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Abstract
Pancreatic cancer continues to be a leading cause of 
cancer-related death worldwide and there is an ur-
gent need to develop novel diagnostic and therapeu-
tic strategies to reduce the mortality of patients with 
this disease. In pancreatic cancer, some tight junction 
proteins, including claudins, are abnormally regulated 
and therefore are promising molecular targets for 
diagnosis, prognosis and therapy. Claudin-4 and -18 
are overexpressed in human pancreatic cancer and its 
precursor lesions. Claudin-4 is a high affinity receptor 
of Clostridium perfringens enterotoxin (CPE). The cyto-
toxic effects of CPE and monoclonal antibodies against 

claudin-4 are useful as novel therapeutic tools for pan-
creatic cancer. Claudin-18 could be a putative marker 
and therapeutic target with prognostic implications for 
patients with pancreatic cancer. Claudin-1, -7, tricel-
lulin and marvelD3 are involved in epithelial to mesen-
chymal transition (EMT) of pancreatic cancer cells and 
thus might be useful as biomarkers during disease. 
Protein kinase C is closely related to EMT of pancreatic 
cancer and regulates tight junctions of normal human 
pancreatic duct epithelial cells and the cancer cells. 
This review focuses on the regulation of tight junctions 
via  protein kinase C during EMT in human pancreatic 
cancer for the purpose of developing new diagnostic 
and therapeutic modalities for pancreatic cancer.
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Core tip: There is an urgent need to develop novel diag-
nostic and therapeutic strategies to reduce the mortal-
ity of pancreatic cancer patients. In pancreatic cancer, 
some tight junction proteins, including claudins, are 
abnormally regulated and thus are promising molecu-
lar targets for Clostridium perfringens enterotoxin and 
monoclonal antibodies. Protein kinase C is closely relat-
ed to epithelial to mesenchymal transition (EMT) of this 
cancer and regulates tight junctions of normal human 
pancreatic duct epithelial (HPDE) cells and pancreatic 
cancer cells. This review focuses on the regulation of 
tight junctions via  protein kinase C during EMT in hu-
man pancreatic cancer compared to normal HPDE cells.
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INTRODUCTION
Pancreatic cancer continues to be a leading cause of  can-
cer-related death worldwide due to late detection, lack of  
therapeutic targets and ineffective therapies. At the time 
of  diagnosis, few patients with pancreatic cancer present 
with localized disease amenable to surgical resection, while 
the remaining patients present with locally advanced or 
distant metastasis. It exhibits the poorest prognosis of  all 
solid tumors with a 5-year survival rate < 5% and a me-
dian survival of  3-6 mo after diagnosis[1]. Thus, there is an 
urgent need to develop novel diagnostic and therapeutic 
strategies to reduce the mortality of  these patients.

Transition of  a cancer cell from an epithelial to mes-
enchymal morphology leads to increased migratory and 
invasive properties, and thus facilitates the initiation of  
metastasis in pancreatic cancer[2,3]. The epithelial to mes-
enchymal transition (EMT) is characterized by a loss of  
cell-cell contact and apicobasal polarity. The hallmarks 
of  EMT in vitro and in vivo include the upregulation of  
mesenchymal markers, the downregulation of  epithelial 
cell adhesion molecules including tight junction proteins, 
and dysfunction of  the tight junction fence[4,5]. EMT is 
accompanied by loss of  occludin and claudins as well as 
E-cadherin via the Snail family[6-9]. The transcription fac-
tor Snail, which has high to moderate expression in 78% 
of  pancreatic ductal adenocarcinoma specimens, appears 
to promote metastasis and chemoresistance in pancreatic 
cancer[10,11]. The activation of  protein kinase C (PKC) is 
known to be involved in EMT in various type of  cancer 
including pancreatic cancer. The PKC activator 12-O-
tetradecanoylphorbol 13-acetate (TPA) induces EMT in 
human prostate cancer cells[12] and pancreatic cancer cell 
line HPAC[13]. Expression of  PKCα and PKCδ closely 
contributes to EMT in colon cancer cells[14,15]. Transform-
ing growth factor-β1 (TGF-β1), which promotes EMT in 
pancreatic cancer cells[16], induces PKCα in poorly differ-
entiated pancreatic cancer cell line BXPC-3[17].

In several human cancers, including pancreatic can-
cer, some tight junction proteins are abnormally regulat-
ed and therefore promising molecular targets for diagno-
sis and therapy[18,19]. The current review will focus on the 
roles of  tight junction proteins, including claudins, and 
PKC signaling with regard to the potential applicability 
for diagnosis, prognosis and the therapy during EMT in 
pancreatic cancer.

Tight junction and its proteins
Epithelial cells including pancreatic epithelial cells are 
bordered by two functionally and biochemically different 
membranes[20]. This integrity is maintained by intercellular 
junctional complexes, such as tight junctions, adherent 

junctions, and desmosomes[21]. Tight junctions are the 
most apical components of  intercellular junctional com-
plexes in epithelial and endothelial cells. They separate the 
apical and basolateral cell surface domains, maintaining 
cell polarity (termed the “fence” function), and selectively 
control solute and water flow through the paracellular 
space (termed the “barrier” function)[22-25]. They also par-
ticipate in signal transduction mechanisms that regulate 
epithelial cell proliferation, gene expression, differentia-
tion and morphogenesis[26]. The tight junction is formed 
by integral membrane proteins and peripheral membrane 
proteins. The integral membrane proteins are claudins[27,28], 
occludin[29], tricellulin[30], marvelD3[31] and junctional adhe-
sion molecules[32] (Figure 1). Peripheral membrane pro-
teins include the scaffold PDZ-expression proteins zonula 
occludens (ZO)-1, ZO-2, ZO-3, multi-PDZ domain 
protein-1, membrane-associated guanylate kinase with 
inverted orientation-1 (MAGI)-1, MAGI-2, MAGI-3, cell 
polarity molecules atypical PKC isotype-specific interact-
ing protein/PAR-3, PAR-6, PALS-1, and PALS-1-asso-
ciated tight junction, as well as the non-PDZ-expressing 
proteins cingulin, symplekin, ZONAB, GEF-H1, aPKC, 
PP2A, Rab3b, Rab13, PTEN, and 7H6[21,33,34]. These tight 
junction proteins are regulated by various cytokines and 
growth factors via distinct signal transduction pathways 
including PKC[35,36].

The claudin family, which consists of  at least 27 mem-
bers, is solely responsible for forming tight junction strands 
and has four transmembrane domains and two extracel-
lular loops[21,37] (Figure 2). The first extracellular loop is 
the coreceptor of  hepatitis C virus[38] and influences the 
paracellular charge selectivity[39], and the second extra-
cellular loop is the receptor of  Clostridium perfringens 
enterotoxin (CPE)[40].

Both occludin and tricellulin (marvelD2) contain the 
tetra-spanning MARVEL (MAL and related proteins for 
vesicle trafficking and membrane link) domain that is 
present in proteins involved in membrane apposition and 
concentrated in cholesterol-rich microdomains[41]. The 
novel tight junction protein marvelD3 contains a con-
served MARVEL domain like occludin and tricellulin[31,42].

In general, cancer cells lose their specific functions 
and polarity with a decrease in the development of  tight 
junctions. It is thought that the loss of  tight junction 
functions in part leads to invasion and metastasis of  can-
cer cells[43].

Tight junction proteins are dysregulated during carci-
nogenesis and EMT. Expression of  some claudin family 
members is significantly altered by epigenetic regulation 
in human cancer[44-46].

Expression patterns and the role 
of tight junction proteins in 
normal pancreas
Several tight junction proteins are expressed in a tissue-
specific and organ-specific manner[47-49]. Normal ductal 
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and acinar structures of  the pancreas express claudin-1, 
-2, -3, -4, and -7, whereas endocrine cells within the islets 
of  Langerhans express claudin-3 and -7 (Figure 3)[50,51]. 
Pancreatic duct cells deliver the enzymes produced by 
acinar cells into duodenum and secrete a HCO3

--rich 
fluid to neutralize gastric acid from the stomach[52]. Tight 
junctions of  the pancreatic duct form the pancreatic 
ductal barrier. Freeze-fracture analysis of  the pancreatic 
duct reveals that tight junctions contained a parallel array 
of  three to five continuous sealing strands and the pan-
creatic enzymes cannot leak out from the lumen into the 
intercellular spaces (Figure 3)[53,54]. Tight junctions of  the 
pancreatic duct are also regulators of  physiologic secre-
tion of  the pancreas. Pancreatic ductal tight junctions, 
which is leaky and has the function of  selective perme-
ability, may play a role of  channels of  Na+ and HCO3

- via 
paracellular pathway[55,56].

The tight junctions of  pancreatic duct epithelial cells 
and exocrine cells are dynamic structures that can be 
disrupted by various external stimuli including ductal 
hypertension[57,58]. The disruption of  pancreatic duct 
tight junctions is an early event in different types of  
pancreatitis[59-64]. Although dysfunction of  tight junctions 
in pancreatic duct is observed by various pathological 
conditions, the regulatory mechanisms of  tight junctions 
remain unknown even in normal human pancreatic duct 
epithelial (HPDE) cells.

Expression patterns of tight 
junction proteins in pancreatic 
cancer
The tight junction protein expression pattern varies be-
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Figure 1  claudins, occludin, tricellulin, marvelD3 and junctional adhesion molecules. A: Schematic representation of human claudin, occludin, tricellulin, and 
marvelD3. These molecules contain four transmembrane domains with two extracellular loops. Claudins consist of at least 27 members. Occludin has several variants. 
MarvelD3 has two isoforms. aa: amino acid; B: Models of tight junction protein locations in paracellular space. The bicellular tight junction is the interface between 
two cells, whereas the vertex where three cells meet is termed the tricellular tight junction. The tight junction strands within both bicellular and tricellular regions are 
composed of claudins (black ellipses). MarvelD3 (green ellipses), occludin (orange ellipses), and tricellulin (red spheres) incorporated into claudin-based tight junction 
strands. Occludin and tricellulin are primarily found at bicellular and tricellular regions, respectively, whereas marvelD3 is present at both sites. Tricellulin is unique in 
that it is present at the tight junction and along the lateral membrane.
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tween normal pancreatic tissue and pancreatic cancer. 
Claudin-1, -4, -7 and -18 are positive in pancreatic ade-
nocarcinoma, whereas endocrine tumors are negative for 
claudin-1 and -4. Claudin-3 and -7 proteins are detected 
in endocrine tumors, whereas claudin-13 is negative in 
ductal adenocarcinoma[18,50,51]. Claudin-1, -2 and -4 are 
detected in exocrine tumors[65]. In borderline cystic tu-
mors the level of  claudin-1, -4 and -7 protein expression 
is between that of  benign and malignant tumors[65]. This 
supports the sequential development theory regarding 
mucinous cystic tumors.

Liver metastasis of  pancreatic cancer is strongly posi-
tive for claudin-4, weakly positive for claudin-1, and neg-
ative or faintly positive for claudin-7[66]. It is interesting 

that claudin-3 is positive in liver metastasis of  pancreatic 
cancer whereas claudin-3 staining is not detected in pri-
mary pancreatic cancer[50,66].

A study investigating ZO-1 in pancreatic cancer showed 
that expression of  ZO-1 was increased in pancreatic ad-
enocarcinoma samples in comparison with normal sam-
ples[67]. In pancreatic cancer cells, ZO-1 protein translocal-
izes from apical and apicolateral areas to the cytoplasm 
and nucleus, and translocation of  ZO-1 is involved in the 
induction of  invasion through epidermal growth factor 
receptor (EGFR) activation[68].

We established human telomerase reverse transcrip-
tase-transfected HPDE cells as models of  normal pan-
creatic duct epithelial cells[51]. The hTERT-HPDE cells 
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Figure 3  Localization and structures of tight junctions in normal human pancreas. In normal pancreatic ducts which express CK (Cytokeratin)7, occludin (OCLN), 
ZO-1 and claudin (CLDN)-1, -4 are observed by immunostaining. In freeze-fracture (FF) replica, well-developed tight junction strands are observed in normal pancreas.
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are positive for HPDE cell markers such as CK7, CK19 
and carbonic anhydrase isozyme 2 and express epithelial 
tight junction molecules claudin-1, -4, -7 and -18, occlu-
din, tricellulin, marvelD3, JAM-A, ZO-1, and ZO-2[51]. 
The expression patterns of  tight junction molecules in 
the hTERT-HPDE cells are similar to those of  pancre-
atic tissues in vivo[51].

Claudin-1 in normal pancreatic 
duct and cancer
Claudin-1 is expressed in various types of  epithelial cells, 
and plays an important role in epithelial cell polarity and 
cancer invasion and metastasis[69-72]. However, its role re-
mains controversial far in various cancers. In pancreatic 
cancer, claudin-1 expression is responsible for tumor 
necrosis factor α-dependent cell growth signals that lead 
to apoptosis and the inhibition of  cell proliferation[73]. 
Claudin-1 is localized at the cell membranes of  normal 
pancreatic ducts and well-differentiated pancreatic carci-
noma, whereas in poorly differentiated pancreatic carci-
noma it is weakly detected in cytoplasm[74].

EMT is associated with the simultaneous repression 
of  the genes encoding E-cadherin, claudins and occlu-
din[8]. The transcription factors Snail and Slug, which play 
a central role in EMT, bind to the E-box motifs present 
in the claudin-1 promoter and have a critical negative 
regulatory role in malignant cancer cell lines that express 
low levels of  the claudin-1 transcript[8,75]. Treatment with 
TGF-β1 induces EMT in pancreatic cancer cells and 
TGF-β upregulates Snail and downregulates claudin-1, 
-4 and occludin in PANC-1 cells[74]. Taken together, this 
indicates that claudin-1 may be a potential biomarker for 
the development of  pancreatic cancer. Thus further in-
vestigation of  the significance of  claudin-1 in pancreatic 
cancer cells and normal pancreatic duct epithelial cells is 
required.

Claudin-4 in normal pancreatic 
duct and cancer
DNA microarray, immunohistochemical, and quantitative 
real-time reverse transcription-polymerase chain reac-
tion analyses have provided evidence that claudin-4 is 
upregulated in pancreatic cancer tissues[76]. Furthermore, 
claudin-4 is also overexpressed in pancreatic intraepithelial 
neoplasia (PanIN), intraductal papillary neoplasia (IPMN), 
and mucinous cystic neoplasia (MCN), and is correlated 
with the histological tumor grade in both IPMN and 
MCN[77,78]. On the other hand, overexpression of  clau-
din-4 decreases the invasiveness and metastatic potential 
of  pancreatic cancer cells in vitro[19]. Patients with high ex-
pression of  claudin-4 mRNA and protein survive longer 
than those with low claudin-4 expression[79].

Claudin-4 is also a high-affinity receptor of  CPE[80]. 
The 35-kDa polypeptide CPE causes food poisoning in 
humans, binds to its claudin receptor, and then causes 

changes in membrane permeability via formation of  a 
complex on the plasma membrane followed by the in-
duction of  apoptosis[81]. Full-length CPE with a direct cy-
totoxic effect and the COOH-terminal receptor-binding 
domain of  CPE (C-CPE) without a cytotoxic effect are 
employed as selective treatment and drug delivery sys-
tems against claudin-4 expressing pancreatic tumors[82,83].

CPE induces an acute dose-dependent cytotoxic ef-
fect in claudin-4-expressing nude mouse xenografts of  
PANC-1, which is a poorly differentiated pancreatic 
cancer cell line[82,84]. In the pancreatic cell lines PANC-1, 
BXPC-3, HPAF-Ⅱ and HPAC, claudin-4 is found not 
only at the apicalmost regions but also at basolateral 
membranes[85]. When these pancreatic cancer cell lines 
are treated with CPE, it induces dose-dependent cyto-
toxic effects in all of  them[85]. Furthermore, in HPAC 
cells, the cytotoxicity of  CPE is significantly decreased 
by knockdown of  claudin-4 by siRNAs[85].

In hTERT-HPDE cells cultured with 10% FBS, clau-
din-4 is localized at the apicalmost regions, which are tight 
junction areas[85]. When hTERT-HPDE cells cultured with 
10% FBS in which the expression of  claudin-4 protein 
is as high as in pancreatic cell lines in Western blotting, 
are treated with CPE, cytotoxicity is not observed even 
at high concentrations of  CPE[85]. These findings suggest 
that, in pancreatic cancer cells, CPE binds to the free sec-
ond extracellular loop of  claudin-4 outside of  tight junc-
tions and that, in normal HPDE cells, it cannot bind to 
that of  claudin-4 in tight junction areas.

effect of C-CPE targeting 
claudin-4 against pancreatic 
cancer
The functional domains of  CPE can be separated into 
a receptor-binding region (C-terminal of  CPE, C-CPE) 
and cytotoxic region (N-terminal of  CPE). C-CPE is a 
C-terminal fragment composed of  the CPE amino acids 
184 to 319[80]. The receptor binding region of  CPE has 
been reported to be in the C-terminal 30 residues (amino 
acids 290 to 319) of  CPE[86].

C-CPE is a nontoxic molecule that disrupts the tight 
junction barrier function and enhances cellular absorp-
tion[87]. It enhances the effectiveness of  clinically rel-
evant anticancer agents such as Taxol and carboplatin 
against cancer cells[88]. In our study, when HPAC cells 
were treated with C-CPE, the barrier function was mark-
edly decreased at a nontoxic concentration of  C-CPE 
and recovered in the absence of  C-CPE (personal data). 
C-CPE may enhance the effectiveness of  clinically rel-
evant chemotherapies in pancreatic cancer.

The development of  molecular imaging approaches 
using tissue- and cell-specific tracers plays a crucial role 
to improve early diagnosis and therapy in cancer. Clau-
din-4 is utilized as a target for imaging of  pancreatic can-
cer. Non-cadmium-based quantum dots bioconjugated 
to claudin-4 monoclonal antibodies are used as highly ef-
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ficient, nontoxic optical probes for imaging live pancre-
atic cancer cells in vivo and in vitro[89]. C-CPE labelled with 
a cyanine dye with novel optical imaging methods, 2D 
planar fluorescence reflectance imaging technology and 
3D fluorescence-mediated tomography, enables noninva-
sive visualization of  claudin-4 positive pancreatic cancer 
and its precursor lesions[90]. Furthermore, it is thought 
that C-CPE can be used as a carrier for other bacterial 
toxins to claudin-4-positive cancer cells. A claudin-4-
targeting antitumor molecule that consisted of  C-CPE 
fused to protein synthesis inhibitory factor derived from 
Pseudomonas aeruginosa exotoxin or diphtheria toxin frag-
ment A (DTA) were especially toxic to claudin-4 positive 
cancer cells in vivo and in vitro[83,91,92].

Claudin-7 in normal pancreatic 
duct and cancer
Claudin-7 is expressed in various types of  epithelial cells 
and directly interacts with EpCAM, forming a complex 
with CD44 variant isoforms and tetraspanins outside of  
tight junction areas[93,94]. Furthermore, EpCAM is one 
of  the surface markers in pancreatic cancer stem cells[95], 
and claudin-7 regulates the EpCAM-mediated functions 
in tumor progression such as proliferation, migration, 
and anti-apoptosis[96,97]. Claudin-7 supports tumorigenic 
features of  EpCAM by provoking EpCAM cleavage and 
its cotranscription factor activity, and is directly engaged 
in motility and resistance to apoptosis in rat pancreatic 
cancer[98].

In human pancreatic ductal adenocarcinoma, there 
is a gradual decline in membrane-bound expression of  
claudin-7 immunoreactivity in parallel with the degree 
of  tumor differentiation[99]. Claudin-7 expression also 
appears to be inversely associated with the gland size in 
tumors, with large neoplastic glands displaying more fre-
quent claudin-7 positivity than smaller glands[99]. There 
is no association between claudin-7 and tumor size, the 
presence of  nodal metastases or survival of  the patients, 
indicating that while expression of  claudin-7 is related 
to differentiation of  ductal pancreatic adenocarcinoma it 
does not influence tumor progression[99].

In a human pancreatic cancer cell line and hTERT-
HPDE cells, ELF3 is associated with claudin-7[51]. ELF3 
belongs to the ELF (E74-like factor) subfamily of  the 
ETS transcription factors, but it is distinguished from 
most ETS family members by its expression pattern, 
which is specific in epithelial tissues of  the lung, liver, 
kidney, pancreas, prostate, small intestine, and colon 
mucosa[100]. ELF3 controls intestinal epithelial differentia-
tion[101]. It is reported that the expression of  claudin-7 in 
epithelial structures in synovial sarcoma is regulated by 
ELF3[102]. Thus, the expression of  claudin-7 and its regu-
lation via ELF3 may be important as potential therapeutic 
targets for pancreatic cancer.

Claudin-18 in normal pancreatic 
duct and cancer
In pancreatic cancer, claudin-18 is as highly expressed 
as claudin-4[18]. Claudin-18 has two alternatively spliced 
variants, claudin-18a1 and claudin-18a2, which are highly 
expressed in the lung and stomach, respectively[103]. 
Claudin-18a2 is activated in a wide range of  human 
malignant tumors, including gastric, esophageal, pancre-
atic, lung, and ovarian cancers, and can be specifically 
targeted by monoclonal antibodies against the first extra-
cellular loop[44]. Claudin-18 is highly expressed in PanIN, 
IPMN, MCN, pancreatic duct carcinoma, and metastases 
of  pancreatic cancer, and serves as a diagnostic mark-
er[18,78,99,104-106]. Neuroendocrine neoplasia is found posi-
tive with low rates[105]. Thus, claudin-18 could be useful 
as a putative marker and therapeutic target for neopla-
sia of  the pancreas. Furthermore, because claudin-18 
expression is most pronounced in well-differentiated 
pancreatic cancers, and patients with high expression of  
claudin-18 survive longer than those with low claudin-18 
expression[18], its expression level may also have prognos-
tic implications for patients with pancreatic cancer.

Tricellulin in normal pancreatic 
duct and cancer
Tricellulin was identified as the first marker of  the tricel-
lular tight junction, which formed at the meeting points 
of  three cells[30]. It is required for the maintenance of  the 
transepithelial barrier and expressed in both the normal 
pancreatic duct and pancreatic cancer[30,107,108]. It is one 
of  three members of  the tight junction-associated MAR-
VEL protein family. The other two members are occludin 
and marvelD3[31,42]. Occludin and tricellulin are present 
at bicellular and tricellular tight junctions, respectively, 
whereas marvelD3 is present at both sites[31,42]. Both nor-
mal and neoplastic pancreatic exocrine tissues express 
tricellulin, whereas no expression is seen in normal or 
neoplastic endocrine cells[108]. Tricellulin expression in 
pancreatic ductal adenocarcinomas shows a significant 
negative correlation with the degree of  differentiation[108].

Tricellulin expression in tricellular tight junctions is 
strongly regulated together with the barrier function via 
the c-Jun N-terminal kinase (JNK) transduction path-
way[109]. Activation of  JNK promotes the development 
of  various tumors[110-112]. Furthermore, JNK inhibitors 
decrease the growth of  human and murine pancreatic 
cancers in vitro and in vivo[113]. Tricellulin expression and 
the barrier function are upregulated together with the 
activity of  phospho-JNK by treatment with the JNK ac-
tivator anisomycin in HPAC cells[109]. In hTERT-HPDE 
cells, tricellulin expression is significantly increased by all 
JNK activators, similar to the response in HPAC cells[109]. 
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JNK may be involved in the regulation of  tight junctions, 
including tricellulin expression and the barrier function 
in normal pancreatic duct epithelial cells, and may be a 
potential therapeutic target for pancreatic cancer.

MarvelD3 in normal pancreatic 
duct and cancer
MarvelD3, the novel tight junction protein, is transcrip-
tionally downregulated in poorly differentiated pancre-
atic cancer cells, whereas it is maintained in well-differ-
entiated human pancreatic cancer cells and normal pan-
creatic duct epithelial cells[114]. Furthermore, marvelD3 
is transcriptionally downregulated in Snail-induced EMT 
during the progression of  pancreatic cancer[114]. There-
fore, marvelD3 could be a new marker during pancreatic 
cancer progression. However, little is known about the 
detailed role of  marvelD3 in epithelial tight junctions 
and how it is regulated in various types of  cells, includ-
ing normal pancreatic duct epithelial cells and pancreatic 
cancer cells.

role of PKC in tight junctions 
during EMT in normal pancreatic 
duct and cancer
PKC belongs to the family of  serine-threonine kinases 
and regulates various cellular functions[115]. It has been 
shown to induce both assembly and disassembly of  tight 
junctions depending on the cell type and conditions of  
activation[116-118]. At least 12 different isozymes of  PKC 
are known and can be subdivided into three classes 
(classic or conventional, novel and atypical isozymes) ac-
cording to their responsiveness to activators[119,120]. The 
levels of  PKCα, PKCβ1, PKCδ and PKCι are higher 
in pancreatic cancer, whereas that of  PKCε is higher in 
normal tissue[121,122]. In pancreatic cancer, tumorigenicity 
is directly related to PKCα expression, as demonstrated 
by decreased survival when it is overexpressed[123]. The 
increased level of  PKCα is also associated with pancre-
atic cancer cell proliferation[124].

Tight junction proteins are regulated by various cyto-
kines and growth factors via distinct signal transduction 
pathways including PKC[35,36]. In various cancer cells, 
the regulation of  tight junctions via PKC pathway is re-
ported. The assembly of  ZO-1 and occludin is involved 
in PKC-dependent signaling in gastric cancer cells[125]. 
The activation of  c-Abl-PKCδ signaling pathway is criti-
cally required for the claudin-1-induced acquisition of  
the malignant phenotype in human liver cells[72]. PKC 
activation causes an increase in claudin-1 transcription 
and claudin-1 appears to contribute to cell invasion in 
human melanoma cells[126]. PKCε activation regulates an 
α5 integrin-ZO-1 complex and correlates with invasion 
and unfavorable prognosis in lung cancer cells[127].

We have previously reported that the regulation of  

tight junctions in normal human pancreatic duct epi-
thelial cells and pancreatic cancer cells is closely associ-
ated with PKC and PKC-induced transcriptional fac-
tors[13,51,74,104,109,128]. To confirm whether the PKC signal 
pathway was closely associated with the regulation of  
tight junctions, hTERT-HPDE cells and pancreatic can-
cer cells were treated with the PKC activator TPA and 
the specific PKC isoform inhibitors. Treatment with TPA 
enhanced expression of  claudin-1, -4, -7, and -18, occlu-
din, JAM-A and ZO-1, -2[51]. The upregulation of  clau-
din-4 by TPA was prevented by a PKCα inhibitor and 
the upregulation of  claudin-7, occludin, ZO-1 and ZO-2 
was prevented by a PKCδ inhibitor[51]. In HPAC cells, 
tricellulin was in part regulated via PKCδ and PKCε path-
ways[109], and the expression of  claudin-18 and localiza-
tion of  claudin-4 and occludin were in part regulated via 
a PKCα pathway[13,104,128]. Claudin-18 mRNA and protein, 
indicated to be claudin-18a2, were markedly induced by 
TPA in well- and moderately differentiated human pan-
creatic cancer cell lines HPAF-Ⅱ and HPAC and hTERT-
HPDE cells[104]. The upregulation of  claudin-18 by TPA 
in human pancreatic cancer cell lines was prevented by 
inhibitors of  PKCδ, PKCα and PKCε, whereas the 
upregulation of  claudin-18 by TPA in hTERT-HPDE 
cells was prevented by inhibitors of  PKCδ, PKCα and 
PKCθ[104].

On the other hand, a PKCα inhibitor enhances sensi-
tivity of  HPAC cells to CPE by preventing mislocalization 
of  claudin-4[13], and prevents downregulation of  claudin-1 
during EMT of  pancreatic cancer cells[74]. The TGF-β-
PKCα-PTEN cascade is a key pathway for pancreatic 
cancer cells to proliferate and metastasize[129]. The PKC 
may be a useful target for pancreatic cancer therapy[119] 
and PKCα inhibitors may be potential therapeutic agents 
against the malignancy of  human pancreatic cancer 
cells[130]. Further study of  the tight junctions of  normal 
HPDE cells and pancreatic cancer cells via PKC pathways 
including isoforms is important for not only physiological 
regulation of  tight junction molecules but also for thera-
peutic targeting of  pancreatic cancer cells. In addition to 
PKC pathway, other signaling pathways including Ras/
ERK1/2, Smad/STAT3, Notch, Wnt and Src are closely 
related to EMT of  pancreatic cancer[131-135]. However, the 
regulation of  tight junctions in normal pancreatic duct 
and pancreatic cancer via these signal pathways remain 
unknown.

CONCLUSION
The signaling pathways including PKC regulate tight 
junctions during EMT in pancreatic cancer. By using 
hTERT-HPDE cells, we found that the expression of  
tight junction proteins in normal HPDE cells was regu-
lated by various factors. For developing new diagnostic 
and therapeutic modalities via tight junction molecules in 
pancreatic cancer, it is necessary to investigate the profile 
and the regulation of  tight junctions in normal HPDE 
cells as well as pancreatic cancer cells.
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