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Abstract
The prevention, early discovery and effectively treatment of patients with hepato-cellular carcinoma (HCC) remain a global medical challenge. At present, HCC is still mainly treated by surgery, supplemented by vascular embolization, radio frequency, radiotherapy, chemotherapy and biotherapy. The aApplications of multikinase inhibitor sorafenib, chimeric antigen receptor T cells, or PD-1/PD-L1 inhibitors can prolong the median survival of HCC patients. However, the treatment efficacy is still unsatisfactory due tobecause of HCC metastasis and postoperative recurrence. DuringIn the process of hepatocytes malignant transformation, HCC tissues can express and secrete many typeskinds of specific biomarkers, or oncogenic antigen molecules into blood, for example, alpha-fetoprotein, glypican-3, Wnt3a  (one of the key signaling molecules in the Wnt/β-catenin pathway), insulin-like growth factor (IGF)-II or IGF-I receptor, vascular endothelial growth factor, secretory clusterin and so on. In addition, the combining immunotherapy with non-coding RNAs might improve anti-cancer efficacy. These biomarkers not only contribute to HCC diagnosis or prognosis, butthey may but also might become the molecular- targets for HCC therapy under developing or clinical trials. This article reviews thesome new progressions inof emerging biomarkers in basic researches or clinical trials for HCC immunotherapy. 
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Core Tip: Tissues in hepatocellular carcinoma (HCC) or hepatocyte malignant transformation can express and secrete a variety of molecules such aswith  specific biomarkers or oncogenic antigens into blood. These biomarkers not only contribute to the diagnosis or prognosis of HCC, they but may also might become the molecular- targets for HCC therapy under developing or clinical trials. This article reviews the recent novel progressions of some emerging biomarkers in basic studies or clinical trials for HCC immunotherapy. 

INTRODUCTION
The prevention, early monitoring or diagnosis and accurate or effectively treatment of hepatocellular carcinoma (HCC) are still urgent medical problems[1,2]. The oOccurrence of HCC is mainly associated with chronic persistent infection of hepatitis B virus (HBV) or hepatitis C virus (HCV), intake of chemical carcinogens intake, and nonalcoholic fatty liver disease (NAFLD)[3]. In the past decade, NAFLD has become a leading cause of chronic hepatitis and liver cirrhosis, as well as an important risk factor for HCC[4]. Innate and adaptive immunity play a pivotal role in determining tumor control vs progression. Genomic instability and abnormal signaling in the setting of chronic liver inflammation that promotes fibrogenesis and angiogenesis lead to tumorigenesis, and it is necessary to determinelong with how they may be exploited in the development of novel therapeutics[5]. The activation of oncogenes or HCC-related genes, inactivation of anti-oncogenes or activation of some oncogenes during the embryonic period can induce malignant transformation of hepatocytes[5], many typeskinds of specific markers can be expressed, and then secreted into blood duringin  the process of initiation, promotion and evolution[1]. Notably, HCC oncoimmunology depends on diverse genetic and environmental factors that together shape cancer-promoting inflammation and immune dysfunction-critical processes that control HCC malignant progression and response to therapy[6,7]. 
CurrentlyNowdays, HCC is still treated mainly by surgery operation, with auxiliary vascular embolization, radio frequency, radiotherapy, chemotherapy, and biological therapy[8,9]. Application of the multikinase inhibitor sorafenib can prolong the median survival of HCC patients. However, itsthe efficacy infor HCC treatment remains unsatisfactory due tobecause of tumor metastasis or postoperative occurrence[10,11]. Undoubtedly, the integration of data obtained from both preclinical models and human studies can help to accelerate the identification of robust predictive biomarkers of response to targeted or immune- therapy[12,13]. HCC tissues express the specific antigens such as the key molecules of HCC-related signal pathways, growth factors and receptors, vascular endothelial growth factor (VEGF),， and the products of oncogenes that some mediated tumor progression and could be potential molecular- targetsed for anti-cancer therapy with highly specificity and application prospects[14,15]. This review presents new advances in aof few promising carcinoembryonic biomarkers for HCC immunotherapy fromon basic studies or clinical trials.

ALPHA-FETOPROTEIN
A glycoprotein of alpha-fetoprotein (AFP) synthesized from fetal liver or HCC tissues[16], consisting of 609 single-chain amino acid polypeptides and containing 24 lLeading signal points (9 ~ 10 amino acid) residues located in three N-terminal domains, the major histocompatibility complex (MHC) class I or II molecules recognize these precursor signals and present them to CD4+ T cells and CD8+ T cells, and the activated T cells recognize the body’s immunodominant or sub-immunodominant epitopes[17]. Amino acid peptide sequences and immunogenicity of human AFP epitopes are shown in Table 1. These immunogenic or sub-immunogenic AFP peptide chains could play an immunoemodulatory role in humans, as they haveing the function and ability of a polypeptide vaccine, and could induce or stimulate  the anti-AFP specific immune responses.
AFP peptide chains have several fragments showing immunodominant or sub- immunodominant epitopes, which canould be recognized by the MHC-I molecules, and specifically induce T cells to activate or recognize AFP antigen. AFP positive peripheral blood mononuclear cells (PBMC) containing five human leukocyte antigen (HLA)- A*24:02 restricted T cell epitopes, AFP-derived peptide induces cytotoxic T lymphocytes (CTL) to produce interferon-γ (INF-γ), which can kill AFP-positive cancer cells. Although it has been shown in clinical trials, the function of dendritic cells (DC), specific CTL, and CD8+ T cells response, and targeting therapy for AFP positive cancer cells remains to be studied. TheNow, T cell receptor (TCR) has been prepared by induction and screening in vitro, which can specifically recognize and bind AFP/HLA-A*02 antigen that is restricted to AFP158-166 peptide (FMNKFIYEI) to lay thea foundation for HCC immuno-therapy[18]. A novel HLA-A*24:02 antigen was found to be more common than the HLA-A*02:01 among Asian HCC patients. Its restrictive peptide (KWVESIFLIF, AFP2-11 signal) was found to be soluble in healthy human monocyte AFP 2-11-HLA- A*24:02-specific TCR (KWV3.1). T cells could be activated specifically and kill AFP-positive T2-A24 HCC cells that contained AFP 2-11 and HLA-A*24:02+ antigen, indicatinged that AFP+HLA-A*24:02+ antigen might be a new immunotherapeutic target for HCC[19].
The combination of anti-CTL-A-4 therapy (tTremelimumab) together with ablation in advanced HCC cases has shown that the killing tumors by direct methods can result in the immune system being activated or switched on. There are new drugs available known as immune checkpoint inhibitors (ICIs) which canould enhance the anti-HCC effect. InAfter the patients treated with twith Tremelimumab treatment, the blood CD4+-HLA-DR+, CD4+PD-1+, CD8+HLA-DR+, CD8+PD-1+, CD4+ICOS+, and CD8+ICOS+ T cells increased, the patients with higher CD+PD-1+ cells responded well to the treatment, with the increasing specific CD8+PD-1 T cells for AFP and&  survivin, and the higher CD3+T cells for tumor infiltrationng, suggesting that tTremelimumab with ablation is a novel potential method forwith increasing CD8+ T cells and decreasing circulating HCV, and an effective therapy amount for advanced HCC patientseffective therapy[20]. 

ANGIOGENIC FACTORS
Most patients with HCC are diagnosed at an advanced stage of disease. Until recently, systemic treatment options that showed survival benefits in HCC have been limited to tyrosine kinase inhibitors, antibodies targeting oncogenic signaling pathways or VEGF receptors[21]. Angiogenesis plays an important role in HCC progression, and VEGF and angiopoietin (Ang) are key drivers of tumor angiogenesis. A better understanding of the relation between VEGF and angiogenesis or progression may reveal their potential as biomarkers for liver cancer diagnosis and therapy. VEGF-targeting strategies already represent an important component of today's systemic treatment landscape forof HCC, whereas targeting the Ang/Tie2 signaling pathway may harbor future potential in this context due to reported beneficial anticancer effects when targeting this pathway[22,23]. Following a decade of negative Phase III trials since the approval of sorafenib, more recently several drugs have proven efficacy both in first line vs sorafenib (lenvatinib) or in second line vs placebo (regorafenib, cabozantinib, ramucirumab/Cyramza®). A fully human anti-VEGFR-2 recombinant IgG1 monoclonal antibody (rRamucirumab) has been approved as monotherapy for HCC patients with AFP levels over 400 ng/mL who have been treated with sorafenib, with significantly prolonged overall survival (OS) and progression-free survival. Its safety profile was consistent with that expected for agents targeting the VEGF/VEGFR axis. The potential clinical developmenting of systemic treatments forin HCC, focusesing on combination therapies with immunotherapy and treatment sequences as a way to maximize survival benefit[24,25].
The HCC microenvironment is characterized by a dysfunction of the immune system through multiple mechanisms, including accumulation of various immunosuppressive factors, recruitment of regulatory T cells and myeloid-derived suppressor cells, and induction of T cell exhaustion accompanied bywith the interaction between immune checkpoint ligands and receptors. ICIs have been interfered in this interaction and have altered the therapeutic landscape of multiple cancer types including HCC. Intermediate-stage HCC patients with different levels of liver function, tumor size, and number of lesions may all have intermediate-stage disease according to the BCLC staging system. Their treatments includes conventional or drug-eluting bead transarterial chemoembolization, yttrium-90 radioembolization, thermal ablation, bland embolization, and combination therapy with VEGF inhibitors or ICIs. CThe clinical evidence supports theed available locoregional treatment options for intermediate-stage HCC[26]. Although optimal sequencing is an area of ongoing investigation, multiple targeted therapies have improved OS in intermediate or advanced HCC[27]. Several targeted agents including multi-tyrosine kinase inhibitors and immunotherapy agents have been approved for use beyond the frontline setting in advanced HCC patients, and combining therapeutic strategies is an evolving approach showing early promiseing signal[23,28]. The sSuccess of PD-1 monotherapy, combining regimens with PD-1/PD-L1 inhibitors plus VEGF targeted agents has shown positive results in various malignancies including HCC. These innovative approaches enhance the intensity of cancer-directed immune responses and will potentially impact the outcomelook of this aggressive disease[29].

GLYPICAN-3
Wth rRegard toing HCC, aone promising antigen appears to be glypican-3 (GPC3) whichthat is over- expressed inby HCC tissues and has been associated with worse disease-free survival and OSoverall survival. GPC3 is involved in many signaling cascades that promote cell growth and invasion, including the Wnt pathway that is well- known for its role in embryogenesis. GPC3 as an oncofetal proteoglycan anchored to the cell membrane of HCC, and is normally detected in the fetal liver but not in the healthy adult liver[30,31]. However, the abnormal GPC3 in tissues or sera of HCC patients isare expressed asat GPC3 mRNA gene transcription or protein levels, and predicts a poor prognosis of HCC. Mechanistic studies have revealed that GPC3 functions by binding to molecules such as the Wnt/β-catenin signaling or growth factors during HCC formation and progression. Moreover, specific serum GPC3 has been used as a diagnostic or prognostic serological marker, and a molecular- targeted for molecular imaging or therapeutic intervention in HCC[32-34]. GPC3 as a molecular target for HCC immunotherapy is shown in Table 2. TUp to date, GPC3-targeted magnetic resonance imaging, positron emission tomography, and near-infrared imaging have been investigated at the early stage of HCC, and immunotherapeutic protocols targeting GPC3 have been developed, including the use of humanized anti-GPC3 cytotoxic antibodies, peptide/DNA vaccines, immuno- toxin therapies, and genetic therapies. 
Different synergisms have been postulated based on the potential interplay between anti-angiogenic drugs and immunotherapy, with several clinical trials currently ongoingtesting. AsSince the most extensively tested combination regimens for advanced HCC comprise anti-PD-1/anti-PD-L1 agents plus anti-angiogenic agents, oncogenic GPC3 is becoming an ideal promising candidate for HCC immunotherapy as it isbecause of highly expressed in cancerous tissues but limited in normal livers. Recently, the adoptive transfer of hGPC3-specific chimeric antigen receptor T (CAR-T) cells for HCC treatment has been conducted in clinical trials. Due to the rigid construction, the conventional CAR-T cells have some intrinsic limitations, such aslike uncontrollable overactivation and inducing severe cytokine release syndrome. By using co-culturing assays and a xenograft mouse model, the in vitro and in vivo cytotoxicity and cytokine release of the split anti-hGPC3 CAR-T cells were evaluated against various HCC cell lines and compared with conventional CAR-T cells. In vitro data demonstrated that split anti-hGPC3 CAR-T cells could recognize and lyse hGPC3-positive HepG2 or Huh7 cells in a dose-dependent manner. Impressively, the split anti-hGPC3 CAR-T cells produced and released a significantly lower amount of pro-inflammatory cytokines, including IFN-γ, TNF-α, IL-6, and GM-CSF, than conventional CAR-T cells. When injected into immune-deficient mice inoculated subcutaneously with HepG2 cells, the split anti-hGPC3 CAR-T cells could suppress HCC growth, but released significantly lower levels of cytokines than conventional CAR-T cells. The split anti-hGPC3 CAR-T cells could reduced the level of cytokine release, and represent a more versatile and safer alternative to conventional CAR-T cells for HCC treatment[35,36]. The most recent data indicateon  novel combination strategies and targets, ands well as looking, ahead to athe future role forof molecular therapies in the treatment of advanced HCC. Current barriers inof CAR-T therapy include its high production cost and the need to identify validated extracellular HCC-specific antigens[33,37].

WNT3a 
Several signaling pathways involved in HCC have been studied, including STAT3- NFκB, JAK-STAT, RAS MAPK, PI3K-AKT-mTOR and Wnt-β-catenin. Of these, cascades involving mitogen-activated protein kinase (MAPK) emerge as key regulators of HCC. Boath of HBV and HCV infection can induce the activation of the Wnt/β-catenin signal pathway and participate in HCC progression[38,39]. Oncogenic HBx of HBV can activate Src kinase to inhibit GSK3 activity and make induce intracellular β-catenin accumulation, promote DNA methyl-transferase I expression and Wnt3a to bind and silence secreted frizzled related protein 1 and 5[40]. HBx can reduce the inhibitorying role offor deacetylase 1 to β-catenin, and activation ofg the Wnt pathway promotes HCC development[41]. Also, the core protein of HCV can promote Wnt3a expression, induce TCF dependent transcription, inhibit GSK3, increase and stabilize intracellular β-catenin to nucleus transport, and up-regulate the expressions of cyclinDl, c-myc, WISP2, Wnt3a, Wnt1 and CTGF to promote the HCC growth, and DNA synthesis for HCC progression[42]. Wnt3a is a critical signal molecule among the 19 mammalian Wnt proteins. AThe higher level of Wnt3a expression was only found in the sera or tissues of HCC patients from a cohort of cases with chronic liver diseases[43,44], and it is the first time to report of Wnt3a as a novel specific marker for HCC diagnosis and prognosis[45,46].
Abnormal Wnt3a expression is involved in the development and metastasis of HCC[47], and mayight be a novel strategy for HBV or HCV-related HCC therapy. High hepatic higher LINC00662 correlated with poor survival of HCC patients[48,49], and might up-regulate Wnt3a expression by competitively binding miR-15a, miR-16 and miR-107, with tumor-associated macrophages as a major component of the HCC microenvironment, and they have been revealed to havethe associations withbetween Wnt3a signaling and cancer initiation, tumor growth, metastasis, dormancy, immunity and tumor stem cell maintenance[40]. Wnt3a is one of HCC-related Wnt signals exhibitinged numerous genetic abnormalities as well as epigenetic alterations including modulation of DNA methylation. Targeted Wnt3a gene transcription might be an effective molecule-targeted therapy. The nNovel Crispr/Cas9-gsRNA lentiviral vector system with the advantages of higher targeting accuracy has been successfully used to inhibit the Wnt3a in liver cancer cell lines at the mRNA level in vitro and confirmed at the protein level in vivo inwith transplanted tumor studies[44,50]. 
The inhibitory effect of Wnt3a on the proliferation of HCC cells or HCC xenograft growth has been demonstrated andthat interfering with Wnt3a could significantly inhibit the expressions of down-stream β-catenin and related-signal molecules[51]. The xenograft model of knockout of Wnt3a in HepG2 cells resulted in a slower growth, and a significant reduction inof tumor size or loss of weight. The molecular mechanism ofis  the Wnt3a cascade reaction involving multiple targets, can block upstream GPC-3 signals and downstream β-catenin to nucleus transport[52,53], and inhibiting or delaying HCC progression can be carried out by using specific antibodies (OMP-54F28, OTSA101)[54] and small size peptide SAH-BCL-9[55]. TAs the abnormal liver or circulating Wnt3a in HCC has provided initial evidence, and the tumor volume after intervening in Wnt3a mRNA transcription with specific shRNA was 355.0 ± 99.9 mm3 in the intervention group which wasith significantly lower than that (869.4 ± 222.5 mm3) in the negative group, and the time to tumor formation indays of the intervention group wasere longer than that oinf  the negative group; the tumor weight (0.35 ± 0.11 g) inof the intervention group was markedly lower than that (0.88 ± 0.20 g) inof the negative group. Immunohistochemistry confirmed that Wnt3a was strongly inhibited in the intervention group[56], and indicated that targeted-Wnt3a signaling could result inbe an effective inhibition offor HCC growth.

CLUSTERIN
Secretory clusterin (sCLU) is a stress-induced heterodimer sulfated glycoprotein, located on chromosome 8q21-q12, which is highly conserved between species and has a cytoprotective effect. Its biological function as a small molecule partner is almost similar to that of heat shock protein[57]. Basic and clinical studies have showned that sCLU expression was low in normal liver tissues and its activation during the malignant transformation of hepatocytes was progressively over-expressedion[58,59], which was closely associated with HCC progression by contributing to angiogenesis, chemo- resistance, cell survival, and metastasis[60]. The positive rate of hepatic sCLU expression was up to 73.3% inat stage I of HCC by immunohistochemsical analysis. Its expression at the mRNA or protein level wasere increased with the clinical staging of HCC, which indicated that sCLU could be a biomarker for differentiating benign from malignant liver diseases[61]. 
Recurrence and metastasis after hepatectomy are the main causes of poor prognosis of HCC[62]. Hepatic sCLU plays an important role in the proliferation, multidrug resistance, invasion and metastasis of HCC cells[63,64]. The sCLU mediated the expression of MMP-2, p-AKT and E-cadherin in HCC BEL-7402 or SMMC-7721 cell lines, and down-regulating sCLU expression can significantly reduce the invasive ability of HCC cells by the selective COX-2 inhibitor meloxicam plus specific sCLU-shRNA plasmids[65,66]. These data indicated that sCLU isshould be a new effective target for the occurrence, invasion and metastasis of HCC, and should have as bright future in HCC immunotherapy. 
INSULIN-LIKE GROWTH FACTOR AXIS
The hHepatic insulin-like growth factor (IGF) axis contains ligands, receptors, substrates, and ligand binding proteins. Accumulating data have demonstrated that aberrant IGFs signalings might lead to malignant transformation of hepatocytes or HCC progression, in particular,especially in IGF-II or IGF-I receptor (IGF-IR) ares  key molecules in hepatocarcinogenesis[67] or rat xenograft models[68], and affects the molecular pathogenesis of HCC, thus providing the rationale for targeting the IGF axis in HCC[69]. The biological activities of IGF-II or IGF-IR not only promote HCC cell proliferation or xenograft growth, but also confer resistance to standard treatments[70]. Several strategies targeting this system including monoclonal antibodies against IGF-1R or small molecule inhibitors of the tyrosine kinase function of IGF-1R are under active investigation. For example, DX-2647, a recombinant human antibody, potently neutralizes the action of IGF-II, which is overexpressed in HCC[71] and impairs the xenograft growth of the Hep3B but not HepG2 cell line with high p-STAT3 lLevels, suggesting that STAT3 activation ias one pathway that mediates resistance to IGF-II-targeted therapy in HCC[72]. 
The over-expression of hepatic IGF-IR in human HCC promotes HCC cell proliferation, and attaching importance to IGF-IR might improve the prognostic or therapy of HCC[73]. Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) ias a regulator of promoteding IGF-IR induced sorafenib resistance of HCC in vitro by directly transcriptionally repressing a set of microRNAs including miR-101, miR-122, miR-125b, and miR-139[74-76]. A model offor an EZH2-miRNAs-IGF-IR regulatory axis might provide insights into how to reverseal sorafenib resistance in HCC. Silencing the IGF-IR gene by a specific shRNA to induceon the inhibition of cell proliferation in vitro or rat xenograft growth in vivo may beto elucidate it as a novel molecular-targeted therapy for HCC. Several strategies targeting this system including monoclonal antibodies against IGF-IR and inhibitors of the tyrosine kinase function of IGF-IR are under active investigation. Gene-specific shRNA against IGF-signaling molecules as well as IGF-IR selective receptor tyrosine kinase (RTK)-inhibitors (tyrphostins) may therefore offer new therapeutic options[77,78]. However, assince a specific shRNA is currently not applicable in HCC therapy, selective RTK-inhibitors represent the most promising approach for future therapeutic strategies.

SYNERGY OF NON-CODING RNAS
While immunotherapy holds great promise for combating cancer, itsthe limited efficacy due to an immunosuppressive tumor microenvironment and systemic toxicity hinder the broader application of immunotherapy[79,80]. Combinatorial immunotherapy approaches that uses a highly efficient and tumor-selective gene carrier canto improve anticancer efficacy and circumvent the systemic toxicity. HCC is one of the multi- genetic diseases, and multiple studies have highlighted the key roles of noncoding RNAs (ncRNAs) in the chemo-resistance of HCC such as biomarkers and functional modulation of the cellular response to sorafenib[81-83]. Targeted chemotherapeutic agent, sorafenib, is known to show a statistically significant but limited OSoverall survival advantage in advanced HCC, linked with the modulation of several intracellular signaling pathways through diverse operating biomolecules including ncRNAs[84-86]. Accumulated evidences hasve demonstrated that ncRNAs (miRNAs, long ncRNAs or lncRNAs, and circular RNA or circRNA) could serve as biomarkers in the diagnosis, prognosis, and treatment of HCC[87,88] andthat have been well-documented to participate in HCC progression with promoting or inhibiting roles[89,90]. 
Interestingly, miRNAs varied responses to miRNAs have been linked with the modulation of several intracellular signaling pathways[91]. AnThe abnormality of miR-218 expression was investigated in human HCC tissues or HCC cell lines tofor evaluateing its function and the underlying mechanisms of HCC. Gain-of-function and loss-of- function assays indicated that forced expression of miR-218 by inhibited HCC cell migration/invasion and reversed epithelial-mesenchymal transition to mesenchymal- epithelial transition. Serpine mRNA binding protein 1 (SERBP1) iswas a target gene of miR-218, and targeting the miR-218/SERBP1 signal pathway that inhibits the malignant phenotype formation might be a potential novel strategyway for HCC therapeutics, asbecause of miR-218 functions as a HCC suppressor and is involveds in many biological processes such as tumor initiation, development, and metastasis[92]. Nanotechnology- enabled dual delivery of siRNA and plasmid DNA that selectively targets and reprograms the immune-suppressive tumor microenvironment has been shown to improve HCC immunotherapy[93-95]. 
HCC-associated circRNAs are abundant, and their over/lLow expression might promote/inhibit HCC cell proliferation or tumor growth[96-98]. An abnormality of circ- homer1 in HCC cells or tissues was related to tumor size, lymph node metastasis, high clinical staging and poor prognosis. The mechanism of circ-homer1 over-expression promoted HCC growth or invasiveness via the mir-1322/cxc16 axis[99]; conversely, interfering withthe circ-homer1 activation inhibited the proliferation, migration and invasion of liver cancer cells by via apoptosis. The circ-0051443 from circulating exosomes or HCC tissues could regulated BAK1 expression by combining withation of mir-331-3p to promote the cell apoptosis or cell cycle arrest inof HCC, and inhibit the biological behavior of HCC cells in vivo or nude mice HCC xenografts[100]. Another interesting study also showed that has_circ_0008450 expression in HCC tissues or cells might inhibit HCC progression by regulating the mir-214-3p/ezh2 axis[101,102]. These data suggested that specific ncRNAs were useful molecular targets for HCC therapy.

CONCLUSION
In conclusion, HCC is a multi-gene variant malignant tumor with DNA methylation, microRNA, lncRNA expression and immune response[103]. Immunotherapy for HCC has begun to produce better results, and HCC-specific molecules may be combined with comprehensive interventions such as surgery, interventional therapy, radiotherapy, and chemotherapy to improve the efficacy and prolong the survival time of HCC patients[104]. DeIn spite of the rapid development of genomics and proteomics, advances in molecular pathology, pharmacology and genetic engineering, DNA splicing, gene silencing, interfering transcription interference, and monoclonal antibodiesy for more specific and less side effects immune therapy techniques[105] that can directly block the signaling molecules involved in HCC growth related signaling pathways (Figure 1) or serve as molecular targets such as radionuclide, drug carriers, and immunotherapy play a unique role in the specific or comprehensive treatment of HCC.
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Figure Legends
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Figure 1 Some signals inof the Wnt/β-catenin pathway by anti-signaling antibodies or intervening in their gene transcription tofor inhibiting hepatocellular carcinoma growth. Using anti-signaling molecule antibodies or intervening in their gene transcription tofor inhibiting the Wnt/β-catenin pathway activation could be to suppress proliferation of hepatocellular carcinoma (HCC) cells or HCC growth. GPC-3: Glypican-3; HCC: Hepatocellular carcinoma; sCLU: Secretory clusterin; TCF: T-cell factor; SULF2: Sulfatase 2; pGSK3β: Phosphorylated glycogen synthase kKinase 3β.


Table 1 Amino acid peptide sequences and immunogenicity of alpha-fetoprotein epitopes
	No.
	Starting 
	Numbers
	Fragment
	Immunogenicity

	1
	7
	9
	IFLIFLLNF
	Sub-immunodominant Ag

	2
	137
	9
	PLFQVPEPV
	Immunodominant Ag

	3
	150
	9
	AYEEDRETF
	Sub-immunodominant Ag

	4
	158
	9
	FMNKFIYEI
	Immunodominant Ag

	5
	218
	9
	LLNQHACAV
	Sub-immunodominant Ag

	6
	235
	9
	FQAITVTKL
	Sub-immunodominant Ag

	7
	249
	10
	KVNFTEIQKL
	Immunodominant Ag

	8
	307
	9
	TTLERGQCII
	Sub-immunodominant Ag

	9
	321
	9
	KPEGLSPNL
	Immunodominant Ag

	10
	325
	10
	GLSPNLNRFL
	Immunodominant Ag

	11
	357
	9
	EYSRRHPQL
	Immunodominant Ag

	12
	364
	10
	QLAVSVILRV
	Immunodominant Ag

	13
	403
	9
	KYIQESQAL
	Immunodominant Ag

	14
	414
	9
	RSCGLFQKL
	Immunodominant Ag

	15
	424
	9
	EYYLQNAFL
	Immunodominant Ag

	16
	434
	9
	AYTKKAPQL
	Immunodominant Ag

	17
	485
	10
	CIRHEMTPV
	Sub-immunodominant Ag

	18
	492
	9
	PVNPGVGQC
	Sub-immunodominant Ag

	19
	503
	9
	SYANRRPCF
	Sub-immunodominant Ag

	20
	507
	10
	NRRPCFSSLV
	Sub-immunodominant Ag

	21
	542
	9
	GVALQTMKQ
	Immunodominant Ag

	22
	547
	10
	TMKQEFLINL
	Sub-immunodominant Ag

	23
	555
	9
	NLVKQKPQI
	Sub-immunodominant Ag

	24
	591
	9
	CFAEEGQKL
	Sub-immunodominant Ag


Ag: Antigen; Fragment: Fragment of alpha-fetoprotein (AFP) peptide chain; Numbers: Amino acid numbers of AFP peptide chain; Starting: Starting point of AFP peptide chain.

Table 2 Glypican-3 as molecule-target for hepatocellular carcinoma immunotherapy
	Group
	Name 
	Species
	Epitopes
	Verifying/applying

	Antibody
	M18D04/19B11
	Mouse
	N-terminal (aa: 25-358)
	Basic studies

	
	A1836A
	Mouse
	N- terminal
	Basic studies

	
	GPC3-C02
	Mouse
	C- terminal
	Basic studies

	
	GC33
	Mouse
	C-terminal (aa: 524-563)
	Preclinical trials studies

	
	hGC33
	Human
	C- terminal (aa: 524-563)
	Clinical trial-II

	
	HS20
	Human
	Heparan sulfate chain
	Preclinical trial

	
	sGPC3
	Human
	—
	Preclinical trial

	Vaccines
	GPC3298-306
	Mouse
	298-306 peptide
	Clinical trial-II

	
	GPC3144-152
	Mouse
	144-152 peptide
	Clinical trial-II

	miRNA
	miR-219-5p
	Human
	—
	In vitro or in vivro studies

	
	miR-520c-3p
	Human
	—
	In vitro studies

	
	miR-1271
	Human
	—
	In vitro studies

	shRNA
	GPC3 shRNA
	Human
	—
	In vitro or in vivro studies

	siRNA
	GPC3 siRNA
	Human
	—
	In vitro or in vivro studies


GPC-3: Glypican-3; aa: Amino acid; miR: MicroRNA; shRNA: Small hairpin RNA; siRNA: Small interfering RNA.
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