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Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains the most lethal type of cancer. 
The 5-year survival rate for patients with early-stage diagnosis can be as high as 
20%, suggesting that early diagnosis plays a pivotal role in the prognostic 
improvement of PDAC cases. In the medical field, the broad availability of 
biomedical data has led to the advent of the “big data” era. To overcome this 
deadly disease, how to fully exploit big data is a new challenge in the era of 
precision medicine. Artificial intelligence (AI) is the ability of a machine to learn 
and display intelligence to solve problems. AI can help to transform big data into 
clinically actionable insights more efficiently, reduce inevitable errors to improve 
diagnostic accuracy, and make real-time predictions. AI-based omics analyses will 
become the next alterative approach to overcome this poor-prognostic disease by 
discovering biomarkers for early detection, providing molecular/genomic 
subtyping, offering treatment guidance, and predicting recurrence and survival. 
Advances in AI may therefore improve PDAC survival outcomes in the near 
future. The present review mainly focuses on recent advances of AI in PDAC for 
clinicians. We believe that breakthroughs will soon emerge to fight this deadly 
disease using AI-navigated precision medicine.

Key Words: Pancreatic cancer; Pancreatic ductal adenocarcinoma; Artificial intelligence; 
Machine learning; Precision medicine
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Core Tip: Pancreatic ductal adenocarcinoma (PDAC) remains the most lethal type of 
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intelligence to solve problems. AI can help to transform big data into clinically 
actionable insights more efficiently, reduce inevitable errors to improve diagnostic 
accuracy, and make real-time predictions. AI-based omics analyses should be the next 
alternative approach to improve survival outcomes in PDAC by discovering 
biomarkers for early detection, molecular/genomic subtyping, treatment guidance, and 
predicting recurrence and survival. The present review mainly focuses on recent 
advances of AI in PDAC for clinicians.

Citation: Hayashi H, Uemura N, Matsumura K, Zhao L, Sato H, Shiraishi Y, Yamashita YI, 
Baba H. Recent advances in artificial intelligence for pancreatic ductal adenocarcinoma. World 
J Gastroenterol 2021; 27(43): 7480-7496
URL: https://www.wjgnet.com/1007-9327/full/v27/i43/7480.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i43.7480

INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) stands the most life-threatenning type of 
cancer[1]. The recent 5-year survival rate for PDAC in all stages is 8.5% according to 
American Cancer Society statistics 2017. In patients with early-stage diagnosis, the 5-
year survival rate for can be as high as 20%. During the past ten years, median overall 
survival (OS) has improved from 22.1 mo to 35 mo in resectable PDAC, considerably 
owing to improvements in adjuvant therapies[2-5]. These findings suggest that early 
diagnosis plays a pivotal role in the prognostic improvement of PDAC cases. 
Furthermore, the high recurrence rate, even in patients who have undergone curative 
resection, and chemoresistance to the current systemic chemotherapies (FOLFIRINOX: 
5-fluorouracil, folinic acid, irinotecan, and oxaliplatin; and GnP: Gemcitabine plus nab-
paclitaxel)[6,7] are major issues. Based on recent advances in genetic analysis, PDACs 
have been divided into several molecular subtypes[8-11], which is a prelude of 
precision medicine. Genetic and molecular profiling researches have revealed that up 
to 25% (range 12%-25%) of PDACs maintained actionable molecular alterations. 
Actually, matching to relevant molecular-specific treatments improves the OS 
compared to that of those without actionable mutations or those who do not receive 
molecular-specific therapy[12]. The comprehensive biomedical data has led to the 
dawn of the “big data” era in the medical field[13].

To overcome this deadly disease, how to well utilize big data is a next step for 
physicians and researchers physicians in the era of precision medicine. The main issue 
for physicians has shifted from gathering data to competently analyzing it. Artificial 
intelligence (AI) is the ability of a machine to learn and display intelligence to solve 
problems (Figure 1)[14]. An artificial neural network (ANN) can imitate the human 
neural meridian system. It is divided into three parts: Input layer, hidden layer, and 
output layer. “Deep learning” refers to an ANN with multiple hidden layers. Machine 
learning helps researchers spend less time on data processing. The processess for 
employing machine learning generally contain the following: Gathering the basic data, 
separating the data into an experimental group and a verification group, buildinging a 
screening and processing model, inputting the experimental group data into the 
model, accounting the output results, and confirming the model’s workability using 
the verification group. The verification group can be employed to examine the 
sensitivity and specificity of the experimental group, while the experimental group can 
fabricate more intelligent model. An overview of types in AI is provided in the Supple-
mentary material. Chen et al[15] developed a survival prediction model of non-small 
cell lung cancer patients through the use of ANN. AI has also been applied to tackle 
and manage the recent coronavirus disease 2019 crisis in many areas, including 
screening, diagnosis, severity stratification, mortality prediction, and epidemiology 
controls[16].

In the age of precision medicine, AI can support to convert big data into clinically 
actionable perception more conveniently, reduce the inevitable errors to improve 
diagnostic accuracy, and make real-time predictions[17,18]. Due to latest break-
throughs, the demand of AI in cancer treatment has been swiftly increasing, including 
for PDACs[19-21]. Recent studies have demonstrated considerable potential for AI 
application in PDAC care (Table 1). Advances in AI for PDACs may thus be the 

https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
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Table 1 Comprehensive list of artificial intelligence-based investigations in pancreatic ductal adenocarcinoma

Ref. Modality Type of algorithm Sensitivity (%) Specificity (%) ROC-AUC (or 
accuracy %)

PDAC risk prediction

Boursi et al[25], 2021 7 clinical variables Logistic regression 66.53 54.91 0.71

Appelbaum et al[29], 2021 18 risk factors Logistic regression NA NA 0.71

Muhammad et al[30], 2018 Personal health data (18 
features)

ANN 80.7 80.7 0.85

Hsieh et al[28], 2018 ICD-9 code Logistic regression NA NA 0.727

Boursi et al[26], 2017 10 clinical variables Logistic regression 44.7 94 0.82

Cai et al[27], 2011 5 clinical variables Logistic regression NA NA 0.72

Early diagnosis of PDAC

Zhang et al[34], 2020 Nine-gene signature Support vector 
machine

98.65 100 93.3

Zhang et al[83], 2020 CT DCNN 83.76 91.79 0.9455

Si et al[42], 2021 CT Fully end-to-end deep 
learning

86.8 69.5 0.871

Liu et al[54], 2020 CT CNN 79 (United States) 97.6 (United States) 0.920 (United States)

Ma et al[84], 2020 CT CNN 98.2 91.6 95

Chu et al[85], 2019 CT Deep learning (details 
are NA)

94.1 98.5 NA

Liu et al[53], 2019 CT CNN NA NA 0.9632

Tonozuka et al[86], 2021 EUS CNN 90.2 74.9 0.924

Ozkan et al[87], 2016 EUS ANN 83.3 93.3 87.5

Săftoiu et al[88], 2015 EUS ANN 94.64 94.44 NA

Zhu et al[63], 2013 EUS Support vector 
machine

92.52 93.03 NA

Zhang et al[62], 2010 EUS Support vector 
machine

94.32 99.45 NA

Das et al[61], 2008 EUS ANN 93 92 0.93

Săftoiu et al[89] 2008 EUS elastography NN 91.4 87.9 89.7

Norton et al[60], 2001 EUS NN 73 NA 83

Alizadeh Savareh et al[40], 
2020

Circulating microRNA 
signatures

PSO + ANN + NCA 93 92 93

Urman et al[90], 2020 Bile juice NN 88 100 0.98

Pancreatic fistula after pancreaticoduodenectomy

Kambakamba et al[71], 2020 CT k-NN, random forest 
classifier, etc

96 98 0.95

Mu et al[72], 2020 CT CNN 86.7 87.3 0.89

Pathological tumor response to neoadjuvant chemotherapy

Watson et al[80], 2020 CT and CA19-9 CNN NA NA 0.785

Survival model

Zhang et al[77], 2020 CT CNN NA NA 11.81% in IPA

Alizadeh Savareh et al[40], 
2020

Circulating microRNA 
signatures

PSO + ANN + NCA NA NA NA

Kaissis et al[66], 2019 MRI Random forest 87 80 0.90

Walczak et al[79], 2017 14 clinical variables ANN 91 38 0.6576
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Molecular subtype

Kaissis et al[68], 2020 CT Random forest 84 92 0.93

Tumor subtype (QM vs 
non-QM)

Kaissis et al[67], 2019 MRI Gradient boosting 
decision tree

90 92 0.93

Molecular subtype (KRT81 
positive vs negative)

Microsatellite instability status

Li et al[19], 2020 PreMSIm (15-gene 
signature)

k-NN 85 97 95

AI: Artificial intelligence; PDAC: Pancreatic ductal adenocarcinoma; NA: Not available; ROC-AUC: Area under the receiver operating characteristic curve; 
ICD-9: International Classification of Diseases 9th Revision; ANN: Artificial neural network; CT: Computed tomography; DCNN: Deep convolutional 
neural network; EUS: Endoscopic ultrasound; NN: Neural network; CA19-9: Carbohydrate antigen 19-9; IPA: Index of prediction accuracy; MRI: Magnetic 
resonance imaging; QM: Quasi-mesenchymal; PSO: Particle swarm optimization; NCA: Neighborhood components analysis; k-NN: k-Nearest neighbor.

Figure 1 Differences among artificial intelligence, machine learning, neural network, and deep learning.

alternative stream to improve survival outcomes for this deadly disease. The present 
review mainly focuses on recent advances of AI in PDAC care for clinicians.

PDAC RISK PREDICTION BY AI
The radiographic traits of unoperability and the appearance of symptoms of PDAC 
occur concurrently[22]. At the time of diagnosis, only a small part of patients (< 15%) 
have surgically resectable state[22]. In addition, identification of individuals at high 
risk for PDAC or with early stage is hard due to the absence of trusty screening tools, 
the lack of clinically relevant biomarkers, and low prevalence[22]. No established 
screening strategy has been introduced for sporadic PDAC. It is estimated that 
symptoms manifest about 6 mo after PDAC becomes unresectable[22]. Identifying 
individuals at high risk but asymptomatic is crucial for finding PDAC while it is still 
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resectable.
Approximately 50% of all patients with PDAC develop diabetes mellitus prior to 

their diagnosis[23,24]. Screening patients with new-onset diabetes may enable earlier 
diagnosis of PDAC. In pre-diabetic and new-onset diabetic patients, an AI-based 
prediction model of PDAC risk has been developed[25,26]. In a pre-diabetic study, 245 
of 138232 patients with impaired fasting glucose were thereafter diagnosed as having 
PDAC within 3 years of impaired fasting glucose detection. The AI (logistic regression 
model)-based prediction model consisted of age, body mass index, PPIs, total 
cholesterol, low-density lipoprotein, alanine transaminase, and alkaline phosphatase
[25]. This model achieved an area under the curve (AUC) of 0.71. Furthermore, by 
analyzing 109,385 new-onset diabetic patients including 390 PDAC cases, a 
multivariable prediction (logistic regression) model that included age, smoking, body 
mass index, change in body mass index, usage of proton pump inhibitors and anti-
diabetic medications (insulin, oral hypoglycemic except metformin, and metformin), as 
well as levels of hemoglobin, hemoglobin A1C, creatinine, cholesterol, and alkaline 
phosphatase, was established (AUC, 0.82)[26]. Among these diabetic patients, 390 
(0.4%) were diagnosed with PDAC within 3 years. If the predicted risk threshold for 
definitive PDAC screening was set at 1% over 3 years, only 6.19% of the new-onset 
diabetes cases would undergo definitive screening, which could identify PDAC cases 
with 94.0% specificity, 44.7% sensitivity, and a positive predictive value of 2.6%[26].

Cai et al[27] established a PDAC risk prediction model by analyzing 138 chronic 
pancreatitis patients with focal mass lesions. A scoring method based logistic 
regression was employed to build the prediction model, which included five variables: 
sex, mass number, mass location, bilirubin, and carbohydrate antigen 19-9 (CA19-9) 
(AUC, 0.72). Hsieh et al[28] predicted PDAC in patients with type 2 diabetes using 
ICD-9 code data by logistic regression and ANN models. The AUCs achieved by these 
models were 0.72[27] and 0.73[28], respectively.

Appelbaum et al[29] used a logistic regression model and developed a prediction 
model of PDAC using electronic health record data. A total of 18 risk factors (i.e., age, 
gender, race, abdominal pain, angina pectoris, asthma, atherosclerotic heart disease, 
calculus gallbladder, chest pain, chronic pancreatitis, coronary heart disease, diabetes 
mellitus, emphysema, essential hypertension, family history pancreatic cancer, 
jaundice, stroke, and ulcer) were used to weigh the risk factors, and their prediction 
model displayed an AUC of 0.71. Their risk model based on patients’ prior diagnoses 
derived from electronic health record data would predict PDAC 6-12 mo before an 
eventual diagnosis date. Such a risk score could be employed as an initial screening 
prior to additional biomarkers or genetic testing, to pick out individuals from the 
general population for closer surveillance.

Muhammad et al[30] used the ANN model to focus on the early prediction and 
stratification of PDAC risk based on personal health data (800114 answers in the 
National Health Interview Survey and Pancreatic, Lung, Colorectal, and Ovarian 
cancer datasets, including 898 cases diagnosed with pancreatic cancer) before 
symptoms appear. The prediction model using 18 personal health features produced a 
specificity of 80.7%, a sensitivity of 80.7%, and an AUC of 0.85 to predict PDAC[30]. 
Furthermore, the model based solely on personal health data was able to divide 
individuals into low, medium, and high cancer risk. Identification of high-risk 
individuals who would benefit from tailored screening may increase the probability of 
detecting early PDAC. While logistic regression was used to develop risk prediction 
models in many previous studies, Muhammad et al[30] employed an ANN model 
based on personal health big data and produced the highest AUC in the prediction 
model of PDAC risk.

Such prediction models using AI will be beneficial for clinicians to estimate the 
PDAC risk of their patients easily after inputting their data. These models can be 
combined into an electronic medical record system or be available on portable devices 
such as tablets and mobile phones. They may also be useful for primary care 
physicians to stratify individuals into various risk categories. By such PDAC risk 
stratification, higher-risk individuals can be referred to a diagnostic department for 
more intensive and tailored assessments. More data and testing will be required to 
refine the performance of the AI-based prediction model of PDAC in order to facilitate 
its application in the clinical setting. An AI-based prediction model using clinical 
variables is non-invasive, cost-effective, and easy for early diagnosis of PDAC. Using 
AI to recognize signs in early PDAC and precancerous lesions is one of the key 
strategies to improving survival.
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DETECTION OF EARLY PDAC BY BIOMARKERS USING AI
It is highly desirable to identify an effective PDAC diagnostic biomarker. Currently, 
the most widely employed biomarker for early PDAC detection is CA19-9, however it 
is not an perfect because of its comparatively low level of specificity and sensitivity 
(70% with a 5% error rate, for diagnosis of PDAC)[31,32]. Several molecular elements 
such as CA19-9, CEA, DUPAN, and Span-1 have been employed as biomarkers for 
diagnosis of pancreatic tumors[33], but none of them are sufficiently specific and 
sensitive to clearly distinguish cancer from healthy or benign diseases. Therefore, a 
solid tool with sufficient specificity and sensitivity is required to enable early PDAC 
diagnosis. Zhang et al[34] designed a novel AI (support vector machine) method based 
on relative gene expression ranking within tissue samples using the microarray gene 
expression data and RNA-seq data collected from two databases, GEO and TCGA. 
Zhang et al[34] then identified a qualitative diagnostic signature comprising 9 gene 
pairs (16 genes), that could distinguish PDAC (using expression profiles from PDAC 
and adjacent normal tissues) patients from non-PDAC (pancreatitis and normal 
tissues) and was a useful biomarker for early detection of PDAC. Seven genes in the 
nine-gene-pair signature, namely CTSE, HOXB7, LAMC2, ONECUT1, RRM2, 
SERPINB5, and UBE2C, had previously been known to be associated with PDAC. 
Thus, AI-based tissue biomarker analysis identified a multiple-gene expression 
signature for detection of early PDAC.

MicroRNAs (miRNAs) have been proposed as promising biomarkers for diagnosis 
of PDAC[35]. miRNAs are a group of short non-coding RNA molecules with 19-25 
nucleotides that have been considered as candidate biomarkers for early cancer 
diagnosis and precise prognosis[36]. Recently, miRNA-used liquid biopsy has become 
a promising approach for early detection of cancers. Several miRNAs in plasma of 
PDAC patients are abundantly expressed, supporting that circulating miRNAs could 
be helpful for PDAC detection[37]. Ganepola et al[38] employed three circulating 
miRNAs (miR-22, miR-642b-3p, and miR-885-5) for detection of PDAC, and the AUC 
value was 0.97 for discrimination of the PDAC cases. Liu et al[39] utilized a serum 
panel including miR-20a, miR-21, miR-24, miR-25, miR-99a, miR-185, and miR-191 for 
diagnosis of PDAC at different stages, and the AUC value was 0.99. Alizadeh Savareh 
et al[40] assessed the value of top miRNAs using a machine learning method (particle 
swarm optimization + ANN + neighborhood components analysis) to assist early 
diagnosis of PDAC. They identified a number of serum miRNAs that were 
significantly differentially expressed in 671 microarray PDAC expression profiles, 
using bioinformatics techniques Their final model comprised the most promising 
miRNAs (miR-92a-2-5p, miR-125b-3p, miR-532e5p, miR-663a, and miR-1469) with the 
high performance (accuracy, 0.93; sensitivity, 0.93; and specificity, 0.92) in differen-
tiation of PDAC from controls.

Early detection of PDAC using tissue and/or blood biomarkers in conjunction with 
AI is an alternative approach to improving survival.

DETECTION OF EARLY PDAC BY RADIOMICS
Nowadays, computed tomography (CT), magnetic resonance imaging (MRI), and 
ultrasound, endoscopic ultrasound are the most popular imaging modalities for PDAC 
detection. However, these modalities are often employed in patients with symptoms, 
which results in delayed detection of PDACs in most cases. A promising application of 
AI technology is in the earlier detection of PDAC from radiological findings. CT is the 
most frequently used modality for the initial assessment of suspected PDAC, and its 
sensitivity of detection ranges from 76%-96%[41]. CT imaging can collect information 
about tumor location, size, and morphology. The pancreas is considerably different in 
size, shape, and location among the individuals and possesses only a very small part 
of the entire CT image, or about 1.3% of each CT image in a CT dataset[42]. Further-
more, a tumor shows high similarity to the surrounding tissues. Therefore, visual 
diagnosis demands doctors with enough clinical experience, because the quality of CT 
images varies between different CT scanners and operators, and pathological texture 
features are hard to distinguish. Actually, 19% of patients with pancreatic cancer who 
underwent a review of submitted outside imaging and repeat imaging at a tertiary 
referral center received major changes in diagnosis and/or disease stage[43].

The features of early PDAC can be delicate and retrospectively ascertained up to 34 
mo before the diagnosis of PDAC[44]. In a tertiary medical center, 7.1% of PDACs 
were missed even by radiologist assessment. This fact emphasizes the limitations in 
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the conventional CT approach for PDAC. Prognostic outcome in patients with PDACs 
considerably deteriorates when tumor size exceeds 2 cm[45], however tumors smaller 
than 2 cm are frequently invisible on CT images and so about 40% of small PDACs are 
missed[46]. An AI-based diagnostic tool might minimize such oversight. Therefore, 
there is a growing need to develop AI-based algorithms for accurate pancreatic tumor 
detection. Although deep learning has been investigated for the diagnosis of 
pancreatic cystic neoplasms[47], neuroendocrine tumors[48] and segmentation of the 
pancreas[49-52], the usefulness of AI in the detection of PDAC has not yet been widely 
explored. AI can analyze thousands of images on a pixel-by-pixel level and is not 
susceptible to mistakes due to human error. Another strength of AI is automatic 
diagnosis, which takes no more than approximately 20 s per case from inputting the 
original CT image to obtaining a diagnosis.

Liu et al[53] reported that the AUC of an AI [convolutional neural network (CNN)] 
platform for CT-assisted diagnosis of PDAC was 0.963. Furthermore, the time of the 
CT-assisted diagnosis was 20 s/case, which is remarkably shorter than the duration 
required for diagnosis by radiologists, indicating AI has good clinical feasibility. In a 
deep learning (fully end-to-end deep learning) model for diagnosing pancreatic 
tumors, Si et al[42] reported that the average test time per case was 18.6 s, compared 
with at least 8 min for manual reviewing. Thus, the AI diagnosis system was more 
efficient than the conventional diagnostic approach.

Liu et al[54] showed that CNN-based analysis could precisely discriminate cases 
with and without PDAC in portal venous CT. The CNN-based analysis achieved an 
accuracy approaching 99% and missed fewer tumors than did radiologists. In this 
study, CNN-based analysis provided higher sensitivity compared to radiologists 
(0.983 vs 0.929, respectively)[54]. CNN missed three (1.7%) of 176 PDACs (1.1-1.2 cm). 
Radiologists missed 12 (7%) of 168 PDACs (1.0-3.3 cm), of which 11 (92%) were 
correctly classified by CNN. The sensitivity of CNN for tumors smaller than 2 cm was 
92.1% in local test sets and 63.1% in an external (US) test set. Although the latter 
sensitivity for tumors smaller than 2 cm initially seemed unsatisfactory, DeWitt et al
[46] reported that the sensitivity of CT by radiologist assessment was 53% for PDACs 
smaller than 2.5 cm[46]. Consequently, the sensitivity of the CNN-based analysis was 
equivalent to radiologist assessment. The lower sensitivity of the CNN in the external 
test set compared with local test sets might be attributed to differences in patients' 
ethnicity and race, and protocols or scanners, between the training and external test 
sets, which could present greater challenges for small tumors. An important factor that 
affects the imaging features of the pancreas is fat content. Higher fat content decreases 
the density of the pancreas on CT images, and several studies reported marked 
differences in pancreatic fat content between ethnicities and races[55,56].

Radiologists were given with important clinical information from the clinicians 
when they assessed the CT images, whereas the CNN was provided with no 
information except CT images. Therefore, the major utility of the CNN was to support 
radiologists in judging whether a lesion or suspicious area in the pancreas harbored 
pancreatic cancer. For example, patients present with obstructive jaundice which is a 
typical sign of pancreatic cancer in the pancreatic head. Nevertheless, the CT findings 
are negative or equivocal. In such a situation, occult pancreatic cancer should be 
highly suspected even if no apparent mass is noted on CT image, given that about 40% 
of PDACs smaller than 2 cm are missed on CT image due to undefined borders with 
surrounding tissue[46,57].

With the wide application of endoscopic ultrasonography (EUS) and EUS-fine 
needle aspiration (FNA) have become the important diagnostic modalities for PDAC; 
these modalities provide diagnostic accuracies up to 85%, which are remarkably 
greater than the 50% accuracy in CT-assisted diagnosis. The sensitivity of diagnosis of 
pancreatic tumors 3 cm in diameter was reported to be 93% for EUS, which was 
greater than that of CT (53%) and MRI (67%)[58]. A meta-analysis revealed that CT 
and EUS were comparable in determining the resectability of PDAC, with high 
sensitivity and specificity[59].

However, based on EUS for early diagnosis of PDAC, the experience and subjective 
factors affect on the accuracy, especially in the presence of chronic pancreatitis. 
Additionally, the availability of the EUS-FNA is restricted in community hospitals. 
Even when the EUS-FNA is utilized, the diagnosis can be also influenced by the 
operator's experience and the location of the needle insertion. In 2001, Norton et al[60] 
reported the usefulness of neural network analysis of EUS images to distinguish 
between PDAC and chronic pancreatitis using 4 different image parameters. Although 
they provided a high sensitivity, the specificity was only 50%. In 2008, Das et al[61] 
applied techniques of digital image analysis to EUS images of the pancreas to develop 
a classification model that could differentiate PDAC from non-neoplastic tissue using 
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ANN. The model accurately classified PDAC, with an AUC of 0.93 and a 93% 
sensitivity rate[61]. Digital analysis of EUS images is useful in differentiating PDAC 
from normal tissue and chronic inflammation. Given the possibility of real-time 
application, digital image analysis may become a helpful diagnostic modality in 
pancreatic diseases and may sometimes evade EUS-guided FNA. In another study, 
Zhang et al[62] differentiated between PDAC and normal tissue on EUS images. 
Regions of interest were selected from 216 images obtained from 153 cancer and 63 
non-cancer patients, and a 97.98% sensitivity rate was obtained from the 29 features 
that were identified[62]. Zhu et al[63] conducted a computer-aided diagnosis utilizing 
EUS images of 262 PDAC and 126 chronic pancreatitis patients, from which 105 
features were extracted. Sixteen of these features were selected for classification by a 
support vector machine and a 94% sensitivity rate was obtained[63].

EUS imaging is a common imaging method for diagnosing PDAC, and is often 
applied with FNA in distinguishing benign and malignant tumors. However, FNA is 
not available in all health centers. AI-assisted diagnosis via EUS images should guide 
physicians toward more accurate and easier diagnosis.

Collectively, AI can supplement radiologists to reduce miss rates, rather than 
replace them. The AI stands as a diagnostic tool to assist clinicians and radiologists in 
diagnosing PDAC. The application of AI in the diagnosis of PDAC has made subs-
tantial advances and is certainly improving.

AI IN MOLECULAR/GENETIC SUBTYPE CLASSIFICATION
Recent advances in biotechnology enable us to execute comprehensive genomic, 
transcriptomic, proteomic, and metabolomic analyses rapidly and cheaply. Such 
inclusive gene expression studies have uncovered subtypes of PDAC with biological 
and prognostic relevance. Collisson et al[9] proposed the categorization of PDACs into 
three subtypes: classical, quasi-mesenchymal (QM), and exocrine-like. The prognostic 
outcome of PDAC patients following operation and conventional medical treatment 
was notably better in the classical subtype than in patients with the QM subtype; 
patientss with the exocrine-like subtype displayed intermediate prognostic outcome 
between the two other subtypes[9]. Muckenhuber et al[64] subsequently reported that 
the most of PDAC can be categorized into two distinct subtypes based on 
transcriptome profiling and on immunohistochemical staining of cytokeratin-81 
(KRT81) and hepatocyte nuclear factor-1A (HNF1a). The epithelial KRT81-/HNF1a- 
(double-negative) subtype (the so-called classical subtype) showed better survival and 
response to chemotherapy, notably to the FOLFIRINOX regimen, but not to a 
gemcitabine-based regimen. On the other hand, the epithelial KRT81+/HNF1a- 
subtype (the so-called QM subtype) has worse OS. But, the QM subtype displays a 
better response to the gemcitabine-based regimen compared to the non-QM subtype
[65]. These features encourage precision medicine based on individual molecular 
features.

Recent developments in AI using medical image analysis such as radiomics reveal 
promising models of molecular phenotyping from imaging data. The radiomics 
approach can perform whole-tumor analytics without invasiveness. Kaissis et al[66,67] 
have reported on machine learning algorithms to preoperativelly predict molecular 
subtypes and survival risk in PDAC patients from MRI. However, the restricted 
availability of MRI data, overall decreased image quality, and the less-quantitative and 
unstandardized nature of MRI render obstacles to algorithm development and 
generalization. To reinfoce clinical application, Kaissis et al[68] extended their previous 
results to CT by training and validating an algorithm (random forest) capable of 
discriminating between the QM and the non-QM subtypes of PDAC. The advantages 
of CT comprise broad availability, fewer motion artifacts, and high standardization. 
Their retrospective study assessed baseline CT from 207 PDAC cases. By immunohis-
tochemical staining for KRT81 and HNF1a, the molecular subtype was determined as 
QM vs non-QM. The random forest algorithm was used to predict the molecular 
subtype from the radiomic features. Then, the algorithm was applied to an 
independent cohort of histopathologically unclassifiable tumors. The classification 
algorithm achieved sensitivity, specificity, and AUC of 0.84, 0.92, and 0.93, 
respectively. The median OS for predicted QM and non-QM tumors was 16.1 and 20.9 
mo, respectively. The application of the algorithm to histopathologically unclassifiable 
tumors showed two groups with remarkably different survival (8.9 and 39.8 mo). 
Thus, the machine learning-based analysis of CT imaging provided the possibility of 
the prediction of molecular subtypes that is clinically relevant for prognostic outcome, 
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permitting pre-operative stratification for precision medicine. This approach is 
encouraged by the fact that histopathological approachs are by default a significant 
underrepresentation of the tumor, since they are derived from a small sub-section of 
the tissue, and regions of differing molecular subtype are likely to coexist within the 
same tumor[69]. On the other hand, the radiomic approach enables whole-tumor 
assessment, providing better information required for precision therapy.

Microsatellite instability (MSI) is a genomic property of cancers with defective DNA 
mismatch repair. Notably, MSI has been recognized as a biomarker for the favorable 
immune checkpoint blockade therapy response in cancer[70]. Most standard methods 
for examing MSI are based on DNA sequencing data and a few are based on mRNA 
expression data. Using RNA-Seq pan-cancer datasets for three cancer cohorts (colon, 
endometrial, and gastric cancers) from TCGA program, Li et al[19] established an 
algorithm called PreMSIm (Predicting MSI from mRNA) to predict MSI in cancer from 
the expression profiling of a 15-gene panel. A benefit of mRNA-based over DNA-
based MSI prediction algorithms is that mRNA data are closer to protein and 
phenotype than DNA data. Pathway analysis revealed that these genes were mainly 
involved in DNA damage repair (MLH1 and MSH4), gene expression (MLH1, 
HENMT1, and RPL22L1), cell cycle regulation (MLH1, MSH4, and HENMT1), and 
metabolism (NHLRC1 and RPL22L1). Gene ontology analysis showed that these genes 
were involved in the biological processes of DNA repair (MLH1, MSH4, and RTF2), 
gene expression regulation (NHLRC1 and HENMT1), cell cycle (MLH1, MSH4, 
RPL22L1, and RTF2), biogenesis (DDX27, EPM2AIP1, NHLRC1, and RNLS), metabolic 
process (HENMT1, LYG1, NHLRC1, and SMAP1), and cell and organism development 
(SMAP1, SHROOM4, and TTC30A). The PreMSIm algorithm provided high 
performance in predicting MSI using both RNA-Seq and microarray gene expression 
datasets[19]. Furthermore, PreMSIm showed superior or comparable performance vs 
other DNA- or mRNA-based methods. Li et al[19] comment that PreMSIm can be an 
alternative approach for identifying MSI. The introduction of machine learning 
algorithms such as this as a clinical decision support tool should be beneficial to 
predict molecular/genetic signatures that may help to stratify patients in clinical 
routines.

AI IN RISK ASSESSMENT FOR PANCREATIC SURGERY
In the pancreatic fields, the availability of AI in surgery is still very limited. An AI-
based risk prediction model of postoperative complication has been reported[71,72]. 
Postoperative pancreatic fistula (POPF) is a serious complication after pancreat-
oduodenectomy (PD). The fistula risk score (FRS), which consists of four variables — 
soft pancreas, small main pancreatic duct, high-risk pathology (PDAC or chronic 
pancreatitis), and massive intraoperative blood loss — is useful to predict clinically 
relevant POPF development after PD[73,74]. However, the score contains subjective 
factors related to surgeons. Therefore, an accurate and easy-to-use preoperative index 
is desired. Kambakamba et al[71] examined whether quantitative analysis of plain CT 
with five types of machine learning algorithms (k-nearest neighbors, sequential 
minimum optimization, multilayer perceptron, random forest, and C5.0) could predict 
clinically relevant POPF in 110 patients from a single institution, and found that 
machine learning-based CT analysis provided an magnificent AUC of 0.95 in 
predicting clinically relevant POPF[71]. Mu et al[72] tried to predict clinically relevant 
POPF after PD using a deep learning (CNN model) score derived from preoperative 
CT. The deep learning score offered significantly greater predictability compared to 
FRS in training (0.85 vs 0.78 in AUC, respectively), validation (0.81 vs 0.76 in AUC, 
respectively) and test (0.89 vs 0.73 in AUC, respectively) cohorts. In particular, in 
patients of intermediate risk (FRS 3-6), the deep learning score achieved remarkably 
higher accuracy compared to FRS (test: 92.1% vs 65.8%, respectively). Interestingly, the 
deep learning score was independently associated with pancreatic fibrosis, diameter of 
main pancreatic duct and remnant volume in multivariate linear regression analysis. 
The automated scores reflected histomorphological features related to pancreatic duct, 
parenchymal fibrosis, and remnant pancreatic tissue volume. Thus, an AI model using 
preoperative CT represents a novel tool to predict clinically relevant POPF after PD, 
especially at intermediate risk levels. Such an AI system helps surgeons to optimize 
preoperative strategy.
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AI IN SURVIVAL PREDICTION AND RESPONSE TO CHEMOTHERAPY
The potential of radiomics in prediction of clinically relevant conditions, such as 
expected OS or response to a specific therapy, has been reported in recent studies[75,
76]: For instance, CT-derived radiomic features were useful to predict local disease 
control and OS in PDAC[75,76]. Entropy-related and cluster tendency features were 
described as predictive of OS in PDAC[76]. Zhang et al[77] proposed that a CNN-
based survival model outperforms a Cox proportional hazard model-based radiomics 
pipeline in PDAC prognosis. This model provides a better fit for survival patterns 
based on CT images and overcomes the limitations of conventional survival models. 
Kaissis et al[66] reported that a machine learning algorithm (random forest) using MRI 
achieved 87% sensitivity, 80% specificity, and AUC 0.9 for the prediction of above- vs 
below-median OS in the independent validation cohort. Alizadeh Savareh et al[40] 
have identified several circulating miRNAs as a diagnosis model in PDAC patients by 
analyzing microarray miRNA expression profiles from the Gene Expression Omnibus 
database. Three (hsa-mir-1469, hsa-mir-663a and hsa-mir-532) of five miRNAs with a 
high rank in the final model were comprehensively associated with the OS of patients 
with PDAC based on their up- or down-regulated expression patterns[40].

Late diagnosis of PDAC can cause to lose the chance of surgical treatment and lead 
to a high mortality rate[78]. On the other hand, surgical treatments for PDAC can have 
a high morbidity and mortality rate. Therefore, the clinicians must weigh the potential 
survival advantage of the invasive treatment, the complications due to invasive 
treatment, and the impacts on the patient’s quality of life with and without treatment.

Walczak and Velanovich[79] established ANN models that could accurately predict 
the 7-mo survival of PDAC patients using 14 clinical variables including eight SF-36 
domain values, both with and without surgical resection, at 91% sensitivity and 38% 
specificity. The ANN model to predict 7-mo survival consisted of age, sex, the eight 
domains of quality of life measurements from the SF-36, the stage of the cancer, 
whether or not a resection had taken place, if any adjuvant therapy had been given, 
and time in months since diagnosis. The quality of life domains from the SF-36 are 
bodily pain, vitality, physical functioning, social functioning, role-physical, role-
emotional, general health, and mental health. Such an ANN model for predicting the 
survival of PDAC patients helps physicians and patients to reduce anticipated regret 
from treatment decisions including observation. This information may be useful for 
patients and surgeons in determining invasive treatment plans to minimize regret and 
improve the patients' quality of life.

Neoadjuvant therapy may provide improved survival of PDAC patients; but, 
determining the efficacy is difficult. Watson et al[80] hypothesized that a deep learning 
(CNN) model could predict the tumor response to neoadjuvant therapy using CT and 
CA19-9. A total of 81 cases were divided between partial responder (333 images) and 
non-responder (443 images). The model using only the deep learning model had an 
AUC of 0.738, whereas a hybrid model incorporating a decrease in CA19-9 of 10% in 
addition to the deep learning model had an AUC of 0.785. CA19-9 reduction alone was 
not an effective predictor of the response to neoadjuvant therapy, with an AUC of 
0.564. A deep learning model can predict the pathological response to neoadjuvant 
therapy for PDAC patients, and the model is amended with the incorporation of 
decreases in serum CA19-9. Abraham et al[81] investigated the clinical relevance of a 
machine learning-derived signature in predicting the responses from first-line 
oxaliplatin-based chemotherapy in PDAC and advanced colorectal cancer. The 
machine learning-derived signature was effective for metastatic colorectal cancer, but 
not for PDAC. AI has already been applied to match biological information with 
chemical properties of specific drugs to predict the response to these specific agents in 
cancers[82].

In the near future, the combined analysis of clinical variables, less-invasive 
biological samples, and radiological features through machine learning should be able 
to simulate responses to chemotherapy and patient survival. On the other hand, 
radiological features and biological tissue can be variable in response to the treatment 
including chemotherapy and radiotherapy. In particular, PDAC has a high potential 
for acquired drug resistance. During sequential treatment, good communication and 
the accumulation of knowledge from various fields such as gastroenterology, 
radiology, oncology, computer science, and pathology must will be required to fight 
this deadly disease.
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Figure 2 Future perspectives in the management of pancreatic ductal adenocarcinoma by artificial intelligence. AI: Artificial intelligence; 
PDAC: Pancreatic ductal adenocarcinoma.

LIMITATIONS AND FUTURE PERSPECTIVES
A major limitation is the lack of adequate standardization. Universal and uniform 
protocols for data collection, data quality, storage, processing, reproduction, and 
analysis must be established. For instance, ANNs can be trained to appropriately 
categorize histologic slides of pancreatic biopsies. However, the trained ANNs may 
underperform, or not perform at all, when the prepared slides are fixed and stained in 
a different manner. Development of universal and uniform protocols during data and 
sample processing will be required for medical AI to be feasible. Further improvement 
of the technology is also essential for medical AI in clinical practice.

AI in the medical field should become an indispensable tool to reduce human error. 
Because of human limitations, we cannot achieve zero errors. Furthermore, it is time-
consuming to train professional radiologists, gastroenterologists, oncologists, and 
pathologists. Combined work by experts from multiple fields will be needed to 
establish feasible medical AI systems in clinical practice. With further research, AI 
must have a great impact on the diagnosis and treatment of PDAC in near future. 
Ultimately, a sequential approach involving risk prediction, diagnosis, treatment, and 
survival prediction using IA will realize timely and consecutive precision medicine 
and lead to improved prognosis in PDAC (Figure 2). Dr. William Osler stated: 
“Medicine is a science of uncertainty and an art of probability.” This is still true in 
medical AI, which is also “a science of uncertainty and an art of probability.” 
However, the degree of uncertainty and probability will consistently shrink with the 
advance of AI technology and cooperation among various experts. While AI applic-
ations in PDAC are still in the early stage of development, further research must lead 
to great advances in screening, early diagnosis, and treatment.

CONCLUSION
Here we summarize the current advances of AI in PDAC. AI-based omics analyses are 
likely to be the next alternative approach to overcome this poor-prognostic disease by 
the discovery of biomarkers for early detection, molecular/genomic subtyping, and 
treatment guidance, and by the improved prediction of recurrence and survival. How 
to entirely utilize “big data” is a new challenge for physicians and researchers in the 
era of precision medicine. On the other hand, AI will not entirely act for doctors — 
human beings and machines working harmoniously together is the ideal state that 
results in excellent performance. Although AI data reveal that the diagnostic accuracy 
of deep learning models is better than that of radiologists, the aim in this field is to 
develop a helpful tool to aid radiologists in making effective and accurate diagnoses, 
not to be a replacement for doctors. To facilitate AI-based omics analyses, multidiscip-
linary collaboration between physicians, basic scientists, radiologists, statisticians, and 
engineers is mandatory. To further validate the clinical relevance of AI systems, next 
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step is to conduct a prospective study based on multicenter clinical data. We believe 
that breakthroughs will soon emerge to fight this deadly disease using AI-navigated 
precision medicine.
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