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Abstract
The incidence and mortality of hepatocellular carcinoma have continued to 
increase over the last few years, and the medicine-based outlook of patients is 
poor. Given great ideas from the development of nanotechnology in medicine, 
especially the advantages in the treatments of liver cancer. Some engineering 
nanoparticles with active targeting, ligand modification, and passive targeting 
capacity achieve efficient drug delivery to tumor cells. In addition, the behavior of 
drug release is also applied to the drug loading nanosystem based on the tumor 
microenvironment. Considering clinical use of local treatment of liver cancer, in 
situ drug delivery of nanogels is also fully studied in orthotopic chemotherapy, 
radiotherapy, and ablation therapy. Furthermore, novel therapies including gene 
therapy, phototherapy, and immunotherapy are also applied as combined therapy 
for liver cancer. Engineering nonviral polymers to function as gene delivery 
vectors with increased efficiency and specificity, and strategies of co-delivery of 
therapeutic genes and drugs show great therapeutic effect against liver tumors, 
including drug-resistant tumors. Phototherapy is also applied in surgical 
procedures, chemotherapy, and immunotherapy. Combination strategies 
significantly enhance therapeutic effects and decrease side effects. Overall, the 
application of nanotechnology could bring a revolutionary change to the current 
treatment of liver cancer.

Key Words: Liver cancer; Poor prognosis; Nanotheranostic; Drug delivery; Gene delivery; 
Combination therapy
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Core Tip: With the development of nanotheranostic strategies for liver cancer treatment, 
the efficacy of drug delivery is improved by smart nanoparticles with excellent 
targeting capacity. To overcome the complex tumor microenvironment, nanosystems 
with combined strategies of curative or palliative treatments have significant 
synergistic therapeutic effect against unfavorable clinical obstacles in the treatment of 
liver cancer.

Citation: Cao L, Zhu YQ, Wu ZX, Wang GX, Cheng HW. Engineering nanotheranostic 
strategies for liver cancer. World J Gastrointest Oncol 2021; 13(10): 1213-1228
URL: https://www.wjgnet.com/1948-5204/full/v13/i10/1213.htm
DOI: https://dx.doi.org/10.4251/wjgo.v13.i10.1213

INTRODUCTION
According to newly reported cancer statistics, the liver cancer death rate is much 
higher than the incidence, suggesting that the clinical treatments for liver cancer are 
unsatisfactory[1]. With the development of nanotechnology in medicine, especially in 
the improvement of combined treatments, many studies have attempted to improve 
the therapeutic effect and decrease the side effects affecting normal organs[2,3]. To 
fully understand the engineering nanotheranostic strategies for liver cancer, the 
dilemma of clinical liver cancer treatments should be described. Poor diagnosis and 
ineffective treatments are the general shortcomings of the clinical management of liver 
cancer. To overcome the poor therapeutic effect, this frontier demonstrates the 
potential engineering nanosystems based on curative or palliative treatments. Firstly, 
the expanding intersection of curative treatments and nanotheranostic strategy 
emphasizes surgical resection and tumor ablation, which improve the efficacy of 
therapeutic solutions to prevent tumor occurrence and metastasis. Moreover, 
improved nanotheranostic strategies are also presented based on palliative treatments, 
including chemotherapy, radiotherapy, embolization therapy, and novel therapies, 
such as gene therapy, phototherapy, and immunotherapy. Many smart nanomaterials 
are designed to act as effective drug delivery platforms to enhance the therapeutic 
effect against tumor cells, especially to combat drug resistance[4-6]. In addition, 
strategies that combine chemotherapy, phototherapy, gene therapy, and immuno-
therapy increase the sensitivity tumor cells to treatment[7-10]. To sum up, the 
engineering nanotheranostic strategy could revolutionize the current treatment of liver 
cancer and have great transformative value to ameliorate the prognosis of liver cancer 
patients.

DILEMMA OF CLINICAL LIVER CANCER TREATMENTS
General shortcomings in clinical liver cancer
According to worldwide cancer statistics, the estimated death rate of liver cancer is 
significantly higher than its estimated incidence[1,11,12], suggesting that the clinical 
practice for liver cancer is unsatisfactory. Many complex factors contribute to this 
dilemma. As Figure 1 shows, clinical shortcomings for liver cancer include four areas, 
diagnosis, curative treatments, palliative treatments, and prognostic evaluation[13,14].

Clinical diagnosis
The clinical diagnosis of liver cancer is poor, the early symptoms of liver cancer are 
inconspicuous, and most patients are diagnosed in the intermediate or advanced 
stages, and without a chance to employ curative treatments including tumor resection, 
liver transplantation, and ablation[15]. Therefore, discovery of effective biomarkers 
has been extensively studied in recent years, with the expectation to overcome the 
shortcomings of low specificity and sensitivity of existing clinical markers, such as 
alpha-fetoprotein (AFP) and glypican 3 (GPC3)[15].

Curative treatments
Curative treatments for liver cancer are applicable to patients with very early stage or 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1948-5204/full/v13/i10/1213.htm
https://dx.doi.org/10.4251/wjgo.v13.i10.1213


Cao L et al. Theranostics for liver cancer

WJGO https://www.wjgnet.com 1215 October 15, 2021 Volume 13 Issue 10

Figure 1 The dilemma of clinical hepatocellular carcinoma treatment.

early stage disease, thus many patients cannot benefit from these strategies because of 
their strict indications[16,17]. For tumor resection, the disease stages and complex 
physiological factors, including liver function, cirrhosis and surgery tolerance, limit its 
application for liver cancer patients[18,19]. In recent years, advances in liver 
transplantation have resulted in promising prospects in improving the prognosis of 
liver cancer patients with early stage disease[20-22]. However, because of the 
limitation of liver donors, few patients benefit from that treatment. Tumor ablation, 
including radiofrequency ablation (RFA), NanoKnife, and microwave ablation are 
available, but incomplete ablation is the main constraint in clinical practice[23-25].

Palliative treatments
Palliative treatments are available for most liver cancer patients, including 
chemotherapy, transarterial embolization, radiotherapy and immunotherapy. 
However, drug resistance is an important factor that deserves particular attention, 
because it significantly impairs treatment outcome. Immunotherapy is a novel, 
promising strategy in with potential benefits in some cancers. However, clinical trials 
of programmed death-1 (PD-1) monoclonal antibody therapy in patients with 
advanced hepatocellular carcinoma did not improve overall survival or progression-
free survival of patients[26,27]. Incomplete transarterial embolization leads to tumor 
metastasis and recurrence and limits its clinical outcome. Consequently, the 
improvement of palliative treatments is urgently needed to reduce the mortality of 
liver cancer.

EFFICIENT DRUG DELIVERY TO IMPROVE TREATMENT EFFICACY
Active targeting
Chemotherapy plays an indispensable role in the liver cancer clinic, but the outcome is 
unsatisfactory[28]. Considering the underlying reasons, minimal drug bioavailability 
and side effects are the two main problems[29]. The development of nanotechnology 
allows for the improvement of effectiveness of chemotherapy. First, the nanostructure 
design enhances the solubility of chemotherapeutics like paclitaxel (PTX) and 
sorafenib, which are poorly soluble[30]. Improved biocompatibility can enhance the 
drug bioavailability. Second, the involvement of nanomaterials allows modification of 
drug behavior, and binding to the targeted ligand is an excellent solution to improve 
drug delivery and enhance the therapeutic effect of tumor inhibition. For example, Wu 
et al[31] described PTX-loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) PHBV 
nanoparticles coated with polydopamine (PDA-PHBV-PTX-NPs) and modified by 
hepatocellular carcinoma (HCC)-targeted arginine-glycine-aspartic acid (RGD-
peptide). As shown in Figure 2A, integrin αvβ3 or αvβ5 are overexpressed in liver 
cancer cells, and RGD is a specific ligand of integrin αvβ3/αvβ5. The PTX-loaded 
nanoparticles actively target and enter liver tumor cells. Figure 2B shows the cellular 
uptake of fluorescently labeled RGD-modified nanoparticles was remarkably higher 
than other groups (Figure 2B), and in vivo results of fluorescence imaging confirmed 
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Figure 2 RGD-modified nanoparticles for targeted hepatocellular carcinoma therapy. A: Illustration of RGD-PDA-PHBV-PTX-NPs and targeted 
therapy; B: Specific targeting of RGD-modified PDA-PHBV-PTX-NPs for liver cancer cells; C: Distribution of various NPs in tumors in a HepG2 xenograft tumor 
model; D: Bio-distribution of NPs in major organs. Citation: Wu M, Zhong C, Zhang Q, Wang L, Wang L, Liu Y, Zhang X, Zhao X. pH-responsive delivery vehicle 
based on RGD-modified polydopamine-paclitaxel-loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles for targeted therapy in hepatocellular 
carcinoma. J Nanobiotechnology 2021; 19: 39. Copyright © The Authors 2021. Published by BioMed Central Ltd.

that RGD active targeting nanoparticles significantly increased the drug concentration 
in tumor tissues (Figure 2C and D). The evidence suggests that active targeting of 
nanomaterials has remarkable advantages in the efficacy of drug delivery. In recent 
years, with advances in biomarker discovery for liver cancer, many nanomaterials 
with active targeting ability have improved drug delivery, especially of insoluble 
drugs, with targeted peptides or antibodies used to confer the active targeting ability 
and thus improve drug bioavailability and therapeutic effects[4,5,32].

Passive targeting
In recent studies, nanomaterials used as a drug delivery platform have made 
significant progress in cancer treatment. Active targeting medications are “the eyes” of 
nanomedicine, but the unique passive targeting capability of nanostructured materials 
is also a widely recognized uptake mechanism via enhanced permeability and 
retention (EPR)[33]. In a previous study, Ebrahim et al[34] designed galactose-
conjugated nanoparticles to study the difference between ligand-active targeting and 
passive EPR targeting in liver cancer therapy. As in previous reports, collecting-3 was 
highly expressed in the liver tumor vessel endothelial cells, and galactose as the ligand 
of galectin-3 has been used as a functional fragment for targeted drug delivery to liver 
cancer. Furthermore, asialoglycoprotein with exposure to galactose residues can bind 
to asialoglycoprotein receptors (ASGPR), which are expressed in liver cancer cells. 
Interestingly, the expression of ASGPR in higher in normal hepatocytes cells than in 
liver hepatoma cells. Thus this novel nanoparticle strategy can help us understand the 
difference between active targeting and passive targeting in liver cancer drug delivery 
(Figure 3A). The result of the binding activity of galactose-conjugated nanoparticles for 
galectin-3 (Figure 3B) was higher than nanoparticles without galactose modification, 
and the specific HCC targeting capability was also evaluated in an orthotopic HCC 
tumor model. Bioluminescence shows the location of liver cancer cells, and the 
fluorescence shows the location of DiR-loaded nanoparticles with galactose or not, and 
the surprising results showed that galactose-conjugated nanoparticles were 
accumulated mostly in the hepatocytes, but not in liver tumors. However, the 
nanoparticles without galactose surface expression only depended on EPR passive-
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Figure 3 Enhanced permeability and retention effect favors polymeric micelles as an ideal drug delivery platform. A: Illustration of polymeric 
micelles with or without galactose for hepatocellular carcinoma (HCC) targeting; B: Galactose-functionalized micelles bind to galectin-3; C: Specific HCC targeting 
powered by enhanced permeability and retention. Citation: Ebrahim Attia AB, Oh P, Yang C, Tan JP, Rao N, Hedrick JL, Yang YY, Ge R. Insights into EPR effect vs 
lectin-mediated targeted delivery: biodegradable polycarbonate micellar nanoparticles with and without galactose surface decoration. Small 2014; 10: 4281-4286. 
Copyright © The Authors 2014. Published by John Wiley & Sons, Inc.

targeting capability, showing better accumulation in the liver tumors (Figure 3C). The 
dual strategy not only shows the advantage of ligand-active targeting in 
nanomedicine, but also confirms the indispensable role of EPR passive targeting in 
drug delivery. Even the efficiency of EPR-mediated passive targeting to cancer cells is 
still unclear, and particle size control is essential to the EPR effect of nanoparticles on 
tumor targeting, which provides a theoretical reference for the design of 
nanomedicines[35,36].

Tumor microenvironment-responsive drug release
Based on the design of ligand-active or EPR passive targeting, nanomaterials have 
substantial advance progress in drug delivery. The detailed drug release behavior of 
nanomedicine has also been reported in recent years, especially in the exploitation of 
the tumor microenvironment (e.g., hypoxia, low pH, high glutathione, immune-
suppressive microenvironment, and so on[37,38]. Therefore, while achieving higher 
drug delivery efficiency, the design of controllable drug release based on the tumor 
microenvironment has significant strengths in improving drug bioavailability, 
reducing toxic side effects, and improving therapeutic effects. Zhu et al[39] reported a 
nanodrug with reduced side effects and pH-sensitive drug release behavior applied as 
targeted HCC therapy. A copolymer of monomethoxyl polyethylene glycol and poly 
N-(2-aminoethanethiol-co-2-aminoethyldiisopropylamine) aspartamide (mPEG-PAsp) 
or MEA & DIP was self-assembled with sorafenib and super-paramagnetic iron oxide 
nanoparticles (SPIONs) into nanoparticles, and then modified with anti-GPC3 
antibody (AbGPC3) to construct a nanodrug system with active targeting of liver cancer 
cells (Figure 4). SPIONs provided magnetic resonance imaging (MRI) capability to 
monitor the delivery behavior of the nanodrug. Increased glutathione and the low pH 
of the liver tumor microenvironment promote dissociation of the sorafenib-loaded 
nanodrug with sorafenib release on demand. Precise drug release significantly 
increases drug concentration in the tumor cells that guarantees therapeutic dosage and 
prevents drug resistance[40]. Furthermore, tumor microenvironment-responsive drug 
release decreases the toxicity to normal cells by drug blockade and nonspecific uptake 
by normal cells[3].

Enhanced therapeutic strategies of in situ treatment
Topical therapy is an important strategy in cancer treatment, and ablation and 
transcatheter artery embolization (TAE) are common topical treatments in the liver 
cancer clinic[41]. Common embolism reagents contain lipiodol and microspheres. The 
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Figure 4 Dual-sensitive nanodrug delivery for treatment of hepatocellular carcinoma. Based on the tumor microenvironment, a copolymer system 
was designed to rapidly release sorafenib in response to high cytoplasmic glutathione and low pH. Citation: Cai M, Li B, Lin L, Huang J, An Y, Huang W, Zhou Z, 
Wang Y, Shuai X, Zhu K. A reduction and pH dual-sensitive nanodrug for targeted theranostics in hepatocellular carcinoma. Biomater Sci 2020; 8: 3485-3499. 
Copyright © The Authors 2020. Published by Royal Society of Chemistry.

advantage of liquid lipiodol is to embolize peripheral blood vessels of tumors, but it 
has little effect on the embolization of large blood vessels, which contributes to 
multiple procedures to prevent recanalization of blood vessels[2,42,43]. Incomplete 
peripheral blood vessel embolization also limits the therapeutic effects of 
microspheres, and the higher cost also impairs patient willingness to accept treatment
[44]. Therefore, the construction of novel embolic reagents might be a promising 
solution to the obstacles to HCC artery embolization. Hydrogels are novel embolic 
reagents for HCC therapy. Hydrogels have the advantages of good biocompatibility, 
sustained drug release, high drug loading, and so on[45-47]. The three-dimensional 
structure can improve the loading of insoluble drugs, which is essential for improved 
drug bioavailability[48]. Zheng et al[7] described a thermosensitive poly (D, L-lactic 
acid-co-glycolic acid)-b-poly (ethylene glycol) -b-poly (D,L-lactic acid-co-glycolic acid) 
(PLGA-PEG-PLGA)-based hydrogel nanosystem, composed of sorafenib, lipiodol and 
selenium nanoparticles (SeNPs). The hydrogel was injected into liver tumors and had 
long-term local anticancer effects. Combination with X-ray radiotherapy further 
enhanced the therapeutic effects (Figure 5). More important, the thermosensitive 
hydrogel system takes advantage of lipiodol in the embolization of peripheral blood 
vessels. The dual-functional design warrants future investigation of embolic materials.

Another critical aspect of local therapy is tumor ablation. Conventional ablation is 
temperature- or chemical-based. Temperature-based methods include radiofrequency 
ablation (RFA), microwave ablation, laser ablation, high-intensity focus ultrasound, 
cryoablation, and nonreversible electroporation (IRE, or NanoKnife)[49,50]. Ethanol 
and ethanoic acid are the two main reagents used for chemical ablation. However, the 
evidence from clinical liver cancer practice indicates that incomplete ablation is an 
urgent problem that deserves more attention[51]. To overcome these flaws, nanoma-
terial-enhanced strategies are widely studied. Considering the superior embolic effect 
of thermogels and the good heat ablation effect of gold nanoclusters, Yang et al[8] 
described a composite system composed of poly (N-isopropylamide-co-acrylic acid) 
(PNAs) and dual-valent gold nanoclusters (dvGC) with a core-shell nanostructure. The 
incorporation of gold nanoclusters enhanced the heating effect of radiofrequency 
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Figure 5 Enhanced therapeutic strategies of in situ treatment. A: Temperature-sensitive hydrogel with sustained drug release capacity for orthotopic 
hepatocellular carcinoma therapy. Citation: Zheng L, Li C, Huang X, Lin X, Lin W, Yang F, Chen T. Thermosensitive hydrogels for sustained-release of sorafenib and 
selenium nanoparticles for localized synergistic chemoradiotherapy. Biomaterials 2019; 216: 119220. Copyright © The Authors 2019. Published by Elsevier; B: Gold 
nanoclusters in thermosensitive hydrogel for radiofrequency ablation and transcatheter artery embolization. Citation: Li L, Guo X, Peng X, Zhang H, Liu Y, Li H, He X, 
Shi D, Xiong B, Zhao Y, Zheng C, Yang X. Radiofrequency-responsive dual-valent gold nanoclusters for enhancing synergistic therapy of tumor ablation and artery 
embolization. Nano Today 2020; 35: 100934. Copyright © The Authors 2020. Published by Elsevier.

ablation and improved tumor inhibition[8]. The application of nanomaterials in topical 
HCC therapy achieves a better therapeutic effect over systemic treatments, and the 
patients can benefit from nanomaterial application in embolization and ablation-
combined treatment. With the development of interventional technology, the future of 
tumor regional therapy is encouraging.

GENE THERAPY IN LIVER CANCER
Gene delivery carrier construction
Gene therapy opens up prospects of innovative therapeutic schedules in HCC, and 
some therapeutic genes have been used to correct the genetic alterations. Genetic 
therapy includes the use of plasmid genes, small interfering RNA (siRNA), micro RNA 
(miRNA), or messenger RNA (mRNA)[52]. In recent years, some plasmids coding 
tumor suppressor genes were delivered into tumor cells to prevent tumor progression. 
Some siRNAs or miRNAs against oncogenic genes have been used to prevent pro-
oncogenic signaling pathways. Of note, mRNA delivery is also promising in antitumor 
immunity[53,54]. At present, gene therapy-based chimeric antigen receptor T (CAR-T) 
therapy for HCC has been investigated in clinical trials. Introduction of CAR genes 
introduction is accomplished by viral gene delivery to guarantee efficient gene 
transfection ex vivo[55,56]. Reviewing the potential risks of viral vectors in vivo, 
nonviral gene delivery vector has developed rapidly, especially in the development of 
nanostructured materials[57]. Compared with viral vector gene delivery, nonviral 
delivery of nanomaterials has superior efficiency, specificity, biosafety, and 
multifunction design[58-60] (Figure 6). Common nonviral gene delivery vectors 
include many cationic nanocarriers that were developed to adsorb nucleic acids by 
electrostatic interactions, such as cationic liposomes and polymers with positively 
charged blocks[61,62].

Co-delivery of genes and chemotherapeutics for drug-resistant liver cancer
Drug resistance is an essential influence of patient prognosis, especially in HCC. HCC 
is frequently diagnosed at an advanced stage, and chemotherapy is a standard 
treatment for patients without surgical options, but drug resistance often occurs. The 
combination of other novel treatments with chemotherapy might be beneficial for 
HCC patients. Gene therapy has potential value in chemosensitization. Many studies 
have reported that delivery of tumor suppressor genes or silencing RNA against 
oncogenes recovered the sensitivity of tumor cells to chemotherapy drugs. Some 
studies focused on midkine, which is a biomarker of diagnosis and prognosis of HCC 
patients, and is involved in the cell proliferation and metastasis[63,64]. Downregu-
lation of midkine to inhibit the progression of HCC has been confirmed in previous 
studies[65,66]. Harashima et al[67] developed small lipid nanoparticles that 
encapsulated midkine-siRNA and sorafenib. As shown in Figure 7A, midkine was 
overexpressed in sorafenib-resistant HepG2 cells, and knockdown of midkine 
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Figure 6 Advantages of nonviral nanomaterials for gene delivery.

Figure 7 Co-delivery of siRNA and chemotherapeutic sorafenib by ultra-small lipid nanoparticles to overcome drug resistance of 
hepatocellular carcinoma. A: MK gene expression was evaluated in HepG2 and sorafenib-resistant HepG2 cells; B: HepG2 and resistant HepG2 cells were 
treated with sorafenib and MK-siRNA or siCntrl, and subjected test for cell viability; C: Sorafenib-resistant HepG2 cells were treated usLNPs encapsulating MK-siRNA 
or control. STAT-3, Caspase-3 and NF-κB signaling were assayed; D-E: Sorafenib-resistant HCC tumors in mice were treated with sorafenib and MK-siRNA, and 
tumor volume and resected tumors were evaluated; F: After treatment, tumor tissue was collected and MK gene expression level was assayed. Citation: Younis MA, 
Khalil IA, Elewa YHA, Kon Y, Harashima H. Ultra-small lipid nanoparticles encapsulating sorafenib and midkine-siRNA selectively-eradicate sorafenib-resistant 
hepatocellular carcinoma in vivo. J Control Release 2021; 331: 335-349. Copyright © The Authors 2021. Published by Elsevier.

significantly improved the inhibition of cell viability by sorafenib (Figure 7B). They 
also demonstrated that the silencing of midkine inhibited STAT-3 and NF-κB signaling 
pathways and promoted Caspase-3 antitumor activity (Figure 7C). The treatment 
outcome of co-delivery of sorafenib and siRNA against midkine was confirmed in a 
mouse model, showing significant tumor suppression (Figure 7D-F).

Pump-mediated drug efflux is a mediator of chemotherapy resistance, and P-
glycoprotein (MDR1) is a principal regulator in drug efflux. Our team and other 
research groups have developed some delivery systems to overcome drug efflux-
mediated resistance. We previously described thermo-responsive supramolecular 
polymers that enhanced the cellular uptake of chemotherapeutics by cells that overex-
pressed multidrug resistance (MDR)1[68,69]. The co-delivery of chemotherapeutics 
and siRNA against MDR1 resulted in significant inhibition of drug efflux and 
improved treatment response[70,71]. The findings show that engineered nanosystems 
with combined treatments have significant advantages to overcome drug efflux-pump 
resistance. However, non-pump-mediated drug resistance also restricts the therapeutic 
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effect of chemotherapy. Bcl-2, a mitochondrial regulator, functions as an antiapoptotic 
mediator to interfere with Caspase family apoptotic signaling. Knockdown of Bcl-2 
expression with inhibitors or siRNA is a classical strategy to strengthen tumor 
inhibition by chemotherapeutics[6,72]. However, the stability of siRNA is a notable 
constraint. Interestingly, Wu et al[9,73-75] developed a strategy to co-deliver Nur77△
DBD gene plasmids and chemotherapeutic PTX simultaneously. The Nur77/△DBD 
interacted with Bcl-2 and changed Bcl-2 from tumor protector to tumor killer. 
Considering the advantage of DNA on stability over RNA, that strategy might increase 
the efficiency of gene delivery and enhance the cytotoxicity of chemotherapeutic PTX. 
The mitochondrial location of Nur77/△DBD promotes reversal of Bcl-2 function 
(Figure 8). In general, the co-delivery of genes and chemotherapeutic drugs can be 
applied in both drug efflux pump and non-pump drug resistance. The combination 
with gene therapy can significantly reverse pro-oncogenic pathways, and improve the 
performance of chemotherapeutic drugs.

PHOTO-ASSISTED THERAPIES IN LIVER CANCER
Imaging-guided surgical resection
To date, surgical resection is the first choice for HCC treatment, which can 
significantly prolong the survival of HCC patients. However, because of the difficulty 
to identify small lesions by the naked eye, incomplete tumor resection contributes to 
tumor recurrence or metastasis, which significantly affect the clinical outcome. In 
recent years, imaging-guided tumor resection has shown outstanding performance in 
HCC surgical treatment. Compared with some classical imaging options including 
computed tomography and MRI, photo-imaging has better clinical transformation 
value. Fluorescence imaging (FLI) and photo-acoustic imaging are the two repres-
entative solutions with improved efficiency in the detection of small lesions. Tian et al
[76] reported indocyanine green (ICG) as an FDA-approved near-infrared (NIR-Ⅱ) 
probe to guide tumor resection in HCC patients. They reported that intraoperative 
NIR-II fluorescence imaging had a higher tumor detection sensitivity and a better 
signal-to-noise ratio to distinguish HCC tumor and normal liver tissue (Figure 9A).

Considering the rapid clearance of ICG in vivo and the time demands of surgery, 
Liu et al[77] developed a novel embolic formulation that combined an embolic lipiodol 
agent and ICG. This study was motivated by the clinical demand for TAE to treat 
HCC. Some insoluble chemotherapeutic drugs cannot fully disperse in lipiodol, which 
contributes to the instability of the drugs in the local tumor environment. To overcome 
the problem, a superstable homogeneous iodinated formulation technology (SHIFT) 
was used to improve the stability of ICG in lipiodol, and allow combined therapy of 
embolization with fluorescence-guided surgical resection, which is suitable for 
patients with advanced HCC (Figure 9B). Interestingly, the rabbit VX2 tumor model 
results showed remarkable fluorescence intensity in the tumor after 2 wk of 
embolization therapy (Figure 9C). Intravenous injection of free ICG 24 h before 
surgery resulted in no significant fluorescence intensity. The evidence shows that 
transcatheter embolization synergistic fluorescence imaging-assisted surgical resection 
can enhance tumor detection, and achievement of complete tumor resection to avoid 
tumor recurrence and metastasis. Additionally, precise fluorescence imaging can 
decrease the resection risk of normal tissues. In general, the strategy of imaging-
guided surgical resection has clinical potential for HCC patients, even for those with 
progressive disease.

Phototherapy combined with chemotherapeutic therapy
Photothermal therapy (PTT) and photodynamic therapy (PDT) are the two main 
phototherapies. Simply, photosensitizers are exploited by PTT and PDT under laser 
irradiation, the heat or reactive oxygen species (ROS) that are produced kill tumors[78,
79]. Some studies have reported the potential application of PTT and PDT in HCC. Yu 
et al[80] evaluated bovine serum albumin (BSA)-coated zinc phthalocyanine (ZnPc) 
and chemotherapeutic sorafenib (SFB) nanoparticles in an oil-in-water emulsion 
(Figure 10). Zinc phthalocyanine was added as photosensitizer to achieve PTT and 
PDT effect. Based on the advantages of nanoparticles for drug delivery, sorafenib 
significantly inhibited Raf/MEK/ERK signaling, which is essential for cell prolif-
eration, angiogenesis, and metastasis. Efficient heat and ROS generation could 
remarkably induce tumor apoptosis, and enhance the sensitivity of tumor cells to 
sorafenib chemotherapy. The combination of phototherapy and chemotherapy is a 
potential strategy to address the shortcomings of chemotherapy, such as acquired 
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Figure 8 Co-delivery of Bcl-2 conversion gene and chemotherapeutic agents for non-pump drug resistance. A: The diagram shows the PHB-
PDMAEMA@polyplex with chemotherapeutic PTX and Nur77/△DBD to inhibit Bcl-2-mediated drug resistance through the reversal of Bcl-2 from protector to killer in 
liver tumor cells; B: Significant tumor inhibition of the PHB-PDMAEMA@polyplex of cell viability and cell cycle in Bcl-2-related drug-resistant tumor cells. Citation: 
Wang X, Liow SS, Wu Q, Li C, Owh C, Li Z, Loh XJ, Wu YL. Co-delivery for Paclitaxel and Bcl-2 Conversion Gene by PHB-PDMAEMA Amphiphilic Cationic 
Copolymer for Effective Drug Resistant Cancer Therapy. Macromol Biosci 2017; 17. Copyright © The Authors 2017. Published by Wiley.

drug tolerance.

Phototherapy combined with immunotherapy
Immunotherapy as a revolutionary cancer treatment that include immune checkpoint 
blockade, such as CTLA-4, PD-1 or PD-L1 and chimeric antigen receptor T cell (CAT-
T)[81,82]. However, off-target toxicity and low efficiency are the main shortcomings. 
Many studies have confirmed that immunotherapy slightly improves the survival of 
HCC patients[26,83]. Considering the difficulties of immunotherapy in solid tumors, 
the potential value of nanomaterial-assisted efficient drug delivery, and synergistic 
treatment effects, many studies have investigated ways to increase the therapeutic 
effect of immunotherapy. Some synergistic strategies have achieved therapeutic effects
[84,85]. Tian’s group[10] reported that SP94-coated Prussian blue nanoparticles 
effectively delivered sorafenib to liver tumor cells (Figure 11). The Prussian blue color 
showed that the nanoparticles mediated an efficient PTT effect under laser irradiation, 
and the complementary treatment with sorafenib induced immunogenic cell death, 
released tumor-associated antigen, and promoted dendritic cell (DC) maturation, 
which significantly enhanced the therapeutic response of anti-PD-L1 monoclonal 
antibody (mAb). Synergistic phototherapy and checkpoint blockade immunotherapy 
strategy can restructure tumor immunosuppression microenvironments, making HCC 
patients more sensitive to immunotherapy. Overall, synergistic strategy opens the 
door for immunotherapy of HCC.

CONCLUSION
In conclusion, this frontier focuses on the prominent problems in the clinical treatment 
of liver cancer, especially in the discussion of key factors that restrict the early 
diagnosis and create a poor prognosis of liver cancer, and further explores nanotech-
nology-based solutions. With smart nano-design, the efficacy of drug delivery is 
achieved by active or passive targeting strategies. Combined strategies with current 
curative or palliative treatments of liver cancer can strengthen the therapeutic effect of 
surgery, ablation, chemotherapy, gene therapy, and phototherapy. In clinical practice, 
combination therapy is commonly used for liver cancer to overcome the shortcomings 
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Figure 9 Imaging-guided tumor surgery. A: ICG fluorescence imaging-guided tumor resection in hepatoma patients; B: Illustration of a superstable 
homogeneous lipiodol-ICG formulation for HCC therapy; C: Long-term stability of ICG fluorescence in tumors through a combination of transcatheter arterial 
embolization. Citation: Hu Z, Fang C, Li B, Zhang Z, Cao C, Cai M, Su S, Sun X, Shi X, Li C, Zhou T, Zhang Y, Chi C, He P, Xia X, Chen Y, Gambhir SS, Cheng Z, 
Tian J. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat Biomed Eng 2020; 4: 259-
271. Copyright © The Authors 2020. Published by Springer Nature Limited. Citation: Chen H, Cheng H, Dai Q, Cheng Y, Zhang Y, Li D, Sun Y, Mao J, Ren K, Chu C, 
Liu G. A superstable homogeneous lipiodol-ICG formulation for locoregional hepatocellular carcinoma treatment. J Control Release 2020; 323: 635-643. Copyright © 
The Authors 2020. Published by Elsevier.

Figure 10  Trimodal therapy of ZnPc/SFB@BSA for orthotopic hepatocellular carcinoma. Bovine serum albumen (BSA)-coated zinc phthalocyanine 
and sorafenib (ZnPc/SFB@BSA) nanoparticles for photodynamic therapy (PDT), photothermal therapy (PTT) and chemotherapy with 730 nm light irradiation. 
Citation: Yu XN, Deng Y, Zhang GC, Liu J, Liu TT, Dong L, Zhu CF, Shen XZ, Li YH, Zhu JM. Sorafenib-Conjugated Zinc Phthalocyanine Based Nanocapsule for 
Trimodal Therapy in an Orthotopic Hepatocellular Carcinoma Xenograft Mouse Model. ACS Appl Mater Interfaces 2020; 12: 17193-17206. Copyright © The Authors 
2020. Published by American Chemical Society.

of single treatment that are subject to acquired drug resistance and toxic side effects. 
The specific structure of many nanotheranostic strategies improves the performance of 
combination therapy, which significantly improves the prognosis of liver cancer 
patients and prolongs survival. Overall, development of the engineering nanother-
anostic strategy could revolutionize the current treatment of liver cancer.
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Figure 11  Phototherapy combined with immunotherapy to inhibit hepatocellular carcinoma metastasis and recurrence. Multifunctional 
Prussian blue nanoparticles loading sorafenib are conjugated with hepatocellular carcinoma-specific targeting peptide SP94 and Cy5.5. 
The photothermal treatment induces immunogenic cell death, activating the systemic immune response, and enhance the treatment of anti-PD-L1 therapy. Citation: 
Zhou T, Liang X, Wang P, Hu Y, Qi Y, Jin Y, Du Y, Fang C, Tian J. A Hepatocellular Carcinoma Targeting Nanostrategy with Hypoxia-Ameliorating and Photothermal 
Abilities that, Combined with Immunotherapy, Inhibits Metastasis and Recurrence. ACS Nano 2020; 14: 12679-12696. Copyright © The Authors 2020. Published by 
American Chemical Society.
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