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Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major clinical cause of morbidity 
and mortality in liver surgery and transplantation. Many studies have found that 
nitric oxide (NO) plays an important role in the HIRI and its increase or decrease 
can affect the progression and outcome of HIRI. However, the role of NO in HIRI 
is controversial and complicated. NO derived by endothelial NO synthase (eNOS) 
shows a protective role in HIRI, while excessive NO derived by inducible NO 
synthase (iNOS) accelerates inflammation and increases oxidative stress, further 
aggravating HIRI. Nevertheless, the overexpression of eNOS may exacerbate HIRI 
and iNOS-derived NO in some cases reduces HIRI. Here we review the new 
progress in the understanding of the roles of NO during HIRI: (1) NO possesses 
different roles in HIRI by increasing NO bioavailability, down-regulating 
leukotriene C4 synthase, inhibiting the activation of the nuclear factorκB (NFκB) 
pathway, enhancing cell autophagy, and reducing inflammatory cytokines and 
reactive oxygen species (ROS). And NO has both protective and deleterious 
effects by regulating apoptotic factors; (2) eNOS promotes NO production and 
suppresses its own overexpression, exerting a hepatoprotective effect reversely. 
Its activation is regulated by the PI3K/Akt and KLF2/AMPK pathways; and (3) 
iNOS derived NO mainly has deteriorating effects on HIRI, while it may have a 
protective function under some conditions. Their expression should reach a 
balance to reduce the adverse side and make NO protective in the treatment of 
HIRI. Thus, it can be inferred that NO modulating drugs may be a new direction 
in the treatment of HIRI or may be used as an adjunct to mitigate HIRI for the 
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purpose of protecting the liver.

Key Words: Hepatic ischemia-reperfusion injury; Nitric oxide; Endothelial nitric oxide synthase; Inducible 
nitric oxide synthase
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Core Tip: This review focuses on the new progress in the understanding of the role of nitric oxide (NO) in 
hepatic ischemia-reperfusion injury (HIRI). NO protects HIRI by increasing NO bioavailability and 
cellular autophagy, down-regulating leukotriene C4 synthase, inhibiting the nuclear factor κB (NF-κB) 
pathway, and reducing inflammatory cytokines and reactive oxygen species. While by regulating apoptotic 
factors, it has dual effects. eNOS exerts hepatoprotective effects by promoting NO production through the 
involvement of the phosphoinositide 3-kinase/Akt pathway and Kruppel-like factor 2/adenosine 
monophosphate-activated protein kinase pathways. The function of eNOS overexpression remains contro-
versial. iNOS-derived NO mainly deteriorates HIRI, but it may reduce damage under certain conditions. 
The balance of eNOS and iNOS is important for the HIRI protection.

Citation: Zhang YP, Liu XR, Yang MW, Yang SL, Hong FF. New progress in understanding roles of nitric oxide 
during hepatic ischemia-reperfusion injury. World J Hepatol 2022; 14(3): 504-515
URL: https://www.wjgnet.com/1948-5182/full/v14/i3/504.htm
DOI: https://dx.doi.org/10.4254/wjh.v14.i3.504

INTRODUCTION
Hepatic ischemia-reperfusion injury (HIRI) is a major complication often seen in liver surgery and organ 
transplantation. It manifests as cellular damage during the ischemic phase and worsens during 
reperfusion. Depending on the different conditions of ischemia, HIRI can be divided into warm 
ischemia-reperfusion (WIR) injury and cold ischemia-reperfusion injury (IRI), which have similar 
pathophysiology but different clinical injury sites[1].

With a high incidence of cases, liver cancer has increased by 114.0% and ended up with 1007800 cases 
in 2016[2]. Many liver cancer patients are supposed to be treated by liver transplantation or 
hepatectomy, where HIRI occurs during the operation [3]. Although HIRI is receiving increasing 
attention to improve the success rate of surgery and improve prognosis, very few of them are known.

The pathophysiological process of hepatic IRI involves the interaction of many different cell types 
and numerous signaling pathways such as anaerobic metabolism, acidosis, oxidative stress, and 
intracellular calcium overload. Among the interactions, the imbalance in the ratio of endothelin (ET) to 
nitric oxide (NO) is one of the mechanisms involved in HIRI. Normally, their function is to regulate 
blood flow to the hepatic sinusoids. In contrast, in the first few hours after reperfusion, as ET rises, 
plasma expression of NO decreases, leading to an increase in the ET/NO ratio and the possible 
appearance of HIRI[4,5].

Many pieces of evidence show that NO plays an important role in ischemia-reperfusion (I/R)[6,7]. 
However, as a vasodilator, the role of NO has been controversially discussed by scientists[8,9]. In past 
studies, NO was regarded as a negative factor because of its cytotoxic effect[10]. Nevertheless, a recent 
study indicated that NO can induce either a positive or negative effect during the early phase of HIRI 
and have a protective effect during late HIRI[11]. Therefore, it is important to further explore the 
protective mechanism of NO in HIRI.

NO is a small molecule free radical that can easily penetrate cell membranes. It is also an important 
effector and messenger molecule of biological information, which has undergone many extensive types 
of research in the past few years. There are two sources of NO in the human body—enzymatic 
production and non-enzymatic production. Non-enzymatic production mainly comes from chemical 
degradation and inorganic nitrogen transformation on the body surface or ingested. For enzymatic 
production, NO is oxidized from L-arginine by NO synthase (NOS)[12].

There are Ca2+-independent and Ca2+-dependent NOS in the human body. Ca2+-dependent NOS can 
be subdivided into neuronal (nNOS) and endothelial (eNOS). eNOS is an enzyme continuously 
expressed in vascular endothelial cells and exerts biological functions through producing NO. In 
contrast to eNOS, Ca2+-independent inducible NOS (iNOS) is activated by some exterior factors 
including viruses, bacteria, pro-inflammatory interferon, and cytokines[13]. iNOS produces a large 
amount of NO in hepatocytes, cholangiocytes, and Kupffer cells (KCs), helping macrophages to mount 
an immune response[14].

https://www.wjgnet.com/1948-5182/full/v14/i3/504.htm
https://dx.doi.org/10.4254/wjh.v14.i3.504
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eNOS and iNOS are believed to take actions in HIRI. While depending on different isoforms of NOS, 
NO has a dual effect on hepatocellular functions during IR. eNOS-derived NO is hepatoprotective of 
ischemia following IRI by improving hepatic microcirculation and counteracting the deteriorate 
functions of reactive oxygen species (ROS) [4]. However, an augmented level of iNOS activation upon 
reperfusion will produce excessive NO, resulting in endothelial dysfunction and aggravating liver 
damage in HIRI[14]. It has been reported that iNOS-derived NO may have a positive or negative 
function in HIRI depending on the different conditions[15].

This review aims to find the role of NO during HIRI and look for candidate ways to alleviate liver 
damage (Table 1).

DIFFERENT ROLES OF NO DURING HIRI
Recently, studies have showed that NO has a significant role during the HIRI, which can be a positive 
protective function or negative deleterious function. NO was proved to reduce HIRI through various 
mechanisms such as increasing NO bioavailability, down-regulating leukotrienes (LTs), inhibiting liver 
cell apoptosis, enhancing autophagic flux, maintaining liver microcirculation blood flow, stabilizing 
ATP levels, and reducing oxidative stress injury. Whereas, NO can also regulate some apoptotic signal 
pathways to accelerate the apoptosis of hepatic tissue.

Increase of NO bioavailability involved in its protective effect in HIRI
Hide et al[16] found that NO bioavailability was reduced during reperfusion by detecting the levels of 
cyclic guanosine monophosphate, a second messenger of NO. They concluded that the decreased NO 
bioavailability can be explained by the reduction of eNOS activity leading to less synthesis of NO and 
increased NO clearance by reacting with ROS and forming peroxynitrite, which may later react with cell 
components such as proteins, lipids, and DNA, further damaging the cell. Therefore, increasing NO 
bioavailability can protect the liver from further damage during HIRI. It is reported that obestatin 
enhances NO bioavailability by up-regulating eNOS expression[17]. Also, simvastatin maintains NO 
bioavailability by preventing kruppel-like factor 2 (KLF2) down-regulation[16].

NO can down-regulate LTC4S by inhibiting the nuclear factorκB pathway
Many studies reveal that cysteinyl leukotrienes are directly associated with hepatic IRI. Leukotriene C4 
synthase (LTC4S) is one of the enzymes that are responsible for LTC4 synthesis, showing a strong 
relationship with the NO[18,19]. In I/R rats, the gene expression level of LTC4S is much higher. 
However, this is reversed by V-PYRRO/NO, which acts as an NO donor. Hong et al[20] also found that 
another NO donor, sodium nitroprusside, could down-regulate the mRNA expression of LTC4S by 
inhibiting nuclear factor-kappa B (NF-κB) activation in an NF-κB α inhibitor-independent manner by 
detecting the protein levels of NF-κB p65 and p50 in the nuclear extracts using Western Blot.

NO can regulate some apoptotic signal transduction pathways and factors
NO has a significant role in regulating some apoptotic signal transduction pathways which can be 
potentially activated to induce or inhibit the hepatic cell apoptosis process caused by HIRI during the 
hepatic operation or other hepatic diseases. The signal pathways or apoptosis-related genes including 
caspases[21-25], Bcl-2 gene family[26-30], mitogen-activated protein kinase (MAPK)[31], and NF-kB[32]. 
Studies have shown that the caspase family is strongly related to hepatic cell apoptosis[33]. Zhao et al
[21] found that steatosis-induced decline in adenosine monophosphate-activated protein kinase 
(AMPK)-catalyzed phosphorylation permits caspase-6 activation, leading to hepatocyte death. And Gao 
et al[22] indicated that caspase-3A is involved in cadmium (Cd)-induced cell apoptosis in common carp, 
which showed 71.8% sequence similarity and 59.3% sequence identity to human caspase-3. Zhang et al
[23] found that Cd treatment increased the level of iNOS and NO. The overexpression of NO leads to 
chicken hepatic cell apoptosis by inducing the mitochondrial apoptotic pathway. In two other studies, 
mouse liver cell apoptosis can be inhibited by reducing NO content, down-regulating Bax protein 
expression, and increasing Bcl-2 protein expression[24,25]. Besides, an imbalanced Bax/Bcl-2 ratio is 
caused by decreasing levels of NO and iNOS and increasing Bcl-2 expression through the NF-kB 
pathway. And this imbalanced ratio may show a protective role in the damaged liver[30]. Jiang et al[34] 
also found that 7-mer peptide can increase the level of Bcl-2 and decrease the level of Bax expression to 
reduce apoptosis and protect against IRI.

NO protects against I/R-induced liver injury by enhancing autophagic flux
NO has an important role in protecting against I/R-induced liver injury by enhancing autophagic flux. 
During severe environments such as IRI, the cell will undergo an autophagic process, which is an 
adaptive response to reduce the injury. Studies have found that the protective mechanism of NO during 
HIRI is associated with autophagic flux. Shin et al[35] demonstrated that NO could enhance light chain-3 
lipidation and autophagosome-lysosome fusion during hepatic I/R. Also, eNOS-induced NO enhances 
autophagy via p38 MAPK activation during liver I/R. Simvastatin, which is used to protect the donor 
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Table 1 Roles of nitric oxide, inducible nitric oxide synthase, and endothelial nitric oxide synthase in various conditions and 
pharmacological protection against hepatic ischemia-reperfusion injury

Pretreatment NO/ iNOS/ 
eNOS levels Animals Experimental cells Mechanism

Liver cell 
necrosis and 
liver damage

Ref.

NMP, BMMSCs, and liver 
CDC

eNOS↑, iNOS
↓

SPF rats Liver tissue Macrophage activation, 
ICAM-1, VCAM-1, vWF↓

↓ [5]

L-NAME and BDL iNOS mRNA↓ Male Wistar rats Liver tissue TGF-β, NOx, HA↓; AMDA↑ [6]

Simvastatin and WIR NO↑ Male Wistar rats Primary LSEC Nitrotyrosines, O2-↓; Nrf2, 
HO-1↑

↓ [14]

Simvastatin and WIR NO, eNOS↑ Male Wistar rats LSEC KLF2, p-eNOS, cGMP↑; 
O2−, VCAM-1↓

↓ [16]

Obestatin and HIRI eNOS↑, iNOS
↓

Adult Wistar albino 
male rats

Liver tissue samples Reducing oxidative stress 
and inflammatory process

↓ [17]

HIRI NO↑ Male Sprague-
Dawley rats

Liver Decrease synthesis of 
LTC4S, NF-κB↓

↓ [18,19]

V-PYRRO/NO and HIRI NO↑ Male Sprague-
Dawley rats

Liver Decrease synthesis of 
LTC4S, NF-κB↓

↓ [20]

AMPK–caspase-6 axis and 
nonalcoholic steatohep-
atitis

- LAKO mice Hepatocyte Caspases-6 activation ↓ [21]

Cd-Induced Apoptosis NO↑ iNOS↑ Hy-Line Brown 
laying hen

Liver Mitochondrial apoptotic 
pathway

↓ [23]

Punicalagin and 
cyclophosphamide

NO, iNOS↓ Sprague-Dawley 
male rats

Liver Reduce cell apoptosis ↓ [25]

Emblica officinalisGaertn 
and NAP

NO↓ Male Wistar rats Liver Apoptosis, autophagy, 
inflammation↓

↓ [28]

Tormentic acid and LPS/ 
D-GalN

NO, iNOS↓ Male C57BL/6 mice Liver samples TNF-α, NF-κB↓; imbalanced 
Bax/Bcl-2 ratio

↓ [30]

Selenocysteine-containing 
7-mer peptide

NO↓ Adult male Wistar 
rats

Liver tissue Inhibit oxidant 
peroxynitrite, Bax↓; Bcl-2↑

↓ [34]

IPC and HIRI NO↑ Male C57BL/6 mice Liver tissue p38 MAPK↑; autophagy↑ ↓ [35]

Simvastatin and hepatic 
transplantation

NO↑ Male rats Liver Autophagy↑ ↓ [36]

IPC NO↑ Male Sprague-
Dawley rats

Liver Oxygen species liberation 
and proinflammatory 
cytokine↓; microcirculation
↑

↓ [37]

Oxytocin and HIRI NO↑ Adult male albino 
(Sprague Dawley 
strain)

Liver NO bioavailability↑ ↓ [38]

TELL and HIRI eNOS↑ Male Wistar rats Liver Activate PI3K/Akt 
pathway, suppress TLR4, p-
PI3K, p-Akt, Nrf2, p-NF-κB 
p65, p-MAPK p38, TNF-α, 
GSH, MyD88, HMGB-1, 
TBARS↑; NF-κB↓

↓ [42]

Apelin preconditioning 
and HIRI

eNOS↑ Male albino rats Liver tissue Activate PI3K/Akt 
pathway, suppress AT1R, 
counteract Ang II/AT1R 
system

↓ [43]

Simvastatin and WIR eNOS↑ Male inbred Sprague 
Dawley rats

Liver tissue Activate KLF2 pathway, 
TM, p-eNOS↑, TGF-β, TNF-
α, IL- 1β↓

↓ [44]

HMP and liver DCD NO, eNOS↑ Adult male Sprague-
dawley rat

Liver KLF2↑; NF-κB p65, IL-1β, 
TNF-α↓

↓ [45]

TMZ and WIR eNOS↑ Male Wistar rats Liver tissue p-MAPK↑; activate MAPK 
pathway

↓ [46]
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IGL-1 and Fatty Liver 
Graft Cold Storage

eNOS↑ Homozygous (obese) 
Zücker rats

Liver Activate MAPK pathway, 
ATP↑

↓ [48]

SEW2871 and WIR eNOS↑ Male C57BL/6 mice SECs VE-cadherin, p-Akt↑; IFN-
γ, TNF-α, IL-6, VCAM-1↓

↓ [49]

EPO and liver 
transplantation

eNOS↑ Female landrace pigs Liver tissue Activate JAK2/PI3/AKT 
pathway, AMPK↑; βcR2-
VEGFR-2 complex

↓ [51]

HIRI - Female domestic 
(Landrace) pigs

Liver tissue IL-6, STAT-3 and E-selectin 
mRNA↑

- [52]

TDF and HIRI eNOS, iNOS↓ cGMP↑, activate 
mitochondrial K-ATP 
channels, mitochondrial 
Ca2+↓

↓

PTX and HIRI eNOS, iNOS↓

Female Wistar albino 
rats

Liver tissue

cAMP↑ TNF-α, IL-1, IL-6, 
IL-12, TGF-β, IFN-γ, 
procollagen-I mRNA↓

↓

[53]

L-NNA and HIRI iNOS↑, eNOS, 
NO↓

TNF-α, NF-κB↑, Bcl-2↓ ↑

L-Arginine/CDN and 
HIRI

NO, eNOS↑, 
iNOS↓

Male Wistar rats Liver

TNF-α, NF-κB↓, Bcl-2↑ ↓

[54]

iNOS knockout and WIR iNOS↓ C57BL/6 male rats 293 T cells PUMA↓ ↑ [55]

NAC and HIRI eNOS↑, iNOS
↓

NOSTRIN, MDA, MPO 
activity↓

↓

TQ and HIRI eNOS↑, iNOS
↓

Male Wister albino 
rats

Liver

NOSTRIN, MDA, oxidative 
stress, nitrosative stress↓, 
GSH↑

↓

[56]

LA and HIRI iNOS mRNA↓ Male Wistar rats Liver NF-κB p65, MIP-2 mRNA, 
GSH↓

↓ [57]

V and HIRI NO, iNOS 
mRNA↓

Male Wistar rats Lung and Liver tissue Inhibit HIF-α/HGF/iNOS 
pathway

↓ [58]

Eupatilin and HIRI iNOS↓ Male C57BL/6 mice Embryonic liver BNL 
CL.2 cell

TLR2/4, p-IκB-a↓, Bcl-2↑ ↓ [59]

N-SMase inhibitor and 
HIRI

iNOS Male Wistar rats Liver tissue Protein nitration, 
nitrite/nitrate levels, HNE

[60]

Ad-eNOS and small-for-
size liver transplatation

NO, eNOS↑ - Human normal liver 
cell line L02

TNF-α↓, inhibit 
macrophage activation

↓ [61]

Ad-eNOS and HIRI eNOS↑ Male inbred C57BL6 
lean mice

Liver ATP↓, bax, p53↑ ↓ [62]

L-NAME: Nomega-nitro-L-arginine methyl ester; BDL: Bile duct ligation; WIR: Warm ischemia and reperfusion; LSEC: Rat liver sinusoidal endothelial 
cells; KLF2: Kruppel-like factor 2; VCAM-1: Vascular cell adhesion molecule-1; HIRI: Hepatic ischemia reperfusion injury; NF-κB: nuclear factor-kappaB; 
LTC4S: Leukotriene C4 synthase; AMPK: Adenosine monophosphate activated protein kinase; NAP:N-nitrosodiethylamine; LPS: Lipopolysaccharide; D-
GalN: D-galactosamine; TNF-α: Tumor necrosis factor-α; Bax: BCL2-Associated X; Bcl-2: B-cell lymphoma-2; MAPK: Mitogen-activated protein kinase; IPC: 
Ischemic preconditioning; TM: Thrombomodulin; PI3K: Phosphoinositide 3-kinase; TLR4: Toll like receptor-4; Nrf2: Nuclear erythroid-related factor 2; 
MyD88: Myeloid differentiation primary-response protein 88; TBARS: Thiobarbituric acid reactive substances; AT1R: Angiotensin type 1 receptor; VE-
cadherin: Vascular endothelial cadherin; JAK: Janus activated kinase 2; DCD: Donated after circulatory death; HMP: Hypothermic machine perfusion; 
TMZ: Trimetazidine; IGL-1: Institut georges lopez-1; SECs: Sinusoidal endothelial cells; EPO: Erythropoietin; TDF: Tadalafil; PTX: Pentoxifylline; SPF: 
Pathogen-free; BMMSCs: Bone marrow mesenchymal stem cells; NMP: Normothermic machine perfusion; L-NNA: Nomega-nitro-L-arginine; CDN: 
Cardamonin; PUMA: p53 up-regulated modulator of apoptosis; HIF-α: Hypoxia inducible factor 1α; HGF: Hepatocyte growth factor; MIP-2: Macrophage 
inflammatory protein-2, LA: Alpha-lipoic acid; V: Vildagliptin; MPO: Myeloperoxidase, MDA: Malondialdehyde; NAC: N-acetylcysteine; TQ: 
Thymoquinone; Ad-eNOS: Adenovirus-eNOS; N-SMase: Neutral sphingomyelinase; HNE: 4-hydroxynonenal; VEGFR: Vascular endothelial growth factor 
receptor; ICAM-1: Intracellular cell adhesion molecule-1; βcR: Common β receptor; NOSTRIN: Nitric oxide synthase trafficking.

liver, can activate autophagy and increase NO release during hepatic transplantation. This also indicates 
the possible connection between NO and autophagy[36].

NO decreases inflammatory cytokines and reduces ROS by inhibiting the mitochondrial respiratory 
chain
During reperfusion, the surge of inflammatory factors, cytokine liberation, neutrophil infiltration and 
ROS generation occurred, which led to hepatic injury. An increased level of NO can reduce cytokines 
such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-1 which stimulate infiltration and 
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endothelial injury. Also, continuous NO production can reduce ROS and proinflammatory cytokine 
generation as well as neutrophil infiltration[37]. Inversely, NO deficiency can induce TNF-α expression 
as a result of ROS surging. Ragy et al[38] proved this by adding Nomega-nitro-L-arginine methyl ester 
(L-NAME) in IRI model rats treated with oxytocin. In this group, not only did the parameter damage 
increase but also the inflammatory factor such as TNF-α level increased compared with the control 
group.

ROLE OF ENOS IN HIRI
Activated eNOS produces NO to protect HIRI
eNOS performs various biological functions by promoting the production of NO, which is important for 
maintaining vascular tone and cardiovascular hemostasis, and inhibiting platelet activation and 
aggregation. It has been confessed that eNOS shows a hepatoprotective effect in HIRI by improving the 
production of NO (Figure 1).

There are two main regulation pathways for eNOS activation, one dependent on intracellular concen-
tration of Ca2+ and the other independent. The increasing intracellular Ca2+ level can enhance the affinity 
of calmodulin binding to eNOS and activate enzymes to produce NO[39]. For the Ca2+-independent 
regulation pathway, phosphorylation of the Ser1177 residue or dephosphorylation of the Thr495 residue 
activates it to produce NO[40].

Calcium-dependent eNOS activation 
At the early stage of HIRI, the ischemia will lead to a shortage of oxygen and nutrients, which can 
decrease ATP availability. Without energy, ATP-dependent ion channels or transporters cannot work. 
The incompetence of the Na+/K+ pump leads to depolarization of the cell membrane, resulting in the 
influx of Ca2+[41]. Besides, anaerobic glycolysis induces an increase in H+, which activates intracellular 
proteases to increase cellular permeability. Furthermore, Na+/Ca2+ exchange is activated due to a high 
concentration of H+, leading to a further influx of Ca2+. Consequently, eNOS is activated due to the 
increase of intracellular concentration to produce NO, carrying anti-HIRI activities at the initial stage.

Calcium-independent eNOS activation
Phosphoinositide 3-kinase/Akt pathway induced eNOS activation: The phosphoinositide 3-kinase 
(PI3K)/Akt signaling pathway is a cell survival pathway that regulates cell proliferation and apoptosis, 
as well as an endogenous negative feedback regulator that functions in anti-inflammation and anti-
apoptosis effects in IR.

PI3K can activate Akt to act on the phosphorylation of eNOS. It has been proven that telluric acid has 
a hepatoprotective effect by elevating the expression of eNOS, which is accompanied with elevated 
expression of p-PI3K and p-Akt proteins. Besides, the activation of PI3K/Akt also inhibits NF-κB and 
activates nuclear erythroid-related factor-2, reducing pro-inflammation cytokine expression and 
inducing anti-oxidative effects[42]. Moreover, through the PI3K/Akt pathway, apelin preconditioning 
can increase the expression of eNOS and counteract the pathological effects of the angiotensin 
II/angiotensin II type 1 receptor system in HIRI[43]. Thus, the activation of the PI3K/Akt pathway leads 
to the phosphorylation of eNOS and continuous catalysation of NO production, which is essential to 
counteract HIRI.

KLF2 induced eNOS activation: There may exist other ways of influencing the eNOS activity during IR. 
It has been proven that WIR injury can decrease the expression of KLF2 in endothelial cells. Also, this 
reduction is accompanied by a decrease in phosphorylated eNOS (p-eNOS), one of the KLF2 targets. 
And the IR damage can be mitigated by pretreatment with simvastatin through a KLF2-dependent 
mechanism, upregulating the mRNA expression of KLF2 and eNOS as well as the protein expression of 
KLF2 and p-eNOS[16,44]. Hu et al[45] also demonstrated that hypothermic machine perfusion inhibited 
NF-κB signaling and activated eNOS/NO signaling through KLF2 expression, thereby alleviating the 
inflammatory response and oxidative stress injury. It has demonstrated that KLF2 activators can be 
candidate therapeutic agents for HIRI.

AMPK induced eNOS activation: AMPK plays a key role in the regulation of cellular energy 
homeostasis. The activation of this kinase is a response to the stimulus. Mahfoudh et al[46] reported that 
repeated administration of trimetazidine protected against WIR injury by decreasing liver damage and 
oxidative stress. The underlying mechanism involves the activation of the AMPK/eNOS signaling 
pathway. In addition, similar mechanisms have been identified in the protective effect of Institut 
Georges Lopez 1 solution on cold-stored fatty liver grafts. The effect is mainly exerted through the 
activation of the AMPK pathway, which targets eNOS to produce NO, offsetting aggravated microcircu-
latory changes, and improving vascular resistance and function during IR[47,48].

Other pathways: SEW2871, a selective sphingosine-1-phosphate receptor 1 (S1PR1) agonist, can restore 
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Figure 1 Hepatoprotective effects of endothelial nitric oxide synthase-derived nitric oxide during hepatic ischemia-reperfusion injury and 
underlying mechanisms. Nrf2: Nuclear erythroid-related factor; HO-1: Heme oxygenate-1; IL-1: Interleukin-1; TNF-α: Tumor necrosis factor-α; NF-κB: Nuclear 
factor-κ-gene binding; LTC4: Leukotriene C4; GSH: Glutathione; COX-2: Cyclooxygenase 2; ROS: Reactive oxygen species; ICAM-1: Intracellular cell adhesion 
molecule-1; AMPK: Adenosine monophosphate activated protein kinase; MAPK: Mitogen-activated protein kinase; iNOS: Inducible nitric oxide synthase.

the expression of eNOS and vascular endothelial (VE) cadherin in sinusoidal endothelial cells during 
HIRI in vivo and does not influence the expression of p-Akt. Thus, there may be a regulation pathway 
between S1PR1 and eNOS[49]. And the expression of VE-cadherin is important for vascular integrity, 
which is the basis for eNOS expression[49].

Moreover, ischemia preconditioning (IPC) can protect HIRI through p38 MAPK activation, which 
induces eNOS-derived NO expression to enhance cell autophagy in HIRI[35]. However, pretreatment 
with 3,7-dimethyl-1-propargylxanthine, an adenosine A2 receptor (A2AR) antagonist, can repeal the 
protective effect induced by IPC. Therefore, it can be inferred that there may be a relationship between 
the A2AR and eNOS[50].

The study of Kebschull et al[51] showed that low-dose erythropoietin (EPO) treatment significantly 
increased hepatic NO bioavailability by up-regulating eNOS expression. EPO-mediated eNOS 
phosphorylation is promoted by EPOR-mediated activation of the Janus kinase 2/PI3K/Akt pathway 
and common β receptor (βcR)-dependent activation of AMPK. In addition to this, activation of the βcR2-
vascular endothelial growth factor receptor-2 complex is also involved in the regulation, but its 
downstream signaling is currently unclear.

ROLE OF INOS IN HIRI
As mentioned above, iNOS-derived NO may have different functions in HIRI[15]. Although in most 
cases iNOS is considered to be harmful to the HIRI, it does not affect or even protects the HIRI in some 
conditions. In a study of models with liver ischemia and partial liver resection, iNOS mRNA expression 
was not found to be significantly altered compared to the sham group. While during 6 to 8 h after 
hepatectomy, iNOS expression and NO production were promoted by cytokines, thereby improving 
liver microcirculation and preventing cell apoptosis[52]. The protective effect of iNOS has only been 
demonstrated in a few specific experiments and lacks widespread validation. Due to differences in 
experimental subjects, measurement criteria, and experimental time constraints, iNOS-derived NO 
exhibits a more complex and unclear role than eNOS.

iNOS aggravates HIRI
Hide et al[14] found a surge of NO in WIR in aged livers, which was mainly induced by iNOS 
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production. The surge of NO derived from iNOS can increase the expression of reactive nitrogen species 
(RNS) and inflammatory cytokines, resulting in cytotoxic damage in hepatocytes. Besides, the damage 
from iNOS is also confirmed in other studies. As intrahepatic macrophages, KCs are activated in early 
IRI, producing excessive amounts of iNOS-derived NO and leading to massive production of pro-
inflammatory factors, cytokines, and ROS, which are key links to impaired microcirculation in the liver 
and deteriorate HIRI[5,53].

At the late phase of HIRI, the function of iNOS will be at a prominent stage. Excess NO derived from 
iNOS has cytotoxic effects that induce inflammation and excessive oxidation, and performs many 
deleterious functions in HIRI. Increased iNOS expression is associated with increased TNF-α and NF-κB, 
which leads to increased expression of pro-inflammatory genes, inflammatory mediators, and 
regulatory enzymes[54]. They are both important to trigger inflammation reactions and may have 
deleterious effects on IRI. Besides, in studying the role of iNOS/NO in the interferon regulatory factor-1 
(IRF1) signaling pathway of primary human hepatocytes, Du et al[55] found the existence of a positive-
feedback loop between iNOS and IRF1. The IRF1 and p53 can upregulate the p53 up-regulated 
modulator of apoptosis (PUMA), which is a modulator of apoptosis, resulting in hepatocyte death and 
further damage to hepatic IRI.

REGULATING INOS AND ENOS EXPRESSION TO PROTECT HIRI
The extent and intensity of eNOS and iNOS in HIRI are both higher than those in the normal state, 
while excess NO will produce peroxynitrite to aggravate IR damage. These can be reduced by using 
high doses of tadalafil and pentoxifylline to mitigate the deterioration of nitrosative stress and 
endothelial cell injury[53].

Iwasaki et al[6] demonstrated that L-NAME, an NOS inhibitor, attenuated liver damage in IRI of 
cholestatic livers by inhibiting the NO production. Comparing the expression of iNOS and eNOS with 
L-NAME treatment, they found that this kind of protection was mainly mediated by the inhibitory 
effects of iNOS. It also prevented the increase of asymmetric dimethylarginine, which is an exogenous 
inhibitor of eNOS, to protect against IRI at the early stage.

Bone marrow mesenchymal stem cell (BMMSC) transplantation can regulate NOS synthesis by 
increasing eNOS expression as well as inhibiting iNOS expression and excessive NO production to 
protect HIRI and reduce hepatocyte apoptosis. Its regulations are closely related to the inhibition of 
NOS-induced macrophage activation, the suppression of large amounts of iNOS and NO synthesized by 
macrophages, and the amelioration of endothelial damage. And the combined use of BMMSCs and 
normothermic machine perfusion can increase the balance of ET/NO ratio[5].

Besides, the eNOS traffic inducer (NOSTRIN) can significantly inhibit NO release by decreasing the 
enzymatic activity of eNOS. Pretreatment with N-acetylcysteine or thymoquinone can up-regulate 
eNOS along with NO production and down-regulate iNOS and NOSTRIN expression to attenuate HIRI 
injury, showing the protective effect of increasing eNOS and NO levels and inhibiting iNOS expression 
against IRI in rat liver[56].

Inhibiting iNOS to protect HIRI
After reperfusion, the expression of inflammatory factors such as macrophage inflammatory protein-2 
and iNOS increase with the activation of NF-κB, leading to a series of inflammation reactions. Alpha-
lipoic acid can reduce the formation of excess NO during reperfusion by decreasing the expression of 
iNOS mRNA and reduce cellular damage from NO-forming NOS superoxide and peroxide anions[57]. 
Beyond that, in a study of vildagliptin function in lung injury after hepatic IRI, significant inhibition of 
iNOS mRNA expression and NO was observed by the involvement of the hypoxia-inducible factor 
(HIF)-α/hepatocyte growth factor/iNOS pathway. The evaluated HIF-α can increase iNOS expression in 
various models. Therefore, targeting HIF-α expression can reduce tissue damage[58]. Furthermore, 
hepatic IR-induced iNOS protein expression can be diminished by eupatilin, which also suppresses the 
Toll-like receptor 2/NF-κB pathway to ameliorate inflammation response[59]. In addition, neural-
sphingomyelinase (N-SMase) can produce ceramide, which is a mediator of iNOS expression. Inhibition 
of N-SMase leads to a decrease in iNOS levels, along with a decrease in protein nitrification and 
nitrite/nitrate levels in WIR[60].

Inhibiting overexpression of and eNOS
Some studies have demonstrated the hepatoprotective effect of genetic eNOS overexpression in small-
for-size liver transplantation and illustrated the importance of promoting eNOS expression for hepato-
protection[61]. However, there is insufficient evidence for a protective effect of eNOS overexpression, 
and evidence that eNOS overexpression is detrimental to HIRI[62]. The dual effect of eNOS in HIRI 
remains controversial.

The fact is that the expression of eNOS will be deteriorated by oxidative stress and endothelial 
damage during the progression of ischemia, while the function of iNOS will be stimulated by oxidative 
stress during reperfusion and aggravate the liver injury. The imbalance of eNOS and iNOS can also 
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aggravate IRI.

THERAPEUTIC PERSPECTIVES
NOS drugs as well as drugs for the regulation of NOS enzymes may be the way forward for liver 
protection. However, more in-depth studies are still needed. Not only do drugs need to be stable, but 
they also need to avoid the harm that NO and NOS can cause to reduce side effects. Besides, despite a 
number of experimental studies demonstrating the beneficial effects of NO-releasing compounds and 
some drugs that promote NO release in ameliorating hepatic IRI, the results of trials and evaluations in 
the clinical setting are still lacking. Perhaps more randomised controlled clinical trials should be 
strengthened in the future to obtain more therapeutic results.

In a nutshell, increasing or decreasing NO availability in the hepatic tissue may both be ways to 
prevent and treat HIRI and identifying ways to balance the expression of eNOS and iNOS is important 
to protect IR and can be a promising direction for clinical research.

CONCLUSION
In general, NO along with eNOS and iNOS can play complex roles in HIRI. NO can down-regulate 
LTC4S by inhibiting the NFκB pathway, inhibit apoptotic related genes such as Bax and Bcl-2, enhance 
autophagic flux, decrease inflammatory cytokines, and reduce ROS by inhibiting the mitochondrial 
respiratory chain. Furthermore, NO induced by different NOS results in a duality of action in HIRI. NO 
derived by eNOS prefers to protect endothelial cells and attenuate liver injury in HIRI. However, iNOS 
promotes the production of NO in response to stimuli, thus exacerbating liver damage. But their role is 
not set in stone. Overexpression of eNOS also worsens HIRI, whereas iNOS has also been reported to 
have a protective effect against HIRI. Actually, these views remain controversial, and the underlying 
mechanisms are urgently needed to be clarified.
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