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Abstract
In the last few decades, stem cell-based therapies have gained attention worl-
dwide for various diseases and disorders. Adult stem cells, particularly 
mesenchymal stem cells (MSCs), are preferred due to their significant 
regenerative potential in cellular therapies and are currently involved in 
hundreds of clinical trials. Although MSCs have high self-renewal as well as 
differentiation potential, such abilities are compromised with “advanced age” and 
“disease status” of the donor. Similarly, cell-based therapies require high cell 
number for clinical applications that often require in vitro expansion of cells. It is 
pertinent to note that aged individuals are the main segment of population for 
stem cell-based therapies, however; autologous use of stem cells for such patients 
(aged and diseased) does not seem to give optimal results due to their compr-
omised potential. In vitro expansion to obtain large numbers of cells also 
negatively affects the regenerative potential of MSCs. It is therefore essential to 
improve the regenerative potential of stem cells compromised due to “in vitro 
expansion”, “donor age” and “donor disease status” for their successful 
autologous use. The current review has been organized to address the age and 
disease depleted function of resident adult stem cells, and the strategies to 
improve their potential. To combat the problem of decline in the regenerative 
potential of cells, this review focuses on the strategies that manipulate the cell 
environment such as hypoxia, heat shock, caloric restriction and preconditioning 
with different factors.
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Core Tip: Stem cell-based therapies can treat various diseases and disorders. 
Mesenchymal stem cells have high self-renewal as well as differentiation potential, 
however; their potential for cell-based therapies is severely compromised with donor 
age, disease status and extensive in vitro expansion. Thus autologous use of stem cells 
isolated from unhealthy, older donors does not seem to give optimal results. It is 
therefore essential to improve the negative effects of age and disease on resident adult 
stem cells before clinical use. We herein discuss the strategies such as hypoxia, heat 
shock, caloric restriction and preconditioning with different factors to enhance the stem 
cell function.

Citation: Choudhery MS. Strategies to improve regenerative potential of mesenchymal stem 
cells. World J Stem Cells 2021; 13(12): 1845-1862
URL: https://www.wjgnet.com/1948-0210/full/v13/i12/1845.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i12.1845

INTRODUCTION
Stem cell-based therapies hold great promise for neurodegenerative diseases, 
cardiovascular diseases, immunological disorders, skin diseases and cancers. 
Mesenchymal stem cells (MSCs) are adult stem cells found in many adult (bone 
marrow, adipose tissue, dental pulp, peripheral blood, menstrual blood) and neonatal 
tissues (cord blood, cord tissue, Wharton’s jelly, Chorionic villi), have potential for 
self-renewal and multi-lineage differentiation as well as the capacity to secrete many 
therapeutic factors with chemoattractive, immunomodulatory, angiogenic and anti-
apoptotic functions[1,2]. Although MSCs originate from the mesoderm, they can 
differentiate not only into a variety of mesenchymal tissues (such as bone, cartilage, 
adipose, and haematopoietic tissue) as well as into non-mesodermal tissues (such as 
glial cells and neurons). MSCs have low immunogenicity, have immunomodulatory 
and immunoregulatory properties, are easy to isolate and culture. Due to these 
properties MSCs are considered ideal for replacing damaged or lost cells and tissues in 
the body and are currently the focus of scientists in hundreds of clinical trials (
www.clinicaltrials.gov).

The regenerative potential of MSCs, however; may be compromised with advanced 
age and disease conditions of the cell donors. Aging is a normal physiological process 
in living organisms that affects the cells, tissues, and organs of the body. The age of 
adult resident stem cells is directly proportional to the age of the donor and therefore 
the functional properties of stem cells severely deteriorate with increasing age of 
donors. As the stem cells age, their regenerative potential declines as evidenced by the 
slow healing of wounds in aged individuals[3]. It is also pertinent to note that this 
decline in regenerative potential of stem cells plays a critical role in initiation of 
number of age-related diseases in old people. With advance age, the ability of stem 
cells to properly function is compromised leading to cell apoptosis, senescence and 
complete loss or at least decline in their regenerative potential[4,5]. Studies indicate 
that the therapeutic potential of stem cells significantly declines with an increase in 
stem cell age in vitro and in vivo[3,6]. Similarly, underlying disease conditions of 
donors also seem to upset stem cell function[7]. In addition, number of adult stem cells 
is very low in their adult niches while stem cell-based therapies often require large 
number of cells for a potential positive effect. To obtain a high cell number, cells are 
usually expanded in vitro. The in vitro expansion deteriorates stem cell function and 
does not often give desired results after transplantation[8]. Thus, the regenerative 
potential of cells is significantly compromised when isolated from “old”, “unhealthy” 
persons and especially with in vitro expansion.

The main segment of the population who can get benefits from regenerative 
therapies are the aged individuals with diseases[9]. However, the autologous use of 
unhealthy stem cells derived from aged donors does not seem to give the desired 
results due to their compromised function. The solution to the problem is either to use 
cells isolated from young donors or rejuvenate the unhealthy cells before use. 
Autologous use of stem cells is preferred for cell based regenerative therapies and 
therefore use of stem cells from young donors for transplantation into aged people is 
not without problems. Autologous use of stem cells for such patients (aged and 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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diseased) does not seem to give the required results due to their age or disease status. 
This seems a major roadblock for cellular therapies and therefore it is essential to 
improve the regenerative potential of “aged” and “diseased” stem cells for their 
successful autologous use. Studies indicate that compromised stem cell function can be 
reversed using various strategies before clinical use. Previously, many strategies to 
improve the regenerative potential of stem cells were proposed and described in 
different studies. In the current review such strategies have been comprehensively 
described to address major clinical hurdles faced due to the reduced regenerative 
potential of compromised cells. The review will open new avenue for the stem cell 
based regenerative therapies for their autologous use in aged and diseased patients. In 
the current review, age and disease depleted function of resident adult stem cells, and 
the strategies to improve their potential have been described. To combat the problem 
of decline in the regenerative potential of cells, we aim to focus on the strategies that 
manipulate the cell environment such as heat shock, hypoxia, caloric restriction (CR), 
preconditioning with different factors.

STEM CELL FUNCTION DETERIORATES WITH ADVANCED AGE, 
DISEASE AND EXTENSIVE IN-VITRO EXPANSION
It has long been known that advanced age is linked with reduced reparative and 
regenerative potential (Figure 1). With increasing age, the body becomes unable to 
maintain tissue turnover and homeostasis. It is believed that reduced repair of organs 
and tissues at the organismal level is due to diminished functional capabilities of tissue 
resident stem cells[10]. Stem cells in the body reside in a special microenvironment 
called stem cell niches. Stem cells respond to the niche signals either by proliferating, 
differentiating or by remaining in quiescent state. Such a response ensures that tissues 
and organs needs are accurately met[9]. In aged individuals, this response is 
significantly delayed taking longer to repair and heal the damaged tissues and organs
[11]. Stem cells residing in the elderly are affected by the age related changes and thus 
are not as affective for tissue rejuvenation as are the cells from young donors. In a past 
study, it was found that the function of stem cells isolated from aged mice was 
adversely affected[3]. Interestingly, this decreased function of stem cells from aged 
mice was corrected by exposing the old mice to factors present in the serum of healthy 
young mice. This parabiotic pairing (shared circulatory system) of old and young mice 
restored the diminished proliferation and differentiation potential of aged cells[10]. 
The general properties of stem cells i.e., self-renewal and differentiation are 
significantly decreased with donor age making the aged stem cells less efficient to 
respond to signals from niches and growth factors. The yield, number of colonies, 
proliferation as well as differentiation potential of cells isolated from different animal 
and human tissues was negatively affected by donor age[12-15]. In addition, aged stem 
cells exhibited more senescent (p16, p21, SA-β-gal) and apoptotic (p53, annexin V, 
caspases) features as well as reduced SOD level, telomeres shortening, high ROS levels 
and diminished functional ability (wound healing, angiogenesis, migration etc.)[12-
15]. These findings of different reports indicate that donor age has negative impact on 
basic stem cells characteristics and thus adversely affect the regenerative potential of 
stem cells.

Similar to donor age, various diseases of donors particularly the age-related 
diseases such as diabetes and heart failure also make the cells unhealthy and therefore 
limit their therapeutic potential. In healthy individuals the stem cell niche is tightly 
regulated by the combined action of local and systemic factors. In diseased conditions, 
however; an altered microenvironment changes stem cell properties that result in 
compromised quality of their use for regenerative therapies. It has been shown that 
disease conditions of cell donors negatively impact the function of endogenous 
progenitor cells[16]. Diabetes (type I & II) has been shown to lower the number of 
CD34+KDR+ EPCs[17,18]. Pérez et al[19] (2018) has comprehensively discussed the 
diseases that potentially affect stem cell behavior[19]. Diseases such as osteoporosis, 
cardiovascular diseases, diabetes, obesity, hypercholesterolemia, glucocorticoid 
imbalance, arthritis, cancer and aplastic anemia have been shown to negatively impact 
a variety of stem cell types[19]. Generation of oxidative stress with certain diseases and 
the resultant compromised stem cell proliferation, differentiation and mobilization are 
well documented in literature[18-20]. Diabetes, for example, negatively regulates stem 
cell proliferation, differentiation, paracrine activity, SOD activity, chemotactic ability, 
angiogenesis and heart repair[21]. Similarly, stem cells isolated from adipose tissue of 
obese persons show low yield, impaired migration and angiogenesis[22-24]. It has 
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Figure 1 Increased donor age, disease conditions and in vitro expansion of cells reduce stem cell potential, making the cells less 
suitable for cell-based therapies. Stem cell function can be enhanced using strategies such as hypoxia, heat shock, caloric restriction and growth factor 
preconditioning. These strategies positively affect proliferation, migration, paracrine activity and differentiation potential of cells, and reduce senescence and 
apoptosis. Such pretreatment of cells makes the cells more suitable for cell based regenerative therapies.

been shown that the effects of disease conditions are similar to those that are portrayed 
by aged donors. For example, the production of ROS, telomere shortening, reduced 
expression of telomerase, high expression of apoptotic and senescent markers and 
resultant reduced repair and regenerative capability are manifested with advanced age 
and also with onset of certain diseases[25]. It is pertinent to mention here that the onset 
of diseases in aged individuals affects the regenerative potential of stem cells more 
adversely as compared to diseases in young donors.

High number of stem cells are needed for cell-based therapies to fully appreciate 
their therapeutic potential for repair of damaged tissues. However, stem cells are 
found in low numbers in most adult tissues and therefore in vitro expansion is 
required to obtain large number of cells. MSCs have high regenerative potential but 
they are also vulnerable to replicative senescence[26]. In prolonged in vitro cultures, 
stem cells become senescent and undergo deleterious changes such as reduced prolif-
eration and multi-lineage differentiation capability, shortening of telomere length and 
morphological changes. Studies indicate that passaging of the cells for prolonged times 
negatively affected their potential applications for tissue engineering and regenerative 
medicine[27]. The passaging of stem cells from “old” and “unhealthy” donors is 
particularly risky to obtain desired results as these cells already have compromised 
characteristics as mentioned above.

As stem cells are the basis of tissue engineering and regenerative medicine applic-
ations, a reduced regeneration potential of stem cells due to increased donor age, 
disease condition or in vitro expansion may compromise the efficacy of autologous cell 
therapies. Due to medical advancements, life expectancy has been significantly 
increased that resulted in a substantial increase in the aged population. Similarly, due 
to unhealthy lifestyles the frequency of occurrence of diseases has also been increased. 
As a result, stem cell based therapies are becoming more and more popular in recent 
years. It is therefore important to use different strategies to improve the stem cell 
function before use in patients to obtain the desired medical improvements.

ENHANCEMENT OF COMPROMISED STEM CELL FUNCTION 
With time researchers have adopted different methodologies and protocols in an 
attempt to enhance compromised stem cell function. These modifications include best 
source of stem cells, type of serum for culture, cell plating density, glucose concen-
tration, cell delivery method, transplant method, timing and dosages, which have 
improved some aspects of cell therapy but not up to the optimal level. The limited 
improvement is due to low numbers or poor survival of the cells after transplantation 
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due to a harsh ischemic environment at the host site[3,28,29]. To compensate for the 
reduced functions of stem cells, researchers were encouraged to investigate novel 
strategies to improve the compromised stem cell function to maximize the therapeutic 
effect of stem cells. In this regard significant attention has been given to strategies that 
manipulate the culture conditions such as hypoxia, heat shock, CR, and precondi-
tioning with different factors.

Hypoxic preconditioning
Oxygen concentration can be adjusted during cell culturing to optimize cell function 
for cell based regenerative therapies[30]. Naturally stem cells reside in niches inside 
the body where oxygen concentrations are significantly lower as compared to normal 
oxygen concentrations. Studies indicate that oxygen concentration in different tissues 
and organs depends on the distance from the capillaries. Oxygen tension in the lungs 
for example is 20% which lowers to 2% to 9% when entering other organs and tissues. 
Oxygen concentration in tissues that are important stem cell sources (such as adipose 
tissue, bone marrow, placenta, cord tissue etc.) is variable and is low as compared to 
normoxic conditions (Table 1). For example, it is 2%-10% in adipose tissue[31] and 1%-
6% in bone marrow[32,33]. So, although stem cells reside in anatomical sites that are 
relatively oxygen deficient, conventionally they are cultured in vitro under normoxic 
conditions (20%-21%) in CO2 incubators regardless of their source and oxygen concen-
tration in the tissues from where they are isolated. So hypoxic physiological niches in 
which most type of stem cells normally reside are largely ignored which may make the 
cells unhappy and unhealthy.

Being an important component of the stem cell microenvironment, oxygen tension 
provides signals for maintenance of stem cell properties[34]. Studies indicate that the 
cells may grow better if the same in vivo oxygen concentrations are provided to them 
for in vitro culturing. Stem cell culturing under hypoxia is physiologically more 
relevant to their niche and thus can affect the regenerative potential of cells. Culturing 
the cells under hypoxic conditions may improve their regenerative potential in terms 
of their improved proliferation, differentiation, adhesion, angiogenesis and growth 
factor secretion.

There is a clear consensus on the fact that hypoxia promotes the proliferative 
potential of cells. It has been shown that hypoxic insult significantly improves 
survival, stemness and proliferation of MSCs derived from adipose tissue[35] and 
bone marrow derived stem cells[36,37]. Proliferative potential of MSCs was 
significantly higher in hypoxic culture condition as compared to normoxic conditions
[38] in long term cultures. Oxygen concentrations of 1%-5% has been demonstrated to 
significantly increase the proliferation of MSCs while maintaining their normal 
morphology[36,37]. Similarly, the proliferative potential of BM-MSCs was significantly 
enhanced under hypoxia[39]. In this study, 1% hypoxia significantly enhanced the 
proliferative potential of BM-MSCs. Collectively, these studies indicate that hypoxic 
insult increases the self-renewal potential of stem cells. Some studies however indicate 
that initially hypoxia has a negative affect on cell viability and proliferation, however, 
reoxygenation following hypoxia promotes these processes[40].

Low oxygen concentrations also help maintenance of stemness characteristics of 
cells. In periodontal ligament cells[41], adipose tissue MSCs[42] and dental pulp cells
[41], 2% hypoxia maintained the cell stemness for prolonged periods of time. Under 
24-h hypoxic conditions mRNA expression of pluripotency markers Oct-4, Sox-2 and 
c-Myc upregulated significantly concomitant with increased protein expression of 
these markers[41].

The effect of hypoxia on differentiation of stem cells has also been investigated by 
number of researchers with conflicting reports and therefore the role of hypoxia in the 
differentiation of stem cells remain controversial. Regarding differentiation of stem 
cells into adipocytes, culturing the cells under hypoxic conditions seems to inhibit it
[39]. Carrière et al[43] (2004), reported decreased adipocyte differentiation of 3T3-
F442A preadipocytes in 1% hypoxia[43]. Similarly, Hung et al[39], 2012 observed 
compromised adipogenic potential of bone marrow derived MSCs when hypoxia was 
applied for 4 wk[39]. In another study, it has been demonstrated that hypoxia 
negatively regulates the differentiation of ASCs. The authors demonstrated that 
hypoxia reversibly arrested ASCs in an undifferentiated state and maintains the 
expression of pre-adipocyte factor 1 (Pref-1) that has been shown to negatively 
regulate adipogenic differentiation[44]. Contrary to these findings an extreme hypoxia 
(0.2%) induced more adipogenic differentiation that resulted in more lipid droplets 
accumulation and upregulation of adipocyte specific genes such as LPL, CFD, PGAR 
and HIG2[45]. Under severe hypoxia, significantly lower adipogenic differentiation 
was observed as compared to differentiation of BM-MSCs in normoxic conditions[46]. 
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Table 1 Oxygen concentrations in various stem cells niches

Tissue/Organ Oxygen concentration Ref.

Adipose tissue (source: ASCs) 2%-10% [31]

Bone marrow (source: MSCs) 1%-6% [32,33]

Eye (retina, corpus vitreous) (Source: Limbal stem cells) 1%-5% [119,120]

Brain (source: Neural stem cells) 0.5%-8% [121,122]

Heart (source: Cardiac progenitor cells) 4%-14% [123]

Kidney (source: Renal stem/progenitor cells) 4%-14% [124]

Liver (source: Liver stem cells) 4%-14% [125]

Umbilical veins and arteries 2.4%-3.8% [126]

MSCs: Mesenchymal stem cells.

However, as indicated in another report, hypoxic preconditioning (2% oxygen) of 
adipose tissue derived MSCs induces more adipocyte differentiation[47].

Hypoxia however favors differentiation of MSCs into osteocytes. Studies indicate 
that hypoxia promotes osteogenic differentiation of MSCs[39]. In another report 
hypoxia positively regulated osteogenesis of MSCs derived from rat bone marrow. In 
this study, hypoxic preconditioned rat derived MSCs produced more bone when 
implanted into rats[48]. Moreover, Tsai et al[49], (2011) demonstrated that culturing of 
cells under hypoxic conditions significantly promoted their osteogenesis and chondro-
genesis in vitro and their bone repair ability in vivo[49]. Similarly, in a number of 
studies 1% to 5% oxygen enhanced the chondrogenic differentiation of ASCs[50-53]. 
Interestingly, Jurgens et al[53], 2012 found that hypoxia can promote differentiation of 
cells into chondrocytes to the same extent as transforming growth factor-b1[53] and 
enhance the expression of hypoxia inducible transcription factor-2a, SOX5, SOX6, and 
SOX9, and that of aggrecan, versican, and collagens II, IX, X, and XI[54]. Contrary to 
these results D’Ippolito et al[55] (2006) reported reduced osteogenic commitment of 
human bone marrow derived MSCs when cultured and differentiated under hypoxic 
conditions[55]. These interesting findings indicate that hypoxic effect may be cell 
source and species specific. Chen et al[56], 2015 set the hypoxic conditions at 0.2% and 
found that this extreme hypoxia can impair the osteogenic differentiation as indicated 
by the attenuation of alkaline phosphatase (ALP) activity and the reduced expression 
of osteogenic markers osteocalcin and osteopontin[56].

The key regulators that alter the cellular and molecular functions of stem cells 
during hypoxia are reactive oxygen species, HIF-1a and micro RNAs. The electron-
transport chain within the mitochondria is the major source of ROS production in the 
cells. Although accumulation of high ROS levels in the cells may cause adverse effects 
in terms of genetic and physiological dysfunction, and induction of senescence and 
apoptosis[57-59], low ROS levels function as signaling molecule and positively affect 
cell characteristics by serving as second messengers, triggering the phosphorylation of 
signaling molecules[60,61] such as tyrosine kinase. Activation of tyrosine kinases leads 
to the activation of the PI3K/Akt and MAPK signaling pathways that also can alter 
stem cells characteristics. Different microRNAs such as miR-210 have been found to 
consistently induced during hypoxia. miRNA-210 is regulated by HIF-1a and ROS-
related pathways during hypoxia[62]. HIF-1a is a master transcription factor that 
regulates many genes involved in the differentiation of cells. It becomes activated 
during hypoxia and directly binds with the HIF-responsive element (HRE) to alter 
stem cell functions.

In conclusion, hypoxia has a profound impact on the biological and functional 
properties of stem cells and could be used as a strategy to improve their regenerative 
potential before clinical use (Figure 1). Hypoxia not only enhances the self-renewal 
potential of cells but also their differentiation into multiple cell types. However, it 
must be noted that the inconsistent or controversial reports in the literature are 
probably due to the use of different hypoxia levels, variable durations of exposures 
and a variety of cell types. The question is not if hypoxia alters stem cell function but 
rather the use of the correct hypoxic preconditioning for different cell types for an 
accurate period of time that is most important. In addition, it is important to note that 
previous studies have often been performed using H2O2 for short time periods. 
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However, development of sophisticated trigas CO2 incubators now provide a more 
refined way of culturing the cells under hypoxia for long periods of time (Figure 2).

Heat shock
Hormesis is a phenomenon in which low doses of a harmful stressor produce a 
cascade of beneficial biological effects. Temperature is one such stressor that has 
recently been used to manipulate the cell functionality. The hormetic effect of high and 
low temperature for a short period of time has been shown to effect in vivo-as well as 
in vitro-age-related dysfunction in cells. Temperatures below and above the standard 
culture temperature (32 ℃ and 41 ℃) have been shown to prevent or reverse aging 
and age related impairment, and significantly impact the regenerative potential of 
cells. Adult stem cells exhibit therapeutic potential for regenerative medicine and 
tissue engineering applications. However, age related changes may make these cells 
less effective for medical use to treat various diseases and disorders (Figure 1). 
Similarly, in vitro expansion of adult cells negatively affects the regenerative potential 
of cells as indicated by a decline in adipogenic, osteogenic, chondrogenic and 
myogenic differentiation potential of MSCs with in vitro passaging (Figure 1). Adult 
stem cells are found in low numbers in their niche but are required in large number for 
clinical use and therefore many promising tissue engineering and regenerative 
medicine applications require expansion to obtain large numbers of cells. The 
expansion of cells results in increased senescence and apoptosis, and reduced 
regenerative potential representing a severe limitation for their use. Expansion of cell 
at high or low temperatures can significantly enhance the regenerative potential of 
stem cells and thus could be used as a strategy to enhance their potential.

The anti-aging effect of heat shock treatment has been well documented in a series 
of studies with interesting results. Heat shock treatment has been found to maintain 
the long, spindle shaped morphology of MSCs by preventing or reducing age-related 
alterations such as the irregularly enlarged and flattened shape of cells[63,64]. Similar 
results were obtained by Choudhery et al[65], (2015) in a study in which the stressed 
cells (HS at 41 ℃) exhibited more thin, long and spindle shaped morphology of MSCs 
as compared to control cells that had more flattened morphology (a typical age-related 
alteration)[65]. Heat shock also enhanced viability of cells at different passages during 
expansion of cells. There were significantly more viable cells at passage 5 and passage 
8 when a mild heat shock was applied as compared to non-treated cells[65]. In this 
study, the percentage viability as determined by the trypan blue exclusion assay as 
well as flow cytometry using 7-AAD/Annexin V was significantly higher at different 
passages[65].

A significant increase in the proliferative potential of cells was observed when cells 
were treated with mild heat shock. The number of cumulative population doublings 
were increased 10% to 15% as a result of heat shock treatment for a short period of 
time[64]. In another study, the maximum population doublings were higher for cells 
that underwent heat shock at 41 ℃ for 60 min once in a week. The cells that were 
treated with heat shock achieved 36.0 ± 3.4 doublings while the cells in control group 
achieved only 26.2 ± 1.1 doublings. The doubling time was also shorter for heat 
shocked MSCs (2.1 ± 0.2 d) as compared to those that were not treated with heat shock 
(3.2 ± 0.2 d)[65]. Self-renewal is a complex regulatory process under the control of 
various transcription factors such as Nanog, Oct4, Sox2, STAT3 and others[66]. These 
transcription factors work in collaboration to regulate self-renewal of cells. 
Interestingly, the heat-shock proteins expressed as a result of stress (e.g. heat shock 
stress) interact with these transcription factors to regulate normal cell development 
and functioning[67]. HSP90, HSP70 and HSP27 are also particularly involved in cell 
self-renewal[68].

The anti-aging effect of repeated mild heat stress on cell growth and other cellular 
and biochemical characteristics has been well documented[63]. In another study, heat 
shock alleviated apoptosis in BMSCs and improved survival[69]. The protective effects 
of heat shock in this study were attributed to elevated levels of heat shock proteins 
HSP70 and HSP90 along with attenuation of autophagy. Heat shock has been shown to 
enhance the survival of transplanted cells concomitant with reduced apoptosis and 
senescence[65,70]. After heat shock treatment, the expression of senescent associated 
markers such as β-galactosidase, P16 and P21 were significantly downregulated in 
cultures of cells that were subjected to heat shock[65]. Feng et al[71], (2010) explored 
the cytoprotective effects of HSP90 on rat MSCs. In this study apoptosis was induced 
with hypoxia and serum deprivation, and heat shock improved viability, paracrine 
effect and elevated Bcl-2/Bax and Bcl-xL/Bax expression in MSCs[71].
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Figure 2 Challenges and limitations in using preconditioning strategies such as hypoxia, heat shock, caloric restriction and growth 
factor & cytokine. Certain challenges are common for all these preconditioning strategies. Selection of correct strategy for correct duration for preconditioning of 
mesenchymal stem cells (MSCs) isolated from different sources is important. Assessment of the use of more than one strategies at the same time, use of 
sophisticated equipment for application of these strategies and evaluation of tumorigenicity after use of preconditioned strategies is required. The figure insets further 
describe the specific challenges in using specific strategies for preconditioning of MSCs.

It is pertinent to note that differentiation of MSCs into various lineages was also 
elevated after heat shock treatment. MSCs, under exposure to heat shock produced 
more extracellular matrix (that stained black with von Kossa staining) as compared to 
non-heat-shocked MSCs. The expression of lineage-specific osteogenic genes such as 
ALP, osterix, ostepontin, bone morphogenetic protein 2 (BMP2) and osteocalcin as 
assessed with RT-PCR was also upregulated in heat-shocked MSCs[56,65]. Adipogenic 
induced MSCs cultures that were exposed to repeat heat shock showed more oil red O 
uptake and expression of markers of adipogenesis such as peroxisome proliferator-
activated-receptor-g (PPAR-g) and lipoprotein lipase (LPL)[65]. Similarly, in pellet 
culture a periodic heat shock enhanced the chondrogenic differentiation of human 
MSCs as depicted by increased sulfated glycosaminoglycan and increased expression 
of collagen type II and aggrecan in heat-shocked pellets than non-heat-shocked cell 
pellets[57]. Besides the above-mentioned effects, the novel effects of heat shock have 
been explored on in vitro wound healing[72], angiogenesis[73], neuroprotection and 
neurodegeneration[74]. Furthermore, heat shock treatment seems to be an effective 
way to protect the cells even after transplantation. Recently it has been shown that 
mild heat stress significantly enhanced the viability concomitant with reduced 
apoptosis and senescence of transplanted cells[65,70]. Chen et al[75], (2018) dem-
onstrated that heat stressed bone marrow derived MSCs inhibited apoptosis of ovarian 
granulosa cells and enhanced their repair effect when transplanted in a chemotherapy 
induced rat model. In this study, the chemotherapy-induced rat model was established 
by intraperitoneal injection of cyclophosphamide by giving an initial dose of 50 mg/kg 
followed by a dose of 8 mg/kg for 14 d[75].

Heat shock response is an evolutionary conserved genetic response to various 
physiological, pathological, chemical and environmental stresses[76]. This response of 
heat shock (and other stressors) leads to the induction of special type of proteins in 
cells called heat shock proteins (HSPs). HSPs may function as molecular chaperones 
and can help in stabilization of intracellular proteins, repairing damaged proteins, and 
assisting in protein translocation[68,77-80]. Studies indicate that HSPs can interact with 
various transcription factors and thus are involved in various cell signaling pathways. 
Therefore, alterations in the expression of HSPs directly affect stem cell characteristics 
such as their proliferation capacity as well as differentiation and aging.

In conclusion, it is clear that hormetic effects of mild heat shock can affect the 
regenerative potential of adult stem cells in vitro and these effects help in better 
performance of these cells after transplantation (Figure 1). However, applying the 
correct hormetic conditions for stem cells from different sources is challenging. The 
temperature as well as the duration of heat shock treatment is important for optimal 
results. In addition, it is also important to select a method of application of heat shock 
in cell cultures. Instead of incubators, water baths may be more useful for this purpose 
for quick heat transfer.
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GROWTH FACTORS AND CYTOKINES 
The use of growth factors and cytokine preconditioning (Figure 1) can also influence 
the therapeutic potential of stem cells by improving self-renewal, cell survival, 
paracrine activity and differentiation potential concomitant with reduced senescence 
and apoptosis[81,82]. The growth factors interact with the receptors present on the 
cells and activate various downstream signaling pathways to influence numerous cell 
characteristics. Stem cells particularly MSCs release a number of growth factors and 
cytokines that influence the cells and tissues in an autocrine or paracrine manner. The 
half-life of these growth factors, however; is very short and therefore their stable 
therapeutic effects are limited.

BM-MSCs when preconditioned with stromal derived factor 1 showed enhanced 
survival, proliferation, migration, secretion of pro-survival genes (AKT-1, BCL-2, Erk) 
and pro-angiogenic factors (bFGF, VEGF) concomitant with reduced apoptosis and 
senescence[83]. In another study, BM-MSCs were treated with 0.05 μg/mL of SDF-1 
that enhanced cell survival, engraftment and vascular density and suppressed 
apoptosis. Further, injection of the SDF-1 preconditioned MSCs in a rat model of left 
anterior descending artery ligation also improved myocardial function by increasing 
cell proliferation and reducing infarct size and fibrosis via SDF/CXCR4 signaling[84]. 
Preconditioning of BM-MSCs with 10 ng/mL to 100 ng/mL of SDF-1 also reduced 
hypoxia induced apoptosis[85]. TGF-Beta inhibits differentiation of BM-MSCs into 
adipocytes and osteocytes. Interestingly, however, the same growth factor promotes 
osteogenesis in the presence of IBMX (usually present in adipogenic differentiation 
medium). TGF-β1 is a potent stimulator of tissue regeneration[86] and it can switch 
adipogenic differentiation into osteogenic differentiation. Pretreatment of MSCs with 
TGF-β1 improves wound healing in a murine wound model by adhesion and 
migration to the wound site[87]. Further, TGF-β1 enhanced fibronectin production as 
well as survival of human umbilical cord-derived MSCs in a rat model of lipopolysac-
charide-induced acute lung injury[88]. However, a previous study demonstrated that 
TGF-β1 induces senescence through production of ROS in periodontal ligament stem 
cells[89]. A 3 d preconditioning of AT-MSCs with tumor necrosis factor-alpha (TNF-α) 
significantly promoted proliferation, mobilization and differentiation into osteocytes 
via activation of ERK1/2 and MAPK signaling pathways. These results were 
confirmed by gene silencing with siRNA that partially inhibited ERK1/2 signaling and 
osteogenic differentiation of MSCs[90]. TNF-α preconditioning has been shown to 
improve in vitro bone regeneration by up-regulating BMP2. Further, it stimulated the 
cell proliferation and differentiation[91]. IFN-γ pretreatment improved the therapeutic 
efficacy of MSCs by enhancing the secretion of immunomodulatory molecules such as 
PGE2, HGF, TGF-β, and MCP-1[92]. MSCs pretreated with IFN-γ inhibited natural 
killer cell activation and NK mediated cytotoxicity by upregulating the synthesis of 
indoleamine 2,3-dioxygenase (IDO) and prostaglandin E2[93]. In another study MSCs 
were pre-stimulated with IFN-γ to enhance their immunosuppressive and therapeutic 
properties in vitro and in vivo[94]. A combination of different growth factors may 
produce contrary results. For example, a combination of interleukin (IL)-1 and TNF-α 
in in vitro cultures of MSCs inhibited the osteogenesis and adipocyte via activating the 
canonical nuclear factor-kappa B (NF-kB) signaling[95]. Similarly, when cells were 
treated with a combination of bFGF and steroid hormones an enhanced neural differ-
entiation was observed as indicated by upregulation of beta III-tubulin (β-III tubulin) 
and microtubule-associated proteins-2 (MAP-2) during 4 d of treatment[96].

Certain cytokines have also been shown to influence the regenerative potential of 
stem cells. IL-1β preconditioning of MSCs activated several biological processes such 
as cell survival, cell migration, cell adhesion, chemokine production, angiogenesis and 
modulation of the immune response[96]. More specifically MSC preconditioning with 
IL-1β significantly upregulated the expression of certain cytokines (TNF-α, IL-6, IL-8 
and IL-23A), chemokines (CCL5, CCL20, CXCL1, CXCL3, CXCL5, CXCL6, CXCL10 
and CXCL11) and adhesion molecules [vascular cell adhesion molecule (VCAM)-1, 
intercellular adhesion molecule (ICAM)-1 and ICAM-4][96]. In another study, synovial 
MSCs when pretreated with IL-1β, showed significantly higher proliferation as well as 
chondrogenic potential[97]. To induce these results, TGF-β seemed to activate Akt, 
extracellular signal-regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and 
p38, via TGF-β type I receptor in MSCs[97]. Xinaris et al[98], preconditioned MSCs with 
insulin-like growth factor-1 (IGF-1) before administration and found it effective in 
terms of migration and homing of cells which was required for the restoration of renal 
function following acute kidney injury[98]. Interestingly when the diabetic MSCs were 
preconditioned with a combination of IGF-1 (50 ng/mL) and fibroblast growth factor-2 
(FGF-2) (50 ng/mL), upregulation of IGF-1, FGF-2, Akt, GATA-4, Nkx 2.5 and 
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downregulation of p16INK4a, p66shc, p53, Bax and Bak occurred[99].
In conclusion, preconditioning of cells with different growth factors and cytokines 

may enhance regenerative potential of stem cells (Figure 1). Although preconditioning 
of MSCs with different growth factors and cytokines can influence significantly the 
biological properties of MSCs, there are number of challenges to use this strategy 
successfully for optimum benefits. For example, will the same dose or concentration of 
cytokines and growth factors influence MSCs isolated from different sources? Some 
growth factors and cytokines may influence MSC function synergistically and 
antagonistically when used in combination[40]. Therefore, optimization of 
amalgamation of growth factors and cytokines as well as their concentrations is 
required for better results. Similarly, MSCs behave differently in culture conditions 
such as in 3D cultures and hypoxic conditions and therefore preconditioning in such 
conditions should be optimized (Figure 2).

CR
CR refers to consuming significantly reduced calories as compared to calories taken ad 
libitum. At the organismal level, it was first reported in 1935 that reduced caloric 
intake can extend the mean and maximum life span in rodents[100]. Since then 
beneficial effects of CR were observed in animals of other species such as rats, mice, 
dogs, fish, flies, worms, yeast and humans[101-103]. CR is now an established anti-
aging strategy for prolonging lifespan and has also been applied on stem cells to 
rejuvenate them. CR as a non-genetic dietary intervention reduces the energy 
metabolism in cells and can positively affect regenerative potential of cells by 
extending their life span and making the cells healthy.

Glucose is an essential source of energy for all types of cells in the body although 
elevated levels of glucose have been shown to be associated with reduced mob-
ilization, proliferation, homing and repair potential[104,105]. Similarly, stem cells 
isolated from diabetic patients and animals exhibited reduced yield, viability, prolif-
eration, angiogenesis, differentiation and wound healing ability[106,107]. Cells are 
cultured in stem cell media that contain various components including glucose to 
ensure proper functioning and maintenance of cell characteristics. However, cells 
cultured in vitro in media with high glucose concentration show impaired regenerative 
potential of cells[108]. High glucose concentration in stem cell culture media was 
found to negatively impact a cell’s viability, differentiation and self-renewal potential
[109,110]. Based on the findings it was found that the conventional media used to 
expand cells was not appropriate for long term expansion of cells as it adversely 
impacted the biological properties of cells[110,111]. Thus induction of CR in cells by 
culturing in low glucose concentration is another area of interest for the enhancement 
of stem cell function before transplantation. Different protocols ranging from glucose 
depletion[109] to varying glucose levels[110] were adopted in this regard.

Al-Qarakhli et al[112] comprehensively studied the effect of glucose concentration 
on expansion as well as differentiation of mesenchymal stromal cells. They found that 
hyperglycemia negatively impact the proliferation, and osteogenic and adipogenic 
differentiation of cells with more senescence features in culture[112]. To investigate the 
effect of CR, Stolzing et al[110] (2006) used media with different glucose concentrations 
for MSC culturing. In this study MSCs cultured in medium with low glucose concen-
trations were functionally more active as evidenced by enhanced viability, prolif-
eration and differentiation of cells when cultured in caloric restricted media[110]. 
When the biological characteristics of cells cultured in low glucose and` high glucose 
concentrations were compared, there was significantly more proliferation, colony-
forming ability, homing and wound healing potential of cells in low glucose concen-
trations as compared to high glucose concentration. In addition, high glucose 
decreased expression of stemness genes (SOX-2, Nanog, Oct-4), survival genes (Sirt-1, 
Sirt-6, HIF-1α), glucose transporter 1 (Glut-1) concomitant with increases apoptosis 
and senescence in cells[113]. Choudhery et al[109], (2012) cultured the BM-MSCs in 
glucose free conditioned and optimized the time to perform further in vitro and in in 
vivo studies[109]. In this study aged MSCs were pre-conditioned with glucose 
depletion for 60 min to enhance the age depleted function of stem cells. Pre-
conditioning of aged MSCs with glucose depletion resulted in upregulation of IGF-1, 
AKT and SIRT-1 concomitant with enhanced viability, proliferation and delayed 
senescence. Interestingly, the preconditioned aged MSCs after transplantation into 
heart showed increased expression of paracrine factors (IGF-1, FGF-2, VEGF and SDF-
1a) that was associated with significantly improved cardiac performance in mouse 
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Table 2 Effect of glucose concentrations on cells

Glucose concentration Major findings Cell types Ref.

Glucose free and 4.5 g/L Glucose depletion enhances 
proliferation, delays senescence 
and restores ability of aged cells 
to repair senescent infarcted 
myocardium

Mouse bone marrow derived MSCs [109]

0.25, 0.5, 1.0 and 4.5 g/L High glucose decreases viability 
while low glucose concentration 
retains high proliferative and 
differentiation capability of cells

Rat bone marrow derived MSCs [110]

5.56 mmol/L, 13.9 mmol/L, 27.8 
mmol/L, and 55.6 mmol/L

Decrease in population doublings 
and CFUs. Increased senescence 
in high glucose

Human adipose tissue derived MSCs [111]

5.5 mM and 25 mM No negative impact on 
population doublings and 
expansion. Increased senescence, 
inhibit osteogenic and adipogenic 
differentiation potential

Endosteal niche lining compact bone cells (CB-MSCs) [112]

1 g/L and 4.5 g/L Decreased proliferation, increased 
apoptosis and senescence

Nucleus pulpous-derived MSCs [113]

5.5 mM and 35 mM Increased apoptosis Human periodontal ligament fibroblasts [114]

5 mM/L and 25 mM/L Increased oxidative stress Mesangial cells [118]

MSCs: Mesenchymal stem cells.

model of myocardial infarction[109]. High glucose concentrations can impair cell 
function and induce apoptosis and represent a potential limitation for therapeutic 
strategies based on ex vivo expansion of stem cells[114]. In parallel to these findings 
some studies suggested a significantly increased apoptosis of β-cells in diabetic 
patients that resulted in β-cell dysfunction and reduced β-cell mass[115,116].

There are a number of cellular responses to high glucose (Table 2) that ultimately 
result in functional impairment and cell death[117]. High glucose results in generation 
of reactive oxygen and nitrogen species such as superoxide, nitric oxide and per-
oxynitrite and their derivatives[117,118]. This high glucose induced ROS species 
results in high glucose-mediated apoptosis and necrosis and ultimately cell death. ROS 
species produced by high glucose may increase the activity of NF-kB in various cell 
types and leads to cell apoptosis and death in a process that involves Bax and caspase 
activation[117]. In addition, high glucose concentration in the cell microenvironment 
activate those proteins that are related to apoptotic cell death including members of 
the caspase and Bcl-2 families[117].

In conclusion, the biological properties of cells are influenced by the glucose concen-
tration in the culture medium (Figure 1). Previous studies indicate that low glucose 
concentration in the culture medium enhances cell proliferation, viability and differen-
tiation potential of cells concurrent with reduced senescence and apoptosis. However, 
not only the glucose concentration but the duration of preconditioning of cells are 
important parameters to consider. For example, although 1 h preconditioning of MSCs 
with glucose depletion (0g/L) produced beneficial effects in Choudhery et al[109]’s 
study[109], culturing of cells without glucose for longer time will definitely produce 
deleterious effects in cell. Therefore evaluation of the effects of glucose concentrations 
with respect to time must the carefully considered for preconditioning of different 
types of cells (Figure 2).

CONCLUSION
Conclusion and future perspectives
Stem cell-based therapies are gaining interest of patients and doctors for their potential 
to treat diseases that cannot be cured with conventional medicines. Aged patients are 
the major candidates for stem cell-based therapies. However, studies clearly indicate 
that stem cell potential for autologous use deteriorates with donor age. The number of 
regenerative cells in aged and unhealthy individuals is very low, however, for the 
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success of stem cell based regenerative therapies large numbers of cells are required. 
Cells are usually expanded in vitro to obtain high numbers, however, this expansion 
further decreases stem cell function and does not give desired results after 
transplantation. Overall, with increasing donor age, disease condition of donors and in 
vitro expansion of cells, regenerative potential of stem cell decreases and it represents a 
major limitation for the success of cell therapies. To combat the problem of decline in 
regenerative potential of cells different strategies such as heat shock, hypoxia, caloric 
restriction and preconditioning with different factors can be applied in vitro before 
transplantation of cells. The correct application of these strategies have a profound 
effect on stem cell characteristics to enhance their therapeutic functions. These 
strategies may be used to enhance the self-renewal, repair and differentiation potential 
of cells and to keep the cells healthy. Use of these strategies also enhances cell survival 
and engraftment in hostile microenvironment of the target tissue. The inconsistent 
reports are due to the use of different levels of factors (hypoxia, glucose, temperature, 
growth factors & cytokine), variable durations and variety of cell types used in studies. 
The question is not if these strategies alters stem cell function but rather the use of the 
correct strategy and condition for an accurate period of time that is most important.
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