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Abstract1

Nephrotic syndrome (NS) is relatively common in children, with most of its histological2

types being minimal changed disease. Its etiology has long been attributed to3

lymphocyte (especially T-cell) dysfunction, while T-cell-mediated vascular4

hyperpermeability increases protein permeability in glomerular capillaries, leading to5

proteinuria and hypoproteinemia. Based on this etiology, steroids and6

immunosuppressive drugs that are effective against this disease have also been7

considered to correct T-cell dysfunction.8

However, in recent years, this has been questioned. The primary cause of NS has been9

considered damage to glomerular epithelial cells and podocyte-related proteins.10

Therefore, we first describe the changes in expression of molecules involved in NS11

etiology, and then describe the mechanism by which abnormal expression of these12

molecules induces proteinuria. Finally, we consider the mechanism by which infection13

causes the recurrence of NS.14

Core tips15

There is no doubt that some vascular hyperpermeability factor is involved in the16

incidence of proteinuria in INS. However, no etiological molecule has been identified in17

INS as a factor for increasing the permeability of renal glomerular capillaries with18
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reproducibility and clinical consistency.1

In addition, since the onset is sometimes observed in the family, there is high incidence2

of INS in East Asian children and there is the association of SSNS in childhood in Japan3

with the HLA-DR/DQ region, it is highly possible that some genetic factors are4

involved in the onset of NS.5

In our opinion, INS is a multifactorial disease in which immunological stimuli, trigger6

the production of substances that impair podocytes, resulting in dysfunction of the slit7

membrane and cause proteinuria.8

9

Introduction10

Nephrotic syndrome (NS) is a chronic kidney disease that is relatively common in11

children, with an annual incidence of 2 to 7 per 100,000 in the pediatric population [1].12

An epidemiological study of pediatric idiopathic NS (JP-SHINE study) was conducted13

in Japan, and found an incidence of 6.49 per 100,000, which is 3 to 4 times that reported14

for Caucasians [2]. The male-female ratio was 1.9, and 32.7% of patients had frequent15

recurrences during the 1- to 4-year observation period, which was similar to previous16

reports [2].17



4

NS is classified into idiopathic (INS), secondary, and congenital depending on the cause1

and timing of proteinuria. INS accounts for 90% of NS in children. Furthermore, since2

more than 80% of INS in children is minimal change nephrotic syndrome (MCNS),3

more than 70% of NS in childhood is MCNS. This epidemiology differs strongly from4

that in adults [1].5

Focal segmental glomerulosclerosis (FSGS) is the second most common disease in6

pediatric INS after MCNS. However, the difference between MCNS and FSGS has7

been debated for many years, with no conclusions being reached [3, 4]. It remains8

unclear whether they are distinct due to differing etiologies or stages/severity9

(early/mild for MCNS and advanced/severe for FSGS). The etiology of MCNS and10

FSGS has not yet been concluded.11

Relationship between INS and T-cell function12

Regarding INS etiology, the involvement of T-cell dysfunction proposed by Shalhoub13

in 1974 has long been supported [5]. In this study, steroid therapy showed a rapid and14

significant effect in INS patients, whose lymphocytes released vascular15

hyperpermeability factors into the culture supernatant. Additionally, INS patients were16

in remission when they suffered from measles, and malignant lymphoma patients often17
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had INS. Finally, the recurrence of INS patients was significantly higher during upper1

respiratory tract inflammation.2

From these observations, it was concluded that lymphocytes (mainly T cells) in INS3

patients are dysfunctional and overproduce vascular hyperpermeability factors. These4

factors have been thought to increase vascular protein permeability in renal glomerular5

capillaries and lead to proteinuria [6, 7].6

In fact, when the supernatant from immortalized T cells from NS patients is7

administered to rats, it effaces foot processes and causes proteinuria, but the normal8

control T-cell supernatant does not show such changes [8].9

T cells include helper T cells (CD4 antigen-positive) that are presented with antigens10

from monocytes and macrophages and regulate immune responses, and killer T cells11

(CD8 antigen-positive) that damage virus-infected cells. Furthermore, helper T cells12

include Th1 and Th2 cells, which differ in cytokine secretion and effector functions.13

Th1 cells produce IL-2, IFN-γ and TNF-α, and Th2 cells produce IL-4, IL-5, IL-6, IL-9,14

IL-10 and IL-13. So, far, many groups have investigated the dynamics of blood15

cytokine levels in MCNS patients [9].16

It has been reported that there is no significant difference between cytokine levels in17

remission in MCNS patients and controls, but IL-4 and IL-13 levels are elevated at the18
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onset of NS, that is, Th2-dominant fluctuations are observed. On the other hand, there1

have been some reports denying these fluctuations, and no consensus has been reached2

[10, 11].3

Reasons for the different observations may be differences in patient backgrounds, lack4

of standardization of analysis methods (such as sampling and timing), and there are no5

suitable in vitro cultured cells or in vivo animal models. At present, there is no6

established evidence that Th1 or Th2 dominance causes NS. Yap et al. found the7

elevated mRNA expression of IL-13 in the T cells of NS patients [12]. After that, an8

increase IL-13 concentration in blood and T-cell were confirmed by other groups [13,9

14].10

IL-13 receptors are expressed in glomerular epithelial cells, and the addition of IL-13 to11

cultured glomerular epithelial cells reduces barrier function [15]. Furthermore, since12

strong expression of IL-13 in rats causes MCNS-like nephropathy [16], it is possible13

that an increase in IL-13 in MCNS patients has an effect on the pathology. However,14

there is a report that the blood concentration of IL-13 is not necessarily high in MCNS15

patients [17], and future examinations of cytokine concentration in the renal region are16

necessary.17



7

It has been reported that the expression of a molecule called c-mip (c-maf inducing1

protein) is increased in MCNS T cells [18]. Subsequent analysis revealed that c-mip2

expression was increased not only in T cells but also in glomerular epithelial cells when3

NS recurred [19]. Mice in which c-mip is overexpressed in glomerular epithelial cells4

show proteinuria, with c-mip modifying the tyrosine kinase signal by the slit membrane.5

C-mip has been suggested as a mediator causing glomerular epithelial cell damage in6

MCNS [19].7

There have also been reports of the effectiveness of TNFα inhibitors in nephrotic8

patients [20] and of NF-kB pathway activation in the blood cells of MCNS patients [21],9

but the number of cases was small, and then no further examinations have been10

reported.11

The CD25- and CD4-positive regulatory T-cell population has an inhibitory effect on12

the immune response and specifically expresses the transcription factor Foxp3. The13

forkhead box P3 (FOXP3) gene is thought to be the master gene in regulatory T-cell14

development and function. Examination of recurrence of MCNS revealed that the15

number of suppressive T cells was the same as normal, but the regulatory T cells of16

ability to suppress T-cell proliferation was reduced at the time of MCNS recurrence [22].17

In addition, immune dysregulation, polyendocrinopathy, enteropathy, X-linked18
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syndrome, multiple endocrine disorders and digestive diseases caused by mutations in1

the FOXP3 gene are complicated by NS. A relationship between MCNS and regulatory2

T cells has been strongly suggested, while epigenomic changes in the lymphocytes of3

MCNS patients are also being investigated [23]. Changes in histone methylation [24]4

and DNA methylation [25] in MCNS have been reported, but there is currently no data5

on whether these are related to changes in lymphocyte function leading to MCNS. Since6

steroids induce epigenetic changes, this field is expected to gain interest, specifically in7

understanding the mechanism of steroid sensitivity in MCNS.8

Relationship between INS and B cell function9

Although the function of B cells in MCNS is extremely poorly understood compared to10

that of T cells, rituximab (a human monoclonal antibody against the B cell antigen11

CD20) is clinically effective against frequently relapsing NS. That is, it became clear12

that depletion of B cells is a treatment for MCNS [26]. However, it is unclear whether13

this arises from an effect of rituximab on B cells or a change in T-cell function mediated14

by B cells.15

On the other hand, rituximab binds to acid sphingomyelinase-like phosphodiesterase 3b16

(SMPDL-3b), a protein expressed in glomerular epithelial cells. Serum from NS17

patients reduces SMPDL-3b expression levels in cultured glomerular epithelial cells,18
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induces cytoskeletal changes, and reduces the filtration barrier function, whereas1

rituximab increases SMPDL-3b expression level and suppresses the changes obtained2

with NS patient serum [27].3

This suggests that rituximab may exert a proteinuria-suppressing effect directly on4

glomerular epithelial cells without the intervention of immune cells. However, the5

extent of involvement of this mechanism in the clinical effects of rituximab is unknown6

at this time.7

Other factors8

Hemopexin9

Hemopexin is a blood factor potentially associated with MCNS. It is an enzyme10

involved in heme metabolism, and its administration to rats induces reversible11

proteinuria [28]. Hemopexin activity is increased in MCNS patients [29], and since12

hemopexin acts on the cytoskeleton of glomerular epithelial cells via nephrin in vitro13

[30], it may be involved in MCNS. However, this report included a small number of14

cases, and it is unclear whether its observations can be generalized.15

Angptl416

In 2011, Chugh et al. found an increase in Angiopoetin-like 4 (Angptl 4) levels in the17

blood of MCNS patients [31]. Angptl4 expression is also enhanced in epithelial cells in18

the glomeruli of MCNS patients, and proteinuria occurs when Angptl4 is strongly19
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expressed specifically in glomerular epithelial cells in mice [31]. Therefore, it was1

suggested that an increase in Angptl4 leads to MCNS, but this possibility has now been2

refuted. Subsequent analysis revealed that mice expressing Angptl4 in the liver did not3

exhibit proteinuria, and that Angptl4 in the blood acted on glomerular endothelial cells4

and had a proteinuria-lowering effect [32]. Interestingly, Angptl4 levels are elevated by5

lowering blood albumin, but Angptl4 suppresses lipoprotein lipase (LPL) activity,6

which suppresses the conversion of triglycerides to free fatty acids and causes7

hyperlipidemia [32]. Therefore, Angptl4 may play a role in NS hyperlipidemia.8

CD809

CD80 (B7-1) is a membrane protein that is expressed on activated B cells and10

antigen-presenting cells. It binds to CD28 on CD4 + T cells in response to T-cell11

receptor activation and promotes T-cell proliferation. Thus, interaction co-stimulation12

signaling between CD80 and CD28 mediates the interaction between T cells and B cells13

or antigen-presenting cells and regulates the adaptive immune response. On the other14

hand, cytotoxic lymphocytes-associated antigen-4 (CTLA-4), which is a negative15

co-stimulatory receptor, also binds to CD80 as a ligand, but its affinity is ten times16

higher than that of CD28 and CD80, and therefore strongly inhibits the binding of17

CD28 and CD80.18
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Animal experiments have shown that when glomerular epithelial cells are stimulated1

and injured, they express CD80 [33]. Urinary CD80 levels increase during recurrence of2

MCNS, which is not seen in FSGS patients or those in remission, suggesting that3

changes in CD80 expression may be specific to MCNS. [34]. The addition of serum4

from MCNS patients to cultured podocytes has been shown to increase CD805

expression in vitro [35], suggesting that there is a close relationship between MCNS and6

CD80 expression. It is supposed believed that these are not only involved in the onset7

and recurrence of MCNS, but are also can be expected as potential biomarkers for8

differentiating MCNS from FSGS.9

A two-hit hypothesis has been proposed, whereby the induction of CD80 expression by10

a serum stimulus is the first hit, and the subsequent decrease in CTLA4 expression that11

suppresses the CD80 signal is the second hit [36].12

Abatacept is a chimera of CTLA4 and IgG that binds to CD80 and suppresses the13

CD80-CD28 signal, attenuating the immune response. Therefore, several groups have14

recently investigated whether suppressing CD80 on glomerular epithelial cells by15

abatacept leads to an attenuation of proteinuria. Yu et al. reported the administration of16

abatacept to 5 FSGS patients (4 rituximab-resistant and 1 steroid-resistant NS) and the17

improvement of nephrotic-level proteinuria in all of them [37].18
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On the other hand, Garin et al. reported that abatacept had a temporary inhibitory effect1

on proteinuria in MCNS patients, whereas there was no change in proteinuria in FSGS2

patients despite a decrease in urinary CD80 antigen [38]. Another group has reported3

that abatacept has a poor effect on proteinuria in FSGS patients [39]. Future cases need4

to be collected to analyze the involvement of CD80 and abatacept on NS.5

Genetic factors6

More than 50 genes mutated in hereditary podocytopathies have been identified (Table7

1). The causative gene of congenital and steroid-resistant NS is being elucidated.8

Depending on the gene mutated, NS can be roughly classified into three types for9

convenience: congenital NS developing symptoms early in life (NPHS1, NPHS2,10

NPHS3, CD2AP, MYO1E, PTPRO etc.), NS with an adult onset in the form of11

autosomal dominant inheritance (TRPC6, ACTN4, INF2 etc.), and NS with symptoms in12

other organs (WT1, LAMB2, LMX1B, MYH9 etc.). Many of these genes encode proteins13

that are strongly expressed in glomerular epithelial cells, so these genetic diseases are14

considered podocyte diseases. In Western studies, two-thirds of infant NS cases15

developing within the first year of life are explained by four gene mutations (NPHS1,16

24%; NPHS2, 38%; LAMB2, 5%; and WT1, 3%). It has also been reported that in17

steroid-resistant congenital NS that develops under 2 years of age, mutations in 24 of18
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the currently known genes are found in nearly 90% of cases [40]. The analysis of more1

than 2000 cases of steroid-resistant NS (SRNS) found that 30% of cases were explained2

by 27 known genes [41].3

It is key important to understand to what extent genetic background is involved in the4

onset of steroid-sensitive NS (SSNS) and MCNS. Familial onset of SSNS is rare, in fact,5

it was reported that the onset of SSNS in the sibs is 3% [42]. Certainly, the frequency of6

known genetic abnormalities in SSNS is extremely lower than that in SRNS. For7

example, the analysis of 38 SSNS patients did not find any genetic abnormalities [43].8

Minor nephrin abnormalities have been reported in siblings with proteinuria [44]. In9

addition, a mutation in LMX1B, the causative gene of Nail-Patella syndrome, has been10

found in patients with proteinuria without extrarenal symptoms [45]. Furthermore, a11

gene mutation in EMP2 was found by analysis of familial SSNS that developed in early12

childhood [46]. EMP2 is expressed in glomerular epithelial and endothelial cells,13

regulates the expression of the membrane protein caveolin, and its mutation is thought14

to cause morphological changes to epithelial cells. Additionally, mutations of the kidney15

ankyrin repeat-containing proteins (KANKs) 1, 2 and 4 known as the cause of SRNS16

have also been found in SSNS / MCNS patients [47].17
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Ashraf et al. focused on a family with SSNS and performed a whole exome analysis of1

its members. A novel causative gene, called ITSN2, was identified in this family. By2

combining this result with those from the genomic analysis of NS families with a blood3

relative, six novel causative genes were identified. The 17 families with mutations in4

this gene had an NS which was partially sensitive to steroid treatment. Interestingly, all5

identified genes were involved in the same pathway (Rho signaling) and were found to6

interact with each other. This pathway also includes genes involved in SRNS, which is7

indicative of a common mechanism in SSNS and SRNS. In addition, this study8

suggested that steroids also act on this signaling pathway [48].9

These facts suggest that gene mutations affect glomerular epithelial cell function.10

Large-scale studies have begun on not only causative genes whose mutations determine11

the onset of disease, but also polymorphisms in susceptibility genes that increase the12

risk of onset. In the case of diseases affected by multiple susceptibility genes, the13

magnitude of the risk of developing the disease is expressed by the “odds ratio.”14

Specifically, it is expressed as a numerical value indicating how many times the risk of15

developing the disease is higher in a person who has a susceptibility gene than that of a16

person who does not have the susceptibility gene.17
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Genome-wide association studies (GWAS) are comprehensive analyses of the single1

nucleotide polymorphisms (SNPs) an individual has in their genome. A GWAS was2

performed in less than 200 cases of acquired NS in Japan, and an SNP in the intron of3

GPC5, which encodes Glypican-5, was found to correlate with NS onset. Glypican-5 is4

expressed in glomerular epithelial cells and its specific knockdown in these cells turns5

mice resistant to the development of experimental proteinuria. It is believed that the6

expression levels of this gene define susceptibility to glomerular epithelial cell damage7

[49].8

In a GWAS of about 200 childhood-onset SSNS cases, the proportion of HLA-DQA19

polymorphisms on chromosome 6 was significantly increased in SSNS (odds ratio 2.1)10

[50]. Xiaoyuan et al. performed a GWAS using an SNP array optimized for Japanese11

patients, including 224 pediatric SSNS patient and 419 healthy subject control12

specimens. As a result, SNPs showed a significant genome-wide association in the13

HLA-DR, DQ region of the short arm of chromosome 6. This result was also confirmed14

in another cohort consisting of 213 pediatric SSNS patients and 710 healthy controls15

[51].16

A GWAS using an SNP array optimized for Japanese patients was performed on 98717

pediatric SSNS patients and 3,206 healthy controls. As a result, in addition to the18



16

HLA-DR, DQ region, variants (polymorphisms) showing a significant genome-wide1

association with the NPHS1-KIRREL2 region of chromosome 19 19q13.12 were2

identified. Furthermore, the relationship between multiple NPHS1 variants and3

glomerular NPHS1 mRNA expression was investigated. The expression of NPHS14

mRNA from chromosomes having haplotypes with these risk variants was reduced. It5

has been clarified that NPHS1 is involved in expression regulation [52].6

Although polymorphisms in the multiple susceptibility genes do not cause the disease,7

they can have a significant impact on the risk of developing NS. These macroscopic8

genome analyses, which are expected to gain popularity in the future, are effective not9

only for clarifying the dynamics of susceptibility genes but also for establishing the10

genetic differences found in populations such as specific ethnic groups and races.11

Mechanism of glomerular epithelial cell damage in NS12

As mentioned above, various genetic abnormalities can cause NS. It has also been13

suggested that changes in circulatory factors and local tissues may be involved in the14

onset of non-genetic NS. Despite these various causes, changes in glomerular epithelial15

cells are common throughout NS. In particular, fusion of the foot process is observed in16

most cases, and basement membrane detachment, vacuolar degeneration, and inclusion17

body formation are strongly associated with barrier rupture.18
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Glomerular epithelial cells receive chemical or mechanical stimuli from the glomerular1

blood vessels and Bowman's cavity to transmit intracellular signals [53]. These signals2

control the development, morphogenesis, and maintenance of morphology of3

glomerular epithelial cells, and are closely related to proteinuria [54].4

Slit membrane complexes such as Nephrin, Neph1, and Podocin play a major role in5

controlling the cytoskeletal structure of glomerular epithelial cells, and various adapter6

proteins are used in the intracellular region of slit membrane proteins, due to7

stimulation-dependent phosphorylation [55, 56]. The slit membrane functions as a8

conversion point for receiving extracellular signals such as humoral factors [19, 57].9

This signaling system is extremely important for executing reversible morphological10

changes in epithelial cells and as the point of action of NS drugs.11

Significance of viral infection in the onset and recurrence of INS in children12

There are many reports on the immunological background of INS patients and13

abnormalities in renal glomeruli. In recent years, there have been an increasing number14

of research papers on relationship between upper respiratory tract infection (URI) and15

the onset and recurrence of INS.16

In children, it has been known for over 30 years that the onset and recurrence of INS are17

observed in URI. Specifically, about 70% of INS recurrences are triggered by URI [58].18
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Despite interesting findings reported in recent years, the molecular mechanism that1

links URI to the onset and recurrence of INS has not been elucidated.2

Involvement of Toll-like receptors in INS pathology3

Innate immunity plays an important role in the initial recognition of pathogens (e.g.,4

bacteria, viruses, and parasites), phagocytosis or digestion, and the subsequent induction5

of an inflammatory response and the induction of acquired immunity. Macrophages,6

neutrophils, and phagocytes such as dendritic cells play a central role in this process.7

These cells express pattern recognition receptors (PRRs) that recognize8

pathogen-associated molecular patterns (PAMPs) and transmit activation signals9

through PRRs. The Toll-like receptor (TLR) family of PRRs, consist of 13 types10

reported in humans, each of which recognizes different PAMPs such as proteins lipids,11

and nucleic acids of bacteria, viruses, and parasites. TLRs have specific signaling12

pathways depending on the adapter molecule which lead to the induction of differential13

gene expression patterns. The main signal transduction pathways are the14

MyD88-dependent and TRIF-dependent pathways. The former is involved in the15

induction of the inflammatory response through nuclear factor-κB (NF-κB) activation,16

and the latter activates the interferon regulatory factor (IRF, a transcription factor)17

which finally induces type I interferon and is involved in the antiviral response.18
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There are some reports that the expression of TLR-3 and TLR-4 in peripheral blood1

mononuclear cells is enhanced at the time of INS onset or recurrence [59, 60]. Mishra et2

al. compared the mRNA expression levels of TLR-3, TLR-4, and CD80 using3

peripheral blood mononuclear cells (PBMC) of 40 SSNS cases (25 of whom were initial4

or recurrent and 15 were in remission; histological type was mainly MCNS), 30 cases of5

SRNS (tissue type was mainly FSGS) and 23 control children. The mRNA expression6

levels of these molecules were increased in patients with initial and recurrent SSNS. On7

the other hand, patients with SRNS displayed a decreased expression compared to those8

of normal controls [60].9

TLR-3 is localized in the cell and recognizes viral double-stranded RNA (dsRNA),10

while TLR-4 is present on the cell surface and recognizes sugars, lipids, and proteins11

derived from the virus [61]. Therefore, the fact that the expression of these TLRs is12

enhanced is consistent with the fact that many INS recurrences are triggered by URI.13

Involvement of alveolar surfactant protein in recurrence of INS14

When MCNS patients relapse with URI, their levels of pulmonary surfactant proteins15

SP-A (surfactant protein A) and SP-D (surfactant protein D) in the serum increase. As a16

result of activating signal-regulatory protein-α (SIRPα), structural changes (such as17
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disappearance of podocyte foot protrusions) occur, resulting in the appearance of1

proteinuria [62].2

This inference is based on the elevation of SP-A and SP-D levels in the serum collected3

at the time of recurrence of MCNS patients. SIRPα is stimulated by adding the MCNS4

patient's serum at the time of recurrence to cultured podocytes, and protein phosphatase5

non-receptor type 1(PTPN1) is released, which dephosphorylates nephrin, activates6

podocyte NF-κB, promotes CD80 and pro-inflammatory cytokine production, and7

causes structural podocyte changes. SIRPα is a transmembrane protein that contains a8

tyrosine phosphorylation site in the cytoplasmic region and is expressed in dendritic9

cells, macrophages, nerve cells, and microglia. SIRPα is also expressed in podocytes,10

and it was clarified that it is involved in the regulation of podocyte structure and11

function as one of the major tyrosine phosphorylated proteins in renal glomeruli12

[63-65].13

In addition, SP-A and SP-D, which are mainly produced by alveolar type II epithelial14

and Clara cells, are known as useful biomarkers of interstitial pneumonia, but they are15

also SIRPα agonists [66]. Therefore, a hypothesis that SP-A and SP-D serum levels16

increase during URI causing abnormalities SIRPα in podocytes and leads to recurrence17

of INS can be formulated.18
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Certain viruses that are prone to the onset and recurrence of INS in children1

Approximately 85% of microorganisms that cause URI, the so-called cold syndrome,2

are viruses. The main causative viruses are rhinovirus and coronavirus, followed by RS3

virus, parainfluenza virus, and adenovirus. It is well known that pediatric INS patients4

are prone to recurrence when suffering from cold syndrome. There were various studies5

examining the link between recurrence and the causative virus such as RS virus,6

influenza virus A and B, parainfluenza virus., varicella herpes zoster virus, and7

adenovirus, but it was unclear whether a specific pathogen was involved in recurrence.8

In 2017, two facilities reported that infection with a specific virus was involved in9

recurrence. Ching et al. proposed the hypothesis that rhinovirus (HRV) infection leads10

to increased expression of CD80 in the renal podocytes of patients and causes11

recurrence [67]. Ching et al. examined 32 MCNS patients who relapsed during URI due12

to HRV, using PBMC and renal biopsy tissue, and compared the patients with13

CD80-positive T cells of PBMC to control children of with PBMC. The ratios of14

CD80-positive T cells to CTLA-4 positive T cells and the ratios of Th17 to Treg15

increased at the time of recurrence in MCNS when compared to those in control16

children, but they normalized during the remission period. Furthermore, in an17

immunostaining study using renal tissue of MCNS patients who underwent renal biopsy18
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at the time of recurrence, CD80 was strongly expressed renal glomeruli, but CTLA-41

was weakly expressed. It is speculated that HRV infection increases the CD80 CTLA-42

ratio of PBMC in MCNS patients, resulting in an increase in the Th17 Treg ratio. As a3

result, the expression of CD80 in podocytes is enhanced and structural podocyte4

changes occur, leading to recurrence [67].5

The Epstein-Barr (EB) virus is a double-stranded DNA herpesvirus found in cultured6

cells of Burkitt lymphoma that frequently occurs in children in equatorial Africa. It is7

also called human herpesvirus type 4 (HHV4). A characteristic of herpesviruses,8

including EB virus, is that they cause latent infections centered on B lymphocytes [68].9

Dossier et al. have proposed the etiologic significance of the EB virus in INS because of10

findings of infection and reactivation of the EB virus in pediatric patients with initial11

INS [69, 70]. According to them, about half of children with INS have amplification of12

EB virus DNA. This amplification occurs in a locus with a previously reported13

monobasic polymorphism in children with SSNS (6p21.32), associated with the ability14

to produce Epstein-Barr virus nuclear antigen 1 (EBNA1). Additionally, depletion of B15

cells with rituximab relieves INS, but the cells that are persistently infected with EB16

virus are B cells. These facts were cited as the basis for the EB virus etiology [70].17
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On the other hand, it is a well-known fact that pediatric INS resolved due to viral1

infections, such as influenza and measles [71, 72].2

It has been reported that CD25, CD4, Foxp3, and regulatory T cells (Tregs) levels3

increase in the blood during measles, and that changes in the T-cell-producing cytokine4

balance during measles are involved in NS remission [73]. An increase in the number of5

Tregs was observed in response to intercurrent influenza B virus infection and6

prednisolone administration, along with a parallel decrease in the amount of proteinuria7

[74]. Moreover, both influenza virus infection and glucocorticoid administration, which8

is the key treatment for INS, increase the number of Tregs [75, 76]. Therefore, it may be9

hypothesized that Tregs play an important role in INS pathogenesis in patients with INS10

complicated by influenza B and measles infections.11

New insights in the drugs of MCNS12

1) New insights in Glucocorticoid (GC) of MCNS13

Approximately 80% of pediatric MCNS patients are in remission with GC, but there are14

many unclear points about how GC improves MCNS remains unclear. GC may act15

directly on podocyte receptors to suppress the appearance of proteinuria. In fact,16

dexamethasone has a significant effect on the structure and function of human17
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podocytes [77], and has been shown to suppress the intracellular signaling of podocyte1

NFκB [78].2

2) New insights in Cyclosporine (CsA) of MCNS3

The mechanism of CsA in MCNS was thought to be The suppression of intracellular4

signal transduction of activated T cells was thought to be a possible mechanism of CsA5

in MCNS. CsA is also thought to acts on the calcineurin-dependent dephosphorylation6

of synaptopodin in podocytes to stabilize the actin cytoskeleton and reduce proteinuria7

[79].8

3) New insights in Rituximab (RTX) of MCNS9

RTX, a monoclonal antibody that acts against the B cell surface antigen CD20, is also10

highly effective in MCNS. But, However, its mechanism of action is not well known.11

how RTX is effective against MCNS.12

It has been considered speculated that the depletion of B cells may reduce self-reactive13

T cells through cell-cell interactions [80]. Fornoni et al indicated that RTX not only14

recognizes CD20 on the surface of B cells, but also binds to and protects podocyte15

SMPDL-3b to preventing the destruction of the actin cytoskeleton and suppressing16

proteinuria [27].17

Why don’t we still understand the cause of MCNS?18
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Among the genetic abnormalities identified for congenital NS and SRNS, many have1

been found to be explained by glomerular epithelial cell abnormalities, however, many2

aspects of MCNS pathogenesis remain unknown. There are various possible reasons for3

this.4

(1) Factors other than the currently analyzed blood factors.5

(2) Involvement of not one but multiple factors (Genetic, immunological or circulatory6

factors etc.)7

(3) Caused by a combination of such factors (eg, glomerular epithelial cell factor +8

immunological factor, T cell factor + B cell factor,1st hit + 2nd hit, etc.)9

Considering these problems, carrying out comprehensive analysis, such as analysis of10

genome, epigenome, proteome, and transcriptome using a large cohort will be essential11

for future studies. Additionally, clarifying the genetic background of patients with a12

familial history may provide an opportunity to approach the more common cause of13

idiopathic INS.14

Conclusions15

There is no doubt that some vascular hyperpermeability factor is involved in the16

incidence of proteinuria in INS. However, no etiological molecule has been identified in17
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INS as a factor for increasing the permeability of renal glomerular capillaries with1

reproducibility and clinical consistency.2

In addition, since the onset is sometimes observed in the family, there is high incidence3

of INS in East Asian children [2] and there is the association of SSNS in childhood in4

Japan with the HLA-DR DQ region [51], it is highly possible that some genetic factors5

are involved in the onset of NS.6

In our opinion, INS is a multifactorial disease in which immunological stimuli, trigger7

the production of substances that impair podocytes, resulting in the dysfunction of the8

slit membrane and causing proteinuria.9
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Table 1. Genetic forms of podocytopathies.1

Gene Inheritance OMIM ID Pathology Function Features

NPHS１ AR 602716 FSGS/MCD slit membrane Congenital. Finish

type.

NPHS2 AR 604766 FSGS/MCD slit membrane Develop ESRD in

the first or second

decades

CD2AP AR 607832 FSGS slit membrane Severe early-onset

SRNS

CRB2 AR 609720 FSGS slit membrane Child onset SRNS

FAT1 AR 600976 FSGS slit membrane First or second

decade onset SRNS

Tubular ectasia,

haematuria and

facultative

neurological

involvement

TRPC6 AD 603652 FSGS slit membrane Both child and adult

onset SRNS

MYO1E AR 601479 FSGS Actin binding Child onset SRNS

PLCE1 AR 608414 FSGS/MCD Actin binding Infantile to child

onset SRNS

INF2 AD 613237 FSGS Actin binding complicated by

Charcot-Marie-Tooth

dis- ease

ACTN4 AD 604638 FSGS Actin binding Adult onset SRNS

MYH9 AD 160775 FSGS/MCD Actin binding complicated by

Epstein syndrome

ANLN AD 616027 FSGS Actin binding Both child and adult

onset SRNS

KANK1 AR 607704 MCD Actin regulation

KANK2 AR 614610 MCD Actin regulation Early-onset SSNS

KANK4 AR 614612 FSGS Actin regulation Early-onset SRNS

ARHGDIA AR 601925 FSGS/DMS Actin regulation Onset age is younger
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than 3 years

ITSN1 AR 602442 FSGS/MCD Actin regulation SSNS

ITSN2 AR 604464 FSGS Actin regulation SSNS

MAGI2 AR 606382 MCD Actin regulation SSNS

TNS2 AR 607717 FSGS/MCD Actin regulation SSNS

DLC1 AR 604258 FSGS Actin regulation SSNS

ARHGAP24 AD 610586 FSGS Actin regulation

LAMB2 AR 609049 DMS/FSGS Integrin and

laminin

Pierson syndrome

ITGA3 AR 605025 FSGS Integrin and

laminin

Infantile onset SRNS

Congenital

interstitial lung

disease and mild

epidermolysis bul-

losa.

ITGB4 AR 147557 FSGS Integrin and

laminin

Congenital or

infantile onset SRNS

Epidermolysis

bullosa and pyloric

atresia

WT１ AD 256370 DMS/FSGS Nucleus Denys-Drash

syndrome

Frasier syndrome

Wilms tumor

LMX1B AD 161200 FSGS/MCD Nucleus Nail-patella

syndrome

SMARCAL１ AR 606622 FSGS Nucleus Schimke

immunoosseous

dysplasia

NUP93 AR 614351 FSGS Nucleoporins Child onset SRNS

NUP107 AR 607617 FSGS Nucleoporins Child onset SRNS

NUP205 AR 614352 FSGS Nucleoporins Early onset SRNS
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XPO5 AR 607845 FSGS Nucleoporins Speech development

delay

COQ2 AR 609825 FSGS/CG CoQ10

biosynthesis

Early-onset NS

COQ6 AR 624647 FSGS CoQ10

biosynthesis

Early-onset NS.

Hearing loss

PDSS2 AR 610564 FSGS CoQ10

biosynthesis

Leigh syndrome

MTTL1 AR 590050 FSGS CoQ10

biosynthesis

SGPL1 AR 603729 FSGS S1P metabolism Hyperpigmentation,

increased ACTH,

hypoglycemia, and

hypocalcemia with

seizures, ichthyosis,

primary

hypothyroidism and

developmental delay

SCARB2 AR 602257 FSGS Lysosome Progressive

myoclonic epilepsy
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