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Abstract
Vascular injury is a frequent pathology in coronary artery disease. To repair the 
vasculature, scientists have found that endothelial progenitor cells (EPCs) have 
excellent properties associated with angiogenesis. Over time, research on EPCs 
has made encouraging progress regardless of pathology or clinical technology. 
This review focuses on the origins and cell markers of EPCs, and the connection 
between EPCs and coronary artery disease. In addition, we summarized various 
studies of EPC-capturing stents and EPC infusion therapy, and aim to learn from 
past technology to predict the future.

Key Words: Endothelial progenitor cells; Coronary disease; Endothelial progenitor-cell 
capture stents; Endothelial progenitor-cell infusion; Clinical application
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Core Tip: The development of clinical applications of endothelial progenitor cells 
(EPCs) has progressed in recent decades. In this review, we summarize and discuss the 
origins and antibody markers of EPCs and the clinical effects of EPC stents and 
infusion. We hope to predict future clinical uses of EPCs.
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INTRODUCTION
The development of clinical applications of endothelial progenitor cells (EPCs) has 
progressed over the years, with identification of antibody markers of EPCs and with 
clinical study of EPC stents and EPC infusion. The core application depends on the 
excellent properties associated with angiogenesis of EPCs. We mainly discuss the 
applications of EPCs in coronary artery disease and EPC application and summarized 
various studies of EPC-capturing stents and EPC infusion therapy, focusing on the 
mechanisms involved.

INTRODUCTION TO EPCS
Decades ago, scientists found that endothelial cells (ECs) could proliferate and migrate 
to ischemic tissues or tumors and promote angiogenesis. Identifying markers of 
circulating cells that promote new blood vessel development has been a research 
challenge in recent years. For example, Flamme et al[1] and Weiss et al[2] explored the 
origin and development of hematopoietic cells and ECs, and they found that 
hematopoietic cells and EPCs are derived from a common precursor and share some 
markers during embryonic development. In 1997, EPCs were first isolated and 
cultured from peripheral blood by Asahara et al[3]. They are positive for both 
hematopoietic stem cell (HSC) markers like CD34 and CD133 and endothelial marker 
proteins like vascular endothelial growth factor receptor (VEGFR)2. CD34 is expressed 
on virtually all normal hematopoietic progenitor cells. Steen et al[4] identified CD34 as 
an HSC marker on human peripheral blood monocytes in 1998. The researchers 
suggested that human peripheral blood mononuclear cells could be expanded in vitro 
as pluripotent stem cells and differentiate into cells of distinct lineages and 
transplantation candidates. Gehling et al[5] found that CD133-positive cells formed 
new blood vessels in mice, which indicated that CD133-positive cells have the 
potential to differentiate into ECs. CD146, a transmembrane immunoglobulin mainly 
expressed at the intercellular junctions of ECs, by vascular smooth muscle cells 
(VSMCs), and pericytes[6], is involved in cell-cell adhesion, angiogenesis, and 
monocyte transmigration, CD146 includes three forms, lgCD146, shCD146, and 
sCD146. Jouve et al[7] found that CD146 expression reflected alteration of vascular 
permeability, and was significantly increased and accompanied by release of cell 
adhesion molecules when endothelial dysfunction was present. A reduction in 
permeability was observed in CD146-deficient mice[7]. In addition, CD146 is 
expressed in late EPCs[8-10], which enhances the angiogenic properties, endothelial 
function, and reduces neointimal formation by EPCs[8]. Factors that identify EPCs 
may reflect changes in not only cell number but also cell function. However, EPC 
nomenclature still lacks concordance in the biomedical field[11], and no single surface 
marker has been reported to specifically identify EPCs.

Studies have shown that EPCs come from various sources, and the most repres-
entative cells are HSCs from bone marrow. In recent years, Yang et al[12] examined the 
importance of CD34 as a progenitor cell marker and studied the origin of progenitor 
cells. CD34 cells derived from mouse bone marrow had increased adhesion, homing 
capacity, and angiogenesis. Additional EPC characteristics have been identified, 
including angiogenesis that promotes blood vessel growth, differentiation to both 
hematopoietic and endothelial phenotypes, mobilization and adhesion to the walls of 
blood vessels, and survival and homing capacity[13]. In recent years, scientists have 
found that vascular progenitor cells are derived from the vessel itself; human 
umbilical vein ECs (HUVECs) and human aortic ECs derived from vessel walls have 
high proliferative potential[14], and have become the basis for vascular transplantation 
technology. Transplanted EPCs are capable of enhancing neovascularization in 
different tissues and the vasculature[15]. In addition, EPCs found in the bone marrow 
and the adventitia of arteries, have provided new ideas for the treatment of 
cardiovascular diseases[16,17]. Progenitor cells from different sources have been 
shown to migrate into blood vessels and induce the proliferation of blood vessels in 
corresponding tissues[18], and increasing the number of EPCs enhances neovascular-
ization [19]. From those we guess there might be some dissimilarities among various 
types of EPCs, and recent years transcriptome analysis has showed some evidence to 
confirm predictions. Abdelgawad et al[20] reported that genes involved with angio-
genic potential such as BMP2, 4, and ephrinB2 were highly expressed in EPCs. The 
expression of neuropilin-1 and vascular endothelial growth factor (VEGF)-C were 
significantly upregulated in EPCs and HUVECs. Other genes such as Notch1, MIR21 
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and platelet/endothelial cell adhesion molecule-1 (PECAM-1) were also differentially 
expressed in EPCs of various origins. Single-cell RNA sequencing also revealed 
interesting results. CD163 and CD115 are considered to be markers of early EPCs, and 
CD36 might be a marker of late EPCs. Two other EPC-related gene markers, PLAUR 
and NOTCH2 are highly regulated in EPCs and peripheral blood mononuclear-cell 
monocyte subcompartment. The genes influenced the hematopoietic activity and 
migration of cells[21,22]. The findings may help to identify novel EPC markers and 
increase the yield of EPCs thus promoting the clinical application of cell therapy.

However, the supportive effect of EPCs on growth is not the only effect. For 
example, endothelial dysfunction is a crucial step in the pathology of atherosclerosis, 
and the secretion of reactive oxygen species (ROS) by dysfunctional ECs accelerates 
the progression of vascular inflammation[23]. In addition, inflammatory cytokines, 
such as interleukin (IL)-6, IL-8 and IL-1α, produced by cells induce inflammation, and 
inflammatory cytokines and the senescence-associated secretory phenotype contribute 
to cell aging[24]. On the other hand, the inflammatory environment promotes the 
migration and angiogenic functions of EPCs[25], and we must consider the influence 
of inflammation and immunity on EPC transplantation therapy. Studies have found 
that (1) EPCs suppress T cell proliferation and modulate T cell differentiation into less 
proinflammatory and active phenotypes; and (2) Tumor necrosis factor (TNF)α 
interacts with TNF receptor (TNFR)2 to enhance the immunosuppressive and anti-
inflammatory effects of EPCs. TNFα is a proinflammatory cytokine that regulates both 
pro- and anti-angiogenic activity[26,27], and binding with the TNFR1/TNFR2 trans-
membrane receptors has different immunomodulatory effects of EPCs on T cell 
immunity[28]. A study has shown that endothelial colony-forming cells (ECFCs) 
reduced the production of T cell proinflammatory cytokines and the immunosup-
pressive effect depended on the TNF/TNFR2 axis. Other studies have shown that 
EPCs from cord blood or from adult peripheral blood have different influences on 
regu-lating the immunosuppression of T cells[29]. Co-culture of human aortic 
endothelial cells, and ECFCs isolated from umbilical cord blood (CB-ECFCs) and from 
adult peripheral blood (APB-ECFCs) were less susceptible to immune rejection. The 
TNFα-TNFR2 axis was found to be important in the ECFC immunomodulatory effect. 
TNFR2 agonists enhanced the anti-inflammatory activity ECFCs, but antagonists 
inhibited that function. Such different mechanisms could help to choose ideal EPCs to 
avoid immune rejection and tolerate allogenic responses.

Recent progress has been made in the therapeutic applications of EPCs. Tateishi-
Yuyama et al[30] reported that the local transplantation of bone marrow cells 
improved limb ischemia[31]. In 2012, Donndorf et al[32] injected CD133-labeled bone 
marrow cells into the myocardium by to verify the ability of progenitor cells to 
regenerate ischemic tissues and induce angiogenesis. In recent years, bioscaffolds have 
been used for vascular repair. Human adventitial ECs can proliferate on pepsin-
digested porcine adventitial and porcine small intestinal submucosal extracellular 
matrix (ECM) bioscaffolds in response to basic fibroblast growth factor (FGF)2[33]. 
Acellularized scaffolds can also induce angiogenesis by mediating the adhesion and 
chemotaxis of EPCs to growth factors such as platelet-derived growth factor (PDGF), 
VEGF and hypoxia-inducible factor[34]. In the heart, a cell-free engineered scaffold 
promoted revascularization in ischemic myocardial tissue, and expression of the S100 
protein marker indicated nerve fiber regeneration[35]. Stem cell transplantation or 
scaffolds that capture stem cells, have great therapeutic potential to improve 
transplanted cell function and have applications in ischemic necrotic tissue and the 
myocardium in acute myocardial infarction (AMI). The effects are associated with 
activation of growth factors, and involve cell migration, transplanted cell proliferation, 
new matrix deposition, and the production of signaling molecules. The mechanisms 
will be discussed in detail.

EPCS AND CORONARY ARTERY DISEASE
Pathological processes in coronary atherosclerosis
Coronary artery disease (CAD) is a major public health issue and has been the leading 
cause of mortality and morbidity worldwide in recent years[36]. Study of coronary 
artery structure and cell physiology has led to considerable progress in the treatment 
of atherosclerosis. EC damage is an important step in the pathology of atherosclerosis
[37]. Mechanical injury or inflammation. cause subendothelial VSMCs of the artery to 
proliferate and produce a large amount of ECM during the initial stage of intimal 
thickening[38]. Then, low-density lipoprotein and cholesterol combine in regions 
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prone to atherosclerosis, which are mainly located at vessel branches and curves 
disturbed by irregular low wall shear stress[39]. Inflammatory cells such as 
macrophages enter the arterial wall in response to stimulation and phagocytose 
oxidized lipids to form foam cells[40], which is a key step in the pathological process 
of coronary atherosclerosis.

Mechanisms of EPC proliferation and migration in CAD-associated angiogenesis
EPCs cause rapid healing by proliferation, migration, and adhesion to the sites of 
blood vessel damage in CAD[41]. The molecular mechanisms may include (1) VEGF-
stimulated migration of EPCs from the bone marrow to the damaged vasculature[42]. 
The migration of EPCs was first discovered by Asahara et al[3], but the exact 
mechanism is still unclear. In recent years, scientists have shown that VEGF acts via the 
PI3K/AKT signaling pathway to promote EPC mobilization[43]. Differential gene 
expression analysis showed that high levels of PI3K and AKT increased VEGF 
expression and induced angiogenesis in EPCs[44,45]. The P38-MAPK pathway was 
also associated with the differentiation and mobilization EPCs from the bone marrow, 
which is the main source[46,47]. In terms of signal transmission, P38-MAPK is a 
downstream component of VEGFR2 signaling (the dominant component of the VEGF 
family that regulates angiogenesis)[44]. Through p38-MAPK, VEGF2 promotes the 
proliferation and migration of EPCs by regulating the expression of the activators 
urokinase plasminogen, serine protein kinases, and threonine protein kinases[48,49], 
thus strengthening angiogenesis. (2) Some noncoding small RNAs, such as microRNAs 
also have an important role in EPC mobilization. For example, microRNA-221 (miR-
221), miR-222, and miR-206 are involved in EPC-mediated promotion of angiogenesis 
by influencing VEGF expression[50-52]. The molecular mechanism involves binding to 
the 3’-UTRs of downstream protein-coding mRNAs, thus modulating the growth and 
differentiation of EPCs[52]. (3) When hypoxia and ischemia injure blood vessels, 
endothelial nitric oxide synthase (eNOS) activates the release of proangiogenic factors 
and induces the migration and proliferation of EPCs[53,54]. eNOS is one of the 
markers used to identify EPCs in humans[55]. PCR and western blotting have shown 
that CXCR4 activates the PI3K/Akt/eNOS signal transduction pathway to promote 
the phosphorylation of eNOS and then stimulate the migration of EPCs[56,57]. Nitric 
oxide (NO) is produced by eNOS uncoupling[58]. Ischemia in mice was improved 
when the mice were fed arginine, a substrate of NOS[59]. NO-sensitive guanylyl 
cyclase participated by cGMP-dependent mechanisms, which revealed the role of NO 
in EPC proliferation[60]. NADPH oxidase 4 can impair the function of EPCs. NADPH 
acts as a substrate and is crucial for maintaining cellular redox homeostasis[61]. 
Oxidative stress can cause endothelial cell injury and EPC dysfunction[62], which 
promotes pathological changes in coronary heart disease. The main mechanisms 
involve the expression of NOX and high levels of ROS. Patients with upregulated 
NOX and ROS have decreased EPCs, and it was shown that the migration and 
adhesion of EPCs was reduced[63,64].

STUDIES OF EPCS IN AMI
AMI is one of the most dangerous events associated with coronary heart disease[36]. 
Because of massive ischemia and necrosis of the myocardium, it difficult to resolve 
ischemia and revascularization except by surgery and percutaneous coronary 
intervention (PCI)[65,66]. However, there are some limitations. Not all patients are 
qualified for surgery, and poor prognosis and clinical events after surgery are still 
challenging for clinicians[67]. Therefore, we need an effective therapeutic strategy for 
conditions that surgery cannot address. EPCs can proliferate, migrate, and adhere to 
tissues. In ischemic tissue, EPCs can differentiate into corresponding ECs[1]. Vasculo-
genesis and myogenesis have been described in heart tissues after EPC infusion in a 
canine model of AMI [67]. In addition, the expression of VEGF was upregulated, and 
the EPCs differentiated into myocardial cells. The evidence suggests that EPC infusion 
could enhance neovascularization after AMI. In a mouse model of AMI, injecting EPCs 
enhanced myocardial healing after AMI and reduced the formation of lymphatic 
vessels, which may decrease inflammation and myocardial remodeling[68]. However, 
in an in vitro study, the results were not ideal, and the effects of EPCs on AMI patients 
were attenuated compared with those in the healthy group. Many factors, like lifestyle 
habits and drug treatment affect the process and impact treatment to different degrees 
[69]. Smoking and drinking may cause EC damage and angiotensin converting 
enzyme inhibitors or angiotensin receptor inhibitors can increase the activity of EPCs. 
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Therefore, clinical applications require additional clinical data to support safety and 
effectiveness.

Scientists have conducted several clinical trials to demonstrate the efficacy of EPCs 
in the treatment of ischemic cardiac tissue[70-80] (Table 1). First, scientists performed 
several imaging evaluations to assess the migratory and regenerative capacities of 
EPCs in the ischemic myocardium after progenitor cell therapy[70-72]. The efficacy of 
progenitor cell therapy reduced infarct size and improved left ventricle function. In 
addition, the cellular mechanisms associated with EPC therapy were initially explored. 
The migratory capacity of EPCs toward the target tissue relied on their homing 
capacity, and some chemoattractants, such as SDF and VEGF, were involved in the 
homing signaling pathway that recruited circulating EPCs and enhanced repair 
mechanisms after ischemia[71,72]. However, the scientific community awaits the 
results of clinical trials to assess safety and efficacy. A few years later, a study that 
used EPC infusion to treat idiopathic pulmonary arterial hypertension and reported 
the EPC therapy had patient benefits[73]. Cell infusion increased the distance walked 
in 6 min by 42.5 m (95% confidence interval 28.7-56.3, P = 0.001) compared with 
conventional therapy, and improved in pulmonary artery pressure and cardiac output, 
with no adverse events, suggesting feasibly and safety. A study of EPC treatment of 
AMI focused on bone marrow-derived CD34+ cells and showed that a 3% 
improvement in ejection fraction (EF) occurred in the treatment group after the 
infusion of EPCs[74]. CD34+ cell homing was observed. Another clinical trial showed 
that a certain number of CD34 cells may increase the EF and reduce the infarct size in 
AMI[75]. In the study, an overall improvement in LVEF of approximately 5.0% was 
reported. Angina and heart failure improved at the 12-mo follow-up (all P < 0.001), 
and the survival rate at the 18.5-mo follow-up was 94.7% (n = 36). The evidence 
supports the safety and efficacy of EPC therapy. PECAM-1, also called CD31, is a 
vascular cell adhesion and signaling molecule that is expressed on the surface of 
human granulocytes, monocytes, and platelets[76]. In experimental animal models, 
CD31+ EPCs therapy enhanced perfusion and reduced apoptosis in the healing 
myocardium[78], and immune system stimulation of increased anti-inflammatory 
cytokine may predict fewer adverse events[79]. In another mouse model, abnormal 
proliferation was not observed after EPC transplantation[80]. Whether various types of 
EPCs are available for intravenous therapy remains unclear. Long-term prognosis and 
safety also need further investigation.

EPC-CAPTURE STENTS
Clinical applications of EPC-capture stents
EPC-capture stents are stainless steel devices that are coated with monoclonal 
antibodies such as CD133, CD34 and CD146 and are associated with a decreased 
incidence of restenosis and thrombosis[81-83]. Monoclonal CD34 antibodies bind to 
EPCs in the peripheral blood and promote healing [84], by migration and proliferation. 
The promotion of EPC colonization in the stent accelerates re-endothelialization and 
revascularization of the stented segment[85], which leads to decreased rates of 
restenosis and thrombosis after PCI. Studies of EPC stents coated with different types 
of antibodies are shown in Table 2, and described below.

The advantage of EPC stents coated with monoclonal CD34 antibodies is that CD34 
enhances stent endothelialization, thus enhancing the adhesion and proliferation of 
EPCs. Studies of endothelialization in different stents has shown that CD34 antibodies 
stents increased endothelial coverage, 97 ± 3% in anti-CD34 antibody stents, 95 ± 4% in 
hyaluronan-chitosan-anti-CD34 antibody and sirolimus-eluting stents, and 74 ± 8% in 
sirolimus-eluting stents[86]. A clinical study of CD34 antibody-coated stents in a group 
of 100 patients reported major adverse cardiac events (MACE), a composite of cardiac 
death, myocardial infarction, and emergency cardiac surgery, in 15.6% of patients at 12 
mo and 16.6% at 24 mo. The target vessel failure rate, a composite of revascularization, 
recurrent infarction, or cardiac death of the target vessel) was 14.6% at 12 mo and 24 
mo[87]. In another study, 2279 patients were treated with EPC stents and grouped into 
low bleeding risk (LBR) and intermediate-to-high bleeding risk (IHBR) groups. The 
rate of 1-year target lesion failure (TLF) was 4.1% in the IHBR and 2.6% in the LBR 
groups. The AMI rates were 1.8% in the IHBR and 1.1% in the LBR groups, and the 
incidence of stent thrombosis was 1.2% in the IHBR and 0.6% in the LBR groups[88], 
which showed a higher 1-year TLF rates. Animal studies of CD133 combination stents 
mainly investigated restenosis and endothelialization, and two compared CD133 with 
CD34. Wu et al[89] reported that the time of cell adhesion was longer and EPC capture 
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Table 1 Clinical studies of endothelial progenitor cell therapy

Ref. Article Species EPCs 
category Result

Britten et al[71], 
2003

Infarct remodeling after intracoronary progenitor  
cell treatment in patients with acute myocardial  
infarction (TOPCARE-AMI): Mechanistic insights  
from serial contrast-enhanced magnetic resonance  
imaging

Human CD34, CD45, 
CD133

The progenitor cell therapy could rescue 
dysfunctional myocardium early after AMI

Döbert et al[72], 
2004

Transplantation of progenitor cells after reperfused  
acute myocardial infarction: Evaluation of perfusion and 
myocardial viability with FDG-PET and  
thallium SPECT

Human BMCs and 
EPCs 

The EPC therapy could increase myocardial 
viability 

Wang et al[73], 
2007

Transplantation of autologous endothelial progenitor  
cells may be beneficial in patients with idiopathic 
pulmonary arterial hypertension: A pilot randomized 
controlled trial

Human Peripheral 
blood EPCs

Infusion of EPCs seemed to be feasible and 
safe, and might have beneficially affect to 
AMI patients

Dedobbeleer et 
al[74], 2004

Myocardial homing and coronary endothelial function  
after autologous blood CD34+ progenitor cells 
intracoronary injection in the chronic phase of myocardial  
infarction

Human CD34 The safety and homing ability of EPCs are 
proved in both acute and chronic conditions

Flores-Ramírez 
et al[77], 2010

Intracoronary infusion of CD133+ endothelial  
progenitor cells improves heart function and quality of  
life in patients with chronic post-infarct heart  
insufficiency

Human CD133 The EPCs therapy had improved the heart 
function of patients

Dubois et al[78], 
2010

Differential effects of progenitor cell populations on left 
ventricular remodeling and myocardial neovascularization 
after myocardial infarction

Pig CD31, CD90, 
CD29, CD44, 
CD45

Infusion of late-outgrowth EPCs could 
improve myocardial infarction remodeling

Lee et al[70], 
2015

Intracoronary transfusion of circulation-derived CD34+ cells 
improves left ventricular function in patients with end-stage 
diffuse coronary artery disease unsuitable for coronary 
intervention

Human CD34 CD34+ cell therapy was safe and efficacious 
in improving heart function

Sung et al[75], 
2018

Five-year clinical and angiographic follow-up outcomes of 
intracoronary transfusion of circulation-derived CD34+  
cells for patients with end-stage diffuse coronary artery 
disease unsuitable for coronary intervention-phase 1  
clinical trial

Human CD34 CD34+ cell therapy might contribute to 
improving left ventricular function, heart 
failure, and amelioration of left ventricular 
remodeling

Shen et al[80], 
2018

Induced pluripotent stem cell-derived endothelial 
progenitor cells attenuate ischemic acute kidney injury and 
cardiac dysfunction

Mouse CD31 EPC therapy may reduce the effect of 
cardiomyocyte apoptosis and cardiac 
dysfunction

Lee et al[79], 
2019

Clinical assessment of intravenous endothelial progenitor 
cell transplantation in dogs. cell transplant

Dog CD105, CD31 
and CD144

Dogs with EPC transplantation have 
reduced platelets, increased VEGF, and 
increased IL-10

Angulski et al
[81], 2019

systemic infusion of expanded CD133+ cells and  
expanded CD133+ cell-derived EVs for the treatment of 
ischemic cardiomyopathy in a rat model  
of AMI

Rat CD133 Not significant effect was observed in this 
experiment

AMI: Acute myocardial infarction; BMCs: Blood mononuclear cells; EPCs: Endothelial progenitor cells; EV: Extracellular vesicle; SPECT: Single photon 
emission computed tomography; TOPCARE-AMI: Transplantation of Progenitor Cells and Regeneration Enhancement in AMI; VEGF: Vascular endothelial 
growth factor.

was improved with anti-CD133 antibody-coated stents compared with the anti-CD34-
coated stents. Li et al[90] reported that anti-CD133 antibody-coated stents enhanced 
endothelialization more than anti-CD34-coated stents. In-stent restenosis was invest-
igated by Wawrzyńska et al[91], and confocal images of ECs and VSMCs showed that 
the anti-CD133 antibody stent accelerated re-endothelialization and inhibited the 
proliferation of VSMCs. The overall results indicate that anti-CD133 antibody stents 
potentially avoided thrombosis and reduce restenosis in. A recent study by Park et al
[83] focused on CD146. CD146, which is related to endothelial lineages, such as late 
EPCs and outgrowth ECs. CD146 stents had a higher cell capture efficiency than 
CD133 stents. The CD144 stent was expected to have synergistic effects in suppressing 
restenosis.

Because of the diversity of antibody markers for EPCs, there are various types of 
EPC-capture stents. The choice for clinical treatment depends on the cell capture 
efficiency and endothelialization function to prevent in-stent restenosis. Anti-CD34 
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Table 2 Clinical outcomes with endothelial progenitor cell stents

Ref. Article Patients, 
n Inclusion criteria Major clinical outcomes

Sung et al[75], 
2018

Five-yr clinical and angiographic follow-
up outcomes of intracoronary transfusion 
of circulation-derived CD34+ cells for 
patients with end-stage diffuse coronary 
artery disease unsuitable for coronary 
intervention phase 1 clinical trial

38 Death from any cause/major adverse 
cardiac and cerebrovascular event/target 
vessel revascularization/newly onset 
atrial fibrillation

Five-yr clinical outcomes: 
Noncardiovascular death: 13.2%. 
Cardiovascular death: 7.9%. Acute 
myocardial infarction: 7.9%. Newly 
onset atrial fibrillation: 2.6%

Sarno et al[85], 
2017

Real-life clinical outcomes with 
everolimus eluting platinum chromium 
stent with an abluminal biodegradable 
polymer in patients from the Swedish 
coronary angiography and angioplasty 
registry (SCAAR)

42357 Clinical presentation/lesion 
characteristics

One-yr outcomes: Restenosis: 1.1%; 
Restenotic lesion: 3.8%; Death: 5.2%

den Dekker et al
[87], 2011

Final results of the HEALING IIB trial to 
evaluate a bio-engineered CD34 
antibody-coated stent (Genous stent) 
designed to promote vascular healing by 
capture of circulating endothelial 
progenitor cells in CAD patients

100 Angiographic features/ MACCE rate Two-yr clinical outcomes: MACCE: 
16.6%, MI: 5.2%, TLR clinically 
driven: 11.5%, TVF: 14.6%, Stent 
thrombosis: 3.1%

Chandrasekhar 
et al[88], 2020

1-year COMBO stent outcomes stratified 
by the PARIS bleeding prediction score: 
From the MASCOT registry

2279 One-yr TLF/target lesion 
revascularization/ST/major adverse 
cardiac events

One-yr outcomes: TLF: 6.7%, 
Cardiac death: 2.4%, MI: 2.9%, TLR: 
3.1%, Stent thrombosis: 1.8%

MACCE: Major adverse cardiac and cerebrovascular events; MI: Myocardial infarction; TLR: Target lesion revascularization; TVF: Target vessel failure; 
TLF: Target lesion failure.

antibody stents are commonly used in the clinic, but studies have shown that CD133 
and CD146 have a better potential to stimulate angiogenesis and prevent restenosis, 
which may reduce the incidence of clinical events. Larg multicenter randomized 
controlled trials are needed to standardize and verify the therapeutic applications 
before clinical application is feasible.

EPC-mediated reduction in thrombus formation may be an advantage of EPC-
capture stents
The incidence of clinical events can be reduced by EPC capture, but there are still no 
significant differences between EPC-capture and traditional drug-eluting stents (DES). 
That may be related to the characteristics of EPCs, which can promote the repair of the 
vascular endothelium and also influence thrombus propagation[92,93]. Platelets can 
bind to bone marrow-derived CD34+ cells and recruit the cells to the vascular wall 
during vascular injury; the chemokine SDF-1α and GPIIb integrin mediate the process. 
Platelets also adhere to the vessel wall, forming a thrombus. SDF-1 and VEGF recruit 
EPCs, resulting in vascular repair and remodeling[94]. EPCs participate in the 
resolution of thrombosis together with multiple chemokines. VEGF, SDF1, and PDGF 
are involved in EPC migration[95-97]. EPCs integrate into the damaged endothelium 
and repair injured vessels. New vessels are formed, and vascular endothelial 
monolayers are integrated. In that way, EPCs significantly drive the development of 
new vascular channels in thrombi[98], and neovascularization is a significant marker 
to indicate thrombus resolution and recanalization[99]. Second, NO affects the 
activation, adhesion, and aggregation of platelets, ultimately preventing thrombosis
[100]. Finally, the integrity of vascular ECs can prevent thrombosis[101]. When new 
damage occurs to the lining of blood vessels, ECs are recruited to accelerate repair of 
the damage, thus significantly reducing the incidence of thrombi.

The curative effect of EPC-capture stents leads a better result than that of bare metal 
stents or DESs containing antiproliferative drugs, such as sirolimus, which confirms 
the original hypothesis that stents that reduce the rates of clinical events such as LST, 
MI and thrombosis extend survival[102,103]. The clinical trial results may have been 
slightly skewed by the interference of age, medication use and implantation time[104,
105]. Age may be associated with increased rates of heart failure and AMI. The risk of 
late stent thrombosis increases with time, and patients who are treated with drugs 
under a physician’s guidance may have decreased risks of clinical events. However, 
those factors did not have absolute statistical significance. Clinical outcomes are 
affected by clinical and technical factors, mental health, and ethnic origin. Long-term 
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follow-up to show the impact of clinical events and the associated risk factors is also 
lacking.

CONCLUSION
The results of recent EPC studies has been encouraging, regardless of the CAD 
pathology or vascular repair technology. Clinical manipulation of EPCs still needs to 
be practiced, and the possibility of using drugs to promote vascular repair needs to be 
further explored. Antibody-coated stents have also been successfully used, and it is 
unclear whether additional antibodies can be used for treatment. Various antibodies, 
including CD34, CD133 and CD146 have had unique results in animal experiments, 
but it is unclear which has the best potential for EPC capture efficiency. Can the stent 
structure be improved to reduce the incidence of acute thrombosis and late clinical 
events? In basic research, we found high adhesion, homing capacity, and angiogenic 
abilities of EPCs, and more study of the mechanisms are needed to understand and 
improve the understanding of EPCs. All the challenges need to be solved. The optimal 
patients for EPC-capture stents and relevant risk assessments also need to be 
established, and perhaps we need a large clinical study to study that.
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