κB kinase ε signalling plays an important role in 
house dust mite-induced glycolysis[87]. Aerobic glycolysis is increased in asthma, 
which promotes T cell activation. Inhibition of aerobic glycolysis blocks T cell 
activation in asthma[88]. Lactic acid (LA), pyruvic acid (PA) and LA/PA are increased 
in the process. Increased glycolysis and anaerobic respiratory muscle glycolysis during 
airways obstruction may be important in these changes[89]. The early asthmatic 
response has been found to be associated with calcium binding, glycolysis and 
mitochondria activity in rats[90]. Glycolysis of target cells was found as an intrinsic 
host factor that determines the extent of norovirus replication[91]. ORMDL3 deficient 
epithelial cells showed abnormality of glycolysis[61] and that can regulate HRV 
replication in cytoplasm.

The possible regulating mechanisms of ORMDL3 for HRV infection were listed in 
the Table 1.

THE POTENTIAL THERAPEUTIC TARGETS FOR HRV INFECTION 
Targeting ORMDL3/ICAM1 and sphingolipid pathways
Many compounds work in the ORMDL3/ICAM1 and sphingolipid pathways. 
Myriocin is the potent inhibitor of SPT, the rate-limiting enzyme of first step in 
sphingosine biosynthesis. Recent research showed that SPT activity was increased by 
house dust mite exposure and that de novo sphingolipids synthesis can be effectively 
inhibited by myriocin both in vitro and in vivo[92]. Fumonisin B1 has a structural 
similarity to the cellular sphingolipids, and this similarity can disturb the metabolism 
of sphingolipids by inhibiting the enzyme ceramide synthase[93]. Fumonisin B1 can 
attenuate nitrotyrosine formation and oxidative/nitrosative stress, epithelial cell 
apoptosis, and airway inflammation to improve histopathological abnormalities[94]. 
Tamoxifen inhibits ceramide glycosylation[95]. Tamoxifen treatment in horses with 
induced acute pulmonary inflammation promoted early apoptosis of blood and BALF 
neutrophils, reduction in BALF neutrophils[96]. Fingolimod is an FDA approved 
immunomodulatory drug for treating multiple sclerosis by down regulating S1P 
receptor[97]. FTY72 acts as a high-affinity agonist at the G protein-coupled 
sphingosine 1-phosphate receptor-1 (S1P1) on thymocytes and lymphocytes to induce 
aberrant internalization of the receptor[98]. There are numerus inhibitors in 
sphingolipid and ceramide synthesis pathways[99,100], investigating these inhibitors 
provide the potential therapeutic tools to influence HRV infection. HRV-induced 
inflammatory responses are inhibited by phosphatidylserine containing liposomes[41].
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Table 1 Orosomucoid-like protein 3 roles in regulating human rhinovirus infection

Regulating molecules 
and processes The roles in human rhinovirus infection Ref.

ICAM1 ORMDL3 regulates ICAM1 expression for influencing HRV adhesion and entrance and viral load [56,61,62] 

ER stress ORMDL3 regulates ER stress and the ER stress can induce PERK and IRE1 pathways that affect HRV infection [61,63,65] 

Ceramide and S1P ORMDL3 regulates ceramide and S1P levels. S1P and ceramide are responsible for cell survival, proliferation, 
apoptosis, differentiation and cell-cycle arrest; they also affect ICAM1 expression

[55,61,71,
72,77] 

ER-Golgi interface HRV can both fragment the Golgi apparatus and block secretion. ORMDL3 regulates ER-Golgi interface 
through ER stress and sphingolipid metabolism

[61,84,85] 

Glycolysis ORMDL3 regulates glycolysis. Glycolysis can determine the extent of replication of HRVs in cells [61,91] 

ICAM1: Intercellular adhesion molecule 1; ORMDL3: Orosomucoid-like protein 3; HRV: Human rhinovirus; ER: Endoplasmic reticulum; S1P: Sphingosine-
1-phosphate.

Research models of epithelial cells and finding new targets for HRV infection
Research models to investigate interactions between human host (genetic) and 
environmental factors are underdeveloped. These interactions are very important for 
chronic respiratory diseases such as asthma. We now know that airway microor-
ganisms play important roles in health and in chronic respiratory diseases, but how 
the host and microorganisms function remain unclear. The airway epithelium has 
previously been investigated with monolayer models, where undifferentiated 
epithelial cells are grown underneath culture media. Cells that are grown at an air 
liquid interface (ALI) can be fully differentiated. ALI becomes a realistic and efficient 
tool to study cell-cell interaction studies following exposure to aerosolized or gaseous 
form of air pollutants[101], bacteria[102] and virus[103]. Primary bronchial epithelial 
cells cultured at ALI leads to differentiate into respiratory epithelium consisting of 
goblet cells, ciliated cells, basal cells and club cells. ALI culture system is also 
considered as a feasible approach to implement the "3R principle"-replacement, 
reduction, Recently epithelial ALI culture was successfully applied with HRV infection
[104]. ALI cultures contain more epithelial components and are closer to normal 
human airways. In a further development, three-dimensional (3D) cultured lung 
tissues known as spheroids[105] other cell types such as fibroblasts are included. 3D 
culture with epithelial cells could help to provide highly predictive drug tests for 
patient-specific conditions in the near future[106]. The advantages of the ALI and 3D 
human lung spheroid models for interaction study are listed in Table 2. Importantly, 
ALI and 3D human lung spheroid models can be co-cultured with microorganisms 
relevant to asthma. These models provide an alternative of animal research and will 
reduce the use of animals in experiments as animal model for genetic modify are 
complicated procedures and time-consuming. Genetic animal model usually takes 
many generations of breeding and screening. For example, we identified DPP10 as a 
novel gene underlies asthma in 2003[107], we created a Dpp10 mutagenesis mouse tool 
and finally finished functional studies in 2018[108]. The use of genetic modified 
epithelial cells such as specific gene knockout cells not only provides a powerful 
platform to study the interaction between gene and environment but also to identify 
the novel therapeutic targets such as for HRV infection.

CONCLUSION
ORMDL3 emerged as a key molecule to regulate HRV infection in human respiratory 
epithelial cells. It influences the expression of HRV receptor ICAM1, the ER stress 
pathway, ceramide and S1P metabolism, ER-Golgi interface and glycolysis process. 
ORDM3/ICAM1 and sphingolipid metabolism provide novel therapeutic targets for 
HRV infection. Epithelial models with ALI and other 3D cultures will have prominent 
roles to identify the druggable molecules for clinical treatment of asthma, COPD, 
cystic fibrosis and other respiratory conditions induced by HRVs.
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Table 2 The models for studying interaction of host and environmental factors

The available 
models Advantages Disadvantages 

Monolayer cell 
models

Simplistic model; Easy to culture within short times Cells underneath the medium, no connection to other types of 
cells and no tight junctions; Non-optimal physiologic response; 
The growth kinetics of bacteria, fungal or virus on monolayer 
are known to be different from human body

Air liquid 
interface model 

Polarized differentiated airway epithelium containing ciliated 
epithelial cells, basal cells and mucus producing cells, mimicking 
human epithelium; It can be co-cultured with pathogens; Respiratory 
virus is known to show similar replication kinetics as in human body

3D human lung 
spheroid model 

3D multicellular spheroids are small, tightly bound cellular 
aggregates that tend to form when cells are maintained under non-
adherent conditions; Other cell types such as fibroblasts can be 
incorporated and can be co-cultured with pathogens

Animal models In vivo Have ethical issues and many results cannot be replicated in 
human studies; High cost; Time consuming, not applicable to 
high-throughput studies

3D: Three-dimensional.
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