1 Dear editor and reviewers

2

3 We appreciated to your consideration of my article for potentially accepting on 4 World Journal of Gastrointestinal Oncology. We carefully address responses to

5 the comments from reviewers and editors as followed as below, and check all

- 6 the formatting requests.
- 7

8 Reviewer

9 This review summarized recent advances in statin research in some cancers 10 and evaluated the utility of statins as anticancer agents, suggests important 11 considerations for the clinical use of statins to improve outcomes for cancer 12 patients. The content of this review is significant and comprehensive, so this 13 review is acceptable. However the language quality of this article need to be 14 improved, such as the "and" in Line 48 need to be removed.

15 Response: Thanks for your suggestion, sorry about our mistakes in writing. I

16 removed "and" in Line 48. I checked the quality of the language and corrected

17 the mistake. I made changes abbreviation according to the abbreviation rules.

19 Review article

20

21		
22	Norio Uemura, Hiromitsu Hayashi, and Hideo Baba	
23		
24	Department of Gastroenterological Surgery, Graduate School of Medical	
25	Sciences, Kumamoto University, <u>1-1-1 Honjo, Kumamoto 860-8556</u> , Japan	删除[]: Kumamoto
26		
27	Corresponding author: Hiromitsu Hayashi, MD, PhD, FACS,	删除[]:
28	E-mail: hhayasi@kumamoto-u.ac.jp	删除[]: Department of Gastroenterological Surgery,
29	ORCID number:	Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.
30	Norio Uemura; <u>https://orcid.org/0000-0003-3192-4153</u>	
31	Hiromistu Hayashi; https://orcid.org/0000-0002-1832-4287	
32	Hideo Baba; https://orcid.org/0000-0002-3474-2550	
33	Supportive foundations: None	删除[]: Conflict of interest statement: The authors
34	Running title: Anticancer effect of statins	declare that there are no conflicts of interest.
35	Abstract: Statins inhibit 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR),	

36 the rate-limiting enzyme of the mevalonate (MVA) pathway and are used

Statin as a therapeutic agent in gastroenterological cancer

37	clinically as a safe and effective approach in the control of hypercholesterolemia.
38	The mevalonate MVA pathway is an essential metabolic pathway that uses
39	acetyl-CoA to produce sterols and isoprenoids that are integral to tumor growth
40	and progression. Multiple studies have indicated that statins improve patient
41	prognosis in various carcinomas. Basic research on the mechanisms underlying
42	the antitumor effects of statins is underway. The development of new anti-cancer
43	drugs is progressing but increasing medical costs from drug development has
44	become a major obstacle. Readily available, inexpensive and well-tolerated
45	drugs like statins have not yet been successfully repurposed for cancer
46	treatment. Identifying the cancer patients that may benefit from statins is key to
47	improved patient treatment. This review summarizes recent advances in statin
48	research in cancer and suggests important considerations for the clinical use of
49	statins to improve outcomes for cancer patients.
50	Key words: Statin; HMG CoA reductase inhibitor; mevalonate pathway; cancer
51	Core tip: Novel pharmacological therapies for cancer are in development, but
52	the expense of new drug development has increased medical costs and placed
53	a heavy financial burden on governments worldwide. Therefore, drug
54	repositioning has become a major focus for new drug development because of

55	reliability and cost effectiveness. Statins are one of the most studied drugs with
56	potential drug repositioning for cancer treatment, but they have not reached
57	clinical application. This review summarizes the results of recent research and
58	clinical studies of statins in cancer, suggests strategies for clinical trial planning,
59	and discusses the potential clinical application of statins for cancer treatment.

60	Introduction: Since the clinical application of statins in the late 1980s, statins
61	have dramatically improved the clinical management of high cholesterol and
62	ischemic heart disease and have become widespread worldwide. Statins are
63	specific inhibitors of the mevalonate (MVA) pathway, which is involved in the
64	synthesis of cholesterol and other nonsterol isoprenoids de novo. The
65	rate-limiting enzyme in mevalonate synthesis is 3-hydroxy-3-methylglutaryl
66	coenzyme A reductase (HMGCR) ^[1,2] . Statins function by inhibiting HMGCR and
67	are effective in the management of hypercholesterolemia.
68	In addition to its role in normal physiology, the MVA pathway is known to support
69	tumorigenesis and be deregulated in human cancers ^[3-5] . The MVA pathway is an 删除[]:
70	essential metabolic pathway that uses acetyl-CoA to produce sterols and increase the activity and expression of MVA pathway
71	isoprenoids, which are integral to tumor growth and progression. Therefore,
72	there is a great deal of interest in diverting statins as anticancer drugs.
73	Numerous retrospective studies have reported that statin use is associated with
74	lower risk of cancer, lower cancer grade and stage at diagnosis, and lower
75	recurrence and cancer-specific mortality ^[6] . Several randomized clinical trials 删除[]: retrospective studies have reported improving
76	have evaluated the benefits of adding statins to chemotherapeutic treatment.
77	However, most of the trials did not show an improvement in prognosis and have

78	not led to the clinical application of statins. The development of new anti-cancer 设置格式[]: 字体颜色: 自动设置
79	drugs is progressing but increasing medical costs from drug development has []: 字体颜色: 红色, 删除线
80	have, become a major obstacle. Readily available, inexpensive and 设置格式[]: 字体颜色: 红色
81	well-tolerated drugs like statins have not yet been successfully repurposed for 设置格式[]: 字体颜色: 自动设置
82	cancer treatment. Planning clinical trials is difficult, and it is possible that the
83	previous clinical trials were poorly designed ^[7] . In the age of precision medicine,
84	defining the cancer patients that may benefit from statins is critical.
85	This review summarizes the results of recent basic research and clinical studies
86	on statins in cancer and suggests strategies for future clinical trial planning. In
87	addition, the potential for the clinical application of statins in cancer treatment is
88	discussed.
89	
90	Mechanisms of action of statins
91	The MVA pathway is an essential metabolic pathway that uses acetyl-CoA to
92	produce sterols and isoprenoids, which are integral to tumor growth and
93	progression. In the first step of the mevalonate MVA pathway, the rate-limiting
94	enzyme HMGCR converts HMG-CoA to mevalonate (Figure 1). Mevalonate is
95	further metabolized to farnesyl pyrophosphate (FPP). FPP is the precursor in

96	cholesterol and steroid biosynthesis as well as in the biosynthesis of dolichols.
97	Intracellular cholesterol retains the sterol regulatory element-binding protein
98	(SREBP) in its full-length, inactive form. In response to cholesterol depletion, the
99	SREBP protein is cleaved, and the active transcription factor involved in the MVA
100	pathway and cholesterol transport.
101	、Statins bind to the active site of HMGCR, compete with HMG-CoA, and reduce
102	MVA synthesis, As a result, statins deplete intracellular cholesterol, causing a 删除[]: (Figure 1)
103	homeostatic feedback mechanism by the SREBP family of transcription factors. 删除[]: sterol regulatory element-binding protein (
104	Activation of SREBP increases the gene expression of Jow density lipoprotein 删除[]:)
105	(LDL) receptor (LDLR), Increased membrane expression of LDLR promotes the
106	mm际[]: and sterol metabolic genes uptake of LDL cholesterol (LDL-C) from the bloodstream and effectively lowers
107	serum cholesterol levels. Statins are commonly prescribed to lower blood
108	cholesterol, reduce the risk of cardiovascular disease, or improve the survival
109	rate of patients with cardiovascular disease.
110	_MVA pathway in cancer
111	The MVA pathway has been shown to play a multifaceted role in tumorigenesis ^[4]
112	^[8] . The PI3K-AKT signal pathway is a major regulator of cell survival and
113	proliferation in response to growth factors. PI3K-AKT signaling activates the

114	MVA pathway through increasing the expression of SREBP. The increase in lipid
115	and cholesterol production mediated by the PI3K-AKT-SREBP axis promotes the
116	proliferation of cancer cells and tumorigenesis ^[9, 10] . Conversely, inhibition of the
117	MVA pathway decreases PI3K activity through decreased RAS isoprenylation [11].
118	Two p53 mutants with gain-of-function mutations were shown to functionally
119	interact with nuclear SREBP2 and increase the transcription of MVA pathway
120	genes ^[12] . Conversely, wild-type p53 reduces lipid synthesis under conditions of
121	glucose starvation by inducing the expression of LPIN1 ^[13] . The tumor
122	suppressor protein RB has also been implicated as a regulator of the MVA
123	pathway by interacting with SREBP and reducing SREBP binding to promoters
124	of target genes ^[14, 15] . The oncoproteins Yes-associated protein (YAP) and
125	transcriptional co-activator with PDZ-binding motif (TAZ), both mediators of the
126	Hippo pathway, are controlled by the SREBP/mevalonate MVA pathway ^[16] . The
127	geranylgeranyl pyrophosphate, produced by the mevalonate cascade is required 删除[]: only
128	for activation of Rho GTPases that, in turn, activate YAP/TAZ by inhibiting their
129	phosphorylation and promoting their nuclear accumulation (Figure 2).
130	The Hedgehog (HH) signaling pathway, which has important roles in
131	tumorigenesis, is regulated by cholesterol. Cholesterol and cholesterol-derived

oxysterols activate HH signal transduction ^[17], whereas inhibition of the MVA
 pathway or downstream sterol biosynthesis decreases HH signaling and
 reduces cell proliferation.

135 Cholesterol is the precursor for steroid hormones such as estrogen and 136 androgen. These hormones are involved in hormone-driven breast cancers and 137 prostate cancers via the activation of estrogen receptor- α (ER α) and androgen 138 receptor (AR), respectively ^[18, 19]. Perhaps because of these functions, research 139 into the antitumor effects of statins is the most advanced in the fields of breast 140 cancer, ovarian cancer, and prostate cancer.

A recent report showed that the mevalonate <u>MVA</u> pathway is involved in T lymphocyte metabolism and regulates T cell differentiation ^[20]. Improved understanding of mevalonate metabolism will enable more effective T cell manipulation for immunotherapeutic purposes in cancer.

145

146 Statins and esophageal cancer

Three meta-analyses have been conducted on the effects of statins on esophageal cancer. In a meta-analysis of five cohort studies comprising 24576 patients, Zhou et al. ^[21] reported that statin use in esophageal cancer patients

150	was associated with a 26% improved overall survival (95%Cl, 0.75–0.94) and
151	disease-free survival (95%Cl, 0.75–0.96) $^{[22-26]}$. Deng et al. $^{[27]}$ reported that
152	statin use after diagnosis of esophageal cancer was significantly correlated to
153	decreased all-cause (random effects: HR=0.81, 95%CI, 0.75–0.89, P<0.001)
154	and cancer-specific mortality (fixed effects: HR=0.84, 95%CI, 0.78–0.89,
155	P<0.001) in esophageal cancer patients from four cohort studies involving a total
156	of 20435 esophageal cancer patients ^{25]} . In the subgroup analysis, both
157	meta-analyses showed an effect of statins on improving prognosis regardless of
158	the histological type of squamous cell carcinoma and adenocarcinoma. Thomas
159	et al. ^[28] reported that statins may <u>might</u> play a preventive role against
160	esophageal cancer development in subjects with or without Barrett's esophagus.
161	Statins and gastric cancer
162	Two randomized controlled trial trials (RCT) have examined the effects of statin
163	combination therapy on gastric cancer. A phase III study that examined
164	simvastatin (40 mg/day) plus capecitabine-cisplatin compared with
165	capecitabin-cisplatin alone did not show any increased progression free the
166	progression-free survival (PFS) ^[29] . A phase II study that examined pravastatin 删除[]: PSF
167	(40mg/day) plus standard chemotherapy revealed no improvement of

168	progression-free the progression-free survival rate at 6 months compared with
169	standard chemotherapy alone [30]. A matched case-control study reported that
170	statin users in patients that underwent radical gastrectomy for stage II and III
171	gastric cancer showed <u>a</u> good prognosis. No significant differences were found
172	in RFS or OS between statin users and non-users. However, subgroup analysis
173	showed that patients who used statins for more than 6 months had more
174	favorable outcomes than non-users or those who used statins for less than 6
175	months [31]. A population-based cohort study including 3833 patients with gastric
176	cancer showed that statin use after diagnosis was associated with reduced
177	cancer-specific mortality (adjusted HR 0.83; 95%CI, 0.74–0.92) ^[32] . Several
178	studies have shown that the use of statins reduces the risk of gastric cancer
179	[33-35]

180 Statins and colorectal cancer (CRC)

Many epidemiologic and clinical studies have been performed on statins and colorectal cancer. However, the results have been inconsistent. One notable observational study from Israel found that 5 or more years of statin use was associated with a 45% reduction in CRC risk (95%Cl, 0.40–0.74) ^[36]. A large cohort study of US veterans also showed a 35% reduction in CRC risk with statin

186	use (95%CI, 0.55–0.78) ^[37] . In contrast, several meta-analyses of case-control
187	and cohort studies have shown smaller risk reductions ^[38, 39] or no association ^{[40,}
188	^{41]} . The inconsistent results from observational studies could be a result of
189	healthier behaviors among statin users compared with nonusers, the difference
190	different durations of statin intake ^[39] , different hydrophilicity of specific statins ^[42] ,
191	or different effects of statins on colon or rectal cancers ^[43, 44] .
192	Statins and hepatocellular carcinoma (HCC)
193	A nationwide population-based nested case-control study of patients with
194	diabetes indicated a dose-dependent reduction of HCC incidence with statin
195	treatment ^[45] . <u>In this study, statin users had a dose-dependent (cumulative</u>
196	defined daily dose (cDDD)) reduced risk of developing HCC. (ORs 0.53, 0.36, 删除[]: The study suggested that risk reduction was
197	0.32, and 0.26 in ≤60, 60–180, 181–365, and >365 cDDD, respectively; P for dose (cDDD) compared with non-users
198	trend <0.0001). The study also suggested that risk reduction was apparent in the
199	presence of liver disease like chronic viral hepatitis, liver cirrhosis, alcoholic liver
200	disease, and previous cancer (OR=0.27, 95%CI, 0.14–0.50), but not significant
201	in the absence of liver disease (OR=0.64, 95%CI, 0.32–1.29). Similar reports
202	from Taiwan showed a dose-response relationship between statin use and the
203	risk of HCC in an HBV cohort (HRs 0.66, 0.41, and 0.34 in 28–90, 91–365, and

204	>365 cDDD, respectively; P for trend <0.0001) and HBV cohort (HRs 0.66, 0.47,
205	and 0.33 in 28–89, 90–180, and >180 cDDD, respectively; P for trend <0.0001)
206	^{[46] [47]} . In a cohort of 7248 HCV-infected patients in the US ERCHIVES database,
207	statin use was associated with a 44% reduction in the development of cirrhosis
208	and a 49% reduction in incident HCC. Atorvastatin and fluvastatin were
209	associated with more significant antifibrotic effects than other statins [48] In in
210	18080 patients with NAFLD nonalcoholic fatty liver disease without cirrhosis,
211	even higher HCC suppressive effects were suggested (HR 0.29) [49]. Several
212	reports have indicated that statins prevent liver fibrosis, and statins may delay
213	the development of HCC by preventing fibrosis and inflammation of the liver ^[50] .
214	A phase II trial to evaluate the effect of a simvastatin intervention versus placebo
215	on the change in serum AFP-L3% from baseline to 6 months following treatment
216	initiation in patients with liver cirrhosis with end-stage liver disease
217	(NCT02968810) is currently underway. Atorvastatin is being evaluated for
218	tertiary prevention after complete HCC resection or ablation (Statin for
219	preventing HCC recurrence after curative treatment [SHOT] trial,
220	NCT03024684).

221 Statins and pancreatic cancer

222	A meta-analysis of 26 studies showed a significant decrease in pancreatic
223	cancer risk with statin use (RR, 0.84; 95%CI, 0.73–0.97; P < 0.001) ^[51] . A
224	meta-analysis of 26 studies showed a significant decrease in pancreatic cancer
225	risk with statin use (RR, 0.84; 95%Cl, 0.73–0.97; P < 0.001) ^[52] . In subgroup
226	analyses of the study, a non-significant association was detected between
227	long-term statin use and the risk of pancreatic cancer (RR, 0.98; 95%CI,
228	0.86–1.11; P=0.718). There was a non-significant association between the use
229	of lipophilic statins and the risk of pancreatic cancer (RR, 0.98; 95% CI,
230	0.84–1.15; P=0.853). While several studies showed a decreased risk of
231	pancreatic cancer among statin users [52-54], other reports showed no evidence of
232	an association between statin use and pancreatic cancer [52, 55]. A retrospective
233	study of 2427 pancreatic cancer patients demonstrated a 31% decrease in
234	mortality in the group taking simvastatin and a 39% decrease in the group taking
235	atorvastatin [56, 57]. In another study of 1761 pancreatic cancer patients, the
236	5-year overall survival was 16.6% for statin users and 8.9% for nonusers
237	(P=0.012) ^[57] . Among 226 patients undergoing resection for pancreatic cancer,
238	active use of moderate- to high-dose simvastatin was associated with improved
239	overall and disease-free survival ^[58] .

241	RCTs
242	Many retrospective studies of patients taking statins to control cholesterol have
243	identified a reduced risk of cancer mortality. However, prospective clinical
244	studies have mostly not been successful (Table 1) [29, 30, 59-61]. Several factors
245	might explain these differences, including interpatient differences in the type of
246	statins and the dose and duration of statin use. Furthermore, it is possible that
247	not all cancer patients benefit equally from statin therapy.
248	There are six types of statins (simvastatin, atorvastatin, fluvastatin, lovastatin,
249	pitavastatin, rosuvastatin, pravastatin) <u>that</u> can be prescribed <u>for</u> _{删除[]:}
250	hypercholesterolemia worldwide (Table 2). However, the statins that are most
251	effective against cancer remains unclear. In many in vitro studies, lipophilic
252	statins are more effective in anti-proliferation ability. <mark>是ecause lipophilic statins</mark>
253	<u>could_cross biological membranes without specific transporter, lipophilic statins</u> ^{删除[]: b}
254	have greater intracellular access, and said to be more effective, compared with 删除[]: have greater intracellular access and mlk[]: -requiring
255	hydrophilic statins. Because lipophilic statins have greater intracellular access 删除[]: -mechanisms
256	and could cross biological membranes without requiring specific transporter,
257	lipophilic statins have greater intracellular access and are said to be more

258	effective mechanisms than hydrophilic statins. One report examined differences
259	in the effect of statins on pancreatic cancer using in vivo studies [62]. While
260	simvastatin exerted the highest tumor suppressive effects in vitro, rosuvastatin
261	and fluvastatin were the most potent compounds in an animal model. In a A
262	retrospective cohort study examining the effects of different type types of statins
263	on advanced prostate cancer treated with androgen deprivation therapy,
264	atorvastatin, pravastatin, rosuvastatin or pitavastatin showed a stronger effect
265	on reduction in mortality compared with other statins ^[63] . To plan an optimal RCT,
266	it is necessary to determine the type of statin that is most effective against-
267	cancer It is necessary to determine the type of statin most effective against
268	cancer to plan an optimal RCT.
269	The RCTs used pravastatin and simvastatin at 40 mg/day, which are
270	moderate-intensity prescriptions (Table 1), and therefore higher doses or
271	prescription of a higher-intensity statin might have yielded greater responses in
272	these studies. Drug combination strategies to potentiate the anti-cancer activity
273	of statin drugs might also be considered for future RCTs.

274

Biomarkers to identify cancers for which statins are effective

276 SREBP proteins

277	The SREBP family of transcription factors controls the upregulation of HMGCR	
278	and other lipid metabolism genes and are activated to restore homeostasis in	
279	response to cholesterol depletion (Figure 1). A subset of cell lines and primary	
280	cells from multiple myeloma patients are unable to induce the expression of	
281	SREBP target genes following statin treatment and readily undergo apoptosis ^[64] .	
282	In contrast, cell lines with potent statin-induced SREBP activation were resistant	
283	to statin exposure. In prostate cancer, this sterol-regulated feedback loop may	
284	modulate statin sensitivity, and a combination therapy of statins and SREBP	
285	inhibitors has a synergistic effect in prostate cancer ^[65] . Although it is	
286	theoretically convincing that feedback dysregulation of the MVA pathway is	
287	involved in statin sensitivity, further research is required to verify whether	删除[]: to
288	SREBP can be a clinically useful biomarker.	删除[]: ide
289	HMGCR	impair feed identify a c
290	HMGCR is directly inhibited by statins, and its expression is increased by	patients on response
291	SREBP through the feedback mechanism induced when intracellular cholesterol	
292	is depleted HMGCR is directly inhibited by statins, and SREBP increases	
293	HMGCR expression through the feedback mechanism induced when	

删除[]: identify the mechanisms by which cancer cells mpair feedback regulation of the MVA pathway and to dentify a clinically useful biomarker that can stratify patients on the basis of this dampened homeostatic response

294	intracellular cholesterol is depleted (Figure 1). High HMGCR protein expression
295	is associated with poor prognosis in various cancers [65-67]. Statin sensitivity The
296	efficacy of statins to cancer has been inversely associated with high expression
297	of cholesterol biosynthesis genes, including the HMGCR gene ^{[68] [64]} . However,
298	other reports suggested that HMGCR expression alone could not accurately
299	predict statin sensitivity the effect of statins [65, 69]. Whether HMGCR expression
300	alone can accurately predict statin susceptibility remains unclear. One possible
301	explanation for the conflicting data is the poor specificity of many commercially
302	available HMGCR antibodies ^[70] . Further comprehensive studies using validated
303	HMGCR reagents are needed to accurately evaluate the utility of HMGCR
304	expression as a predictive biomarker of statin sensitivity for predicting the effects
305	of statins.
306	A population-based case-control study of incident CRC in northern Israel
307	showed that specific polymorphisms in the HMGCR gene modify the protective
308	association between statins and CRC risk. Compared with non-statin users, the
309	unadjusted odds ratio of CRC among statin users with the A/A genotype of
310	rs12654264 in HMGCR was 0.3 (95%CI, 0.18–0.51) and 0.66 among statin
311	users with the T/T genotype (95%CI, 0.41–1.06; P-interaction = 0.0012) ^[71] .

Mesenchymal cell markers 312

313	Several studies have demonstrated that tumor cells with higher expression of						
314	the mesenchymal cell marker vimentin and lower expression of the epithelial cell						
315	marker E-cadherin are highly sensitive to statin treatment [72-74]. Total vimentin						
316	and E-cadherin expression are not suitable markers for the sensitivity of statins,						
317	but abundant cytosolic vimentin and absent cell surface E-cadherin expression						
318	indicate sensitivity to statins [73]. HRAS-induced epithelial-to-mesenchymal						
319	transition (EMT) through activation of zinc finger E-box binding homeobox 1						
320	(ZEB1) sensitized tumor cells to the antiproliferative activity of statins ^[74] . These						
321	studies also showed that statins preferentially kill cells induced to EMT,						
322	suggesting that statins may be more effective against metastatic disease and						
323	prevent metastasis.						
324	р53						
325	Wild-type p53 represses the MVA pathway $^{\left[12\right] },$ while loss of p53 and two						

pathway genes [11] [75]. Tumors with loss of p53 or the two gain-of-function 327

gain-of-function p53 mutants have been shown to induce the expression of MVA

mutations are particularly vulnerable to statin treatment [76-78]. 328

RAS mutation 329

330	The FPP and GGPP produced by the MVA pathway serve as substrates for the
331	post-translational prenylation of RAS. Therefore, RAS mutations have been
332	hypothesized as potential biomarkers of statin sensitivity. However, some
333	pre-clinical studies have shown that statin susceptibility cannot be predicted by
334	RAS mutation alone However, some pre-clinical studies have shown that RAS
335	mutation alone cannot predict statin susceptibility [74, 79]. In a subgroup analysis
336	of retrospective studies of colorectal cancer, statins were shown to have a higher
337	prognostic effect in cancers with KRAS mutation ^[80] . However, other studies
338	reported that there was no association between statin effects on colorectal
339	cancer and KRAS status ^[39, 81] . Further studies are needed to evaluate the utility
340	of KRAS mutation status to predict statin sensitivity the effect of statins on
341	cancer.
342	ER
343	In breast cancer, the effect of statins has been associated with ER status, in
344	which ER-negative breast cancer cells are particularly sensitive to statin
345	exposure ^[67] . These pre-clinical observations are further supported by clinical
346	data demonstrating greater tumor cell apoptosis after fluvastatin treatment in
347	women with ER-negative breast cancer [82].

Combination of statins with epidermal growth factor receptor (EGFR) inhibitors

351	Several clinical trials have examined the introduction of simvastatin to <u>EGFR</u>	删除[]: current therapy for
352	inhibitors therapy for KRAS-mutated CRC patients. The hypothesis in these	
353	clinical trials was that statin-induced depletion of mevalonate inhibits KRAS	
354	prenylation and impedes membrane localization, making EGFR inhibitors more	
355	sensitive ^{[83]_[84]} . Unfortunately, most trials have failed to show significant survival	删除[]: The underlying hypothesis was that activated
356	benefits ^[85-87] . The hypothesis in these clinical trials is that the statin-induced	KRAS pathway in KRAS mutant tumors can be inhibited by simvastatin, rendering these tumors sensitive to the
357	depletion of mevalonate inhibits KRAS prenylation, inhibits membrane	EGFR inhibitor cetuximab, because depletion of mevalonate inhibits KRAS prenylation and prevents-
358	localization, and enhances the effectiveness of EGFR inhibitors [83] [84].	membrane localization and activation of signal- transduction pathways
359	Unfortunately, most trials have failed to show significant survival benefits with	删除[]: <u>The underlying hypothesis was that activated</u>
360	statins ^[85-87] . These results may suggest that KRAS mutation status is not a	by simvastatin, rendering these tumors sensitive to the
361	predictive biomarker for statin treatment response. Another clinical trial	mevalonate inhibits KRAS prenylation and prevents
362	demonstrated that the addition of simvastatin to a cetuximab/irinotecan regimen	transduction pathways
363	overcame cetuximab resistance [88]. However, therapeutic benefit was only	
364	observed in patients bearing tumors with KRAS mutation and a low Ras	
365	signature ^[88] . In this clinical trial, the therapeutic benefit with the statin was only	

348

349

366	observed in patients bearing tumors with KRAS mutation and a low Ras
367	signature [88]. The Ras signature score is derived from the expression of Ras
368	pathway-related genes across multiple databases and reflects other possible
369	aberrations such as BRAF and PI3KCA mutation. Therefore, factors other than
370	KRAS mutation must be considered to predict the usefulness of statins in
371	overcoming resistance to anti-EGFR therapy.

372

373 Combination of statins with radiation therapy (RT)

Statins may have synergistic effects with RT on cancer and may reduce 374 inflammation and gut and skin toxicities induced by RT. In retrospective clinical 375 studies, patients taking statins during RT or chemo-RT for rectal, bladder or 376 prostate cancer treatment had significantly higher rates of pathological complete 377 response (CR), local control and progression-free survival [89] [90] [91] [92] [93]. 378 However, no study has shown an apparent benefit ^[94]. Furthermore, statins 379 significantly reduced RT-induced bowel toxicity and skin injury [95-97]. However, a 380 single-arm phase 2 trial of 53 prostate cancer patients taking lovastatin showed 381 382 no reduced incidence of grade 2 or higher rectal toxicity compared with than historical controls [98]. An RCT of simvastatin combined with standard 383

384 chemotherapy and radiation in preoperative treatment for rectal cancer is

385 underway.

387	Combination of statins with immunotherapy
388	Mevalonic acid metabolism is involved in controlling T cell activation ^{[19] [20] [99] [100]} .
389	Statins inhibit the geranylgeranylation of small GTPases, resulting in arrested
390	endosomal maturation, prolonged antigen retention, enhanced antigen
391	presentation, and T cell activation. <u>A study reported that statins inhibit the</u>
392	geranylgeranylation of small GTPases resulting in arrested endosomal
393	maturation, prolonged antigen retention, enhanced antigen presentation, and T
394	cell activation. They demonstrated in multiple mouse cancer models, the
395	mevalonate MVA pathway inhibitors are robust for cancer vaccinations and
396	synergize with anti-PD-1 antibodies [101]. The tumor microenvironment is 删除[]: in multiple mouse cancer models showed that
397	enriched with cholesterol. The high cholesterol in the tumor microenvironment vaccinations and synergize with anti-PD-1 antibody
398	induces CD8+ T cell exhaustion and upregulates immune checkpoints PD-1,
399	2B4, TIM-3, and LAG-3 ^[102] . Furthermore, lowering cholesterol levels in the tumor
400	microenvironment by simvastatin restores the antitumor activity of CD8+ T cells.
401	Many preclinical studies have demonstrated that the mevalonate MVA pathway

402 is involved in immune regulation. Future research into the immunomodulatory

403 properties of statins has important clinical implications for cancer

404 immunotherapy.

405

406 **Conclusions**

407 Clinical data that evaluated the utility of statins as anticancer agents have shown

responses in some but not all cancers. Optimizing the type, dose, and duration

409 of statins, discovering biomarkers to identify responders and developing

410 combination therapies will further enhance the utility of statins in cancer

411 treatment.

412

413 Acknowledgements

414 We thank Gabrielle White Wolf, PhD, from Edanz Group

415 (https://en-author-services.edanz.com/ac) for editing a draft of this manuscript.

417 Figure Legends

418 Figure 1: The MVA pathway and the SREBP-mediated feedback response.

419 The MVA pathway converts acetyl-CoA into cholesterol and many nonsterol isoprenoids that play important roles in cell growth and survival. Under 420 homeostatic conditions, intracellular cholesterol retains the sterol regulatory 421 element-binding protein (SREBP) SREBP in its full-length, inactive form. In 422 423 response to cholesterol depletion, such as during treatment with statins, the SREBP protein is cleaved, and the active transcription factor is released and 424 relocalized to the nucleus. Activated SREBP induces the transcription of genes 425 involved in the MVA pathway and cholesterol transport. HMGCS1: HMG-CoA 426 synthase 1, HMGCR: HMG-CoA reductase; LDL-C: low-density, lipoprotein 427 428 cholesterol, LDLR: low-density, lipoprotein receptor. 429

430 Figure 2: Activation of the MVA pathway drives oncogenic signaling pathways.

The geranylgeranyl pyrophosphate, produced by the mevalonate cascade is 删除[]: only
required for activation of Rho GTPases that, in turn, activate YAP/TAZ by
inhibiting their phosphorylation and promoting their nuclear accumulation.

434 The Hedgehog (HH) signaling pathway is regulated by cholesterol. Cholesterol

and cholesterol-derived oxysterols activate HH signal transduction, whereas inhibition of the MVA pathway or downstream sterol biosynthesis decreases HH signaling and reduces cell proliferation. Cholesterol is the precursor for steroid hormones such as estrogen and androgen. These hormones are involved in hormone-driven breast cancers and prostate cancers via the activation of estrogen receptor- α (ER α) Er α and androgen receptor (AR), respectively.

444 **References**

445 1 Goldstein JL, Brown MS. Regulation of the mevalonate pathway. *Nature* 1990;
446 343(6257): 425-430 [PMID: 1967820 DOI: 10.1038/343425a0]

447 2 Sinensky M. Recent advances in the study of prenylated proteins. *Biochim Biophys*448 Acta 2000; 1484(2-3): 93-106 [PMID: 10760460 DOI: 10.1016/s1388-1981(00)00009-3]

449 3 Duncan RE, El-Sohemy A, Archer MC. Mevalonate promotes the growth of tumors

derived from human cancer cells in vivo and stimulates proliferation in vitro with enhanced
cyclin-dependent kinase-2 activity. *J Biol Chem* 2004; 279(32): 33079-33084 [PMID: 15155733
DOI: 10.1074/jbc.M400732200]

4 Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ. The interplay between cell signalling
and the mevalonate pathway in cancer. *Nat Rev Cancer* 2016; 16(11): 718-731 [PMID:
27562463 DOI: 10.1038/nrc.2016.76]

5 456 Carrer A, Trefely S, Zhao S, Campbell SL, Norgard RJ, Schultz KC, Sidoli S, Parris JLD, Affronti HC, Sivanand S, Egolf S, Sela Y, Trizzino M, Gardini A, Garcia BA, Snyder NW, Stanger 457 BZ, Wellen KE. Acetyl-CoA Metabolism Supports Multistep Pancreatic Tumorigenesis. Cancer 458 459 Discov 2019; 9(3): 416-435 [PMID: 30626590 PMCID: PMC6643997 DOI: 10.1158/2159-8290.CD-18-0567] 460

461 6 Nielsen SF, Nordestgaard BG, Bojesen SE. Statin use and reduced cancer-related
462 mortality. N Engl J Med 2012; 367(19): 1792-1802 [PMID: 23134381 DOI:
463 10.1056/NEJMoa1201735]

Abdullah MI, de Wolf E, Jawad MJ, Richardson A. The poor design of clinical trials of
statins in oncology may explain their failure - Lessons for drug repurposing. *Cancer Treat Rev*2018; 69: 84-89 [PMID: 29936313 DOI: 10.1016/j.ctrv.2018.06.010]

467 8 Yamauchi Y, Furukawa K, Hamamura K, Furukawa K. Positive feedback loop between
468 PI3K-Akt-mTORC1 signaling and the lipogenic pathway boosts Akt signaling: induction of the
469 lipogenic pathway by a melanoma antigen. *Cancer Res* 2011; 71(14): 4989-4997 [PMID:
470 21632551 DOI: 10.1158/0008-5472.CAN-10-4108]

471 9 Calvisi DF, Wang C, Ho C, Ladu S, Lee SA, Mattu S, Destefanis G, Delogu S,
472 Zimmermann A, Ericsson J, Brozzetti S, Staniscia T, Chen X, Dombrowski F, Evert M. Increased

473 lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human

474 hepatocellular carcinoma. *Gastroenterology* 2011; 140(3): 1071-1083 [PMID: 21147110 PMCID:

475 PMC3057329 DOI: 10.1053/j.gastro.2010.12.006]

476 10 Kusama T, Mukai M, Iwasaki T, Tatsuta M, Matsumoto Y, Akedo H, Inoue M,

477 Nakamura H. 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors reduce human

478 pancreatic cancer cell invasion and metastasis. *Gastroenterology* 2002; 122(2): 308-317 [PMID:
479 11832446 DOI: 10.1053/gast.2002.31093]

Freed-Pastor WA, Mizuno H, Zhao X, Langerod A, Moon SH, Rodriguez-Barrueco R,
Barsotti A, Chicas A, Li W, Polotskaia A, Bissell MJ, Osborne TF, Tian B, Lowe SW, Silva JM,
Borresen-Dale AL, Levine AJ, Bargonetti J, Prives C. Mutant p53 disrupts mammary tissue
architecture via the mevalonate pathway. *Cell* 2012; 148(1-2): 244-258 [PMID: 22265415
PMCID: PMC3511889 DOI: 10.1016/j.cell.2011.12.017]

Assaily W, Rubinger DA, Wheaton K, Lin Y, Ma W, Xuan W, Brown-Endres L,
Tsuchihara K, Mak TW, Benchimol S. ROS-mediated p53 induction of Lpin1 regulates fatty acid
oxidation in response to nutritional stress. *Mol Cell* 2011; 44(3): 491-501 [PMID: 22055193
DOI: 10.1016/j.molcel.2011.08.038]

Shamma A, Takegami Y, Miki T, Kitajima S, Noda M, Obara T, Okamoto T, Takahashi
C. Rb Regulates DNA damage response and cellular senescence through E2F-dependent
suppression of N-ras isoprenylation. *Cancer Cell* 2009; 15(4): 255-269 [PMID: 19345325 DOI:
10.1016/j.ccr.2009.03.001]

493 14 Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S, Manfrin A,
494 Ingallina E, Sommaggio R, Piazza S, Rosato A, Piccolo S, Del Sal G. Metabolic control of YAP
495 and TAZ by the mevalonate pathway. *Nat Cell Biol* 2014; 16(4): 357-366 [PMID: 24658687
496 DOI: 10.1038/ncb2936]

Higashi T, Hayashi H, Kitano Y, Yamamura K, Kaida T, Arima K, Taki K, Nakagawa S,
Okabe H, Nitta H, Imai K, Hashimoto D, Chikamoto A, Beppu T, Baba H. Statin attenuates cell

499 proliferative ability via TAZ (WWTR1) in hepatocellular carcinoma. *Med Oncol* 2016; **33**(11):

500 123 [PMID: 27734263 DOI: 10.1007/s12032-016-0845-6]

501 16 Corcoran RB, Scott MP. Oxysterols stimulate Sonic hedgehog signal transduction and
502 proliferation of medulloblastoma cells. *Proc Natl Acad Sci U S A* 2006; 103(22): 8408-8413
503 [PMID: 16707575 PMCID: PMC1462959 DOI: 10.1073/pnas.0602852103]

504 17 Nguyen VT, Barozzi I, Faronato M, Lombardo Y, Steel JH, Patel N, Darbre P,

505 Castellano L, Gyorffy B, Woodley L, Meira A, Patten DK, Vircillo V, Periyasamy M, Ali S, Frige

506 G, Minucci S, Coombes RC, Magnani L. Differential epigenetic reprogramming in response to

507 specific endocrine therapies promotes cholesterol biosynthesis and cellular invasion. Nat

510 18 Huang WC, Li X, Liu J, Lin J, Chung LW. Activation of androgen receptor, lipogenesis,

511 and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression

512 of prostate cancer cells. *Mol Cancer Res* 2012; 10(1): 133-142 [PMID: 22064655 PMCID:

PMC3262123 DOI: 10.1158/1541-7786.MCR-11-0206] 513

514 19 Thurnher M, Gruenbacher G. T lymphocyte regulation by mevalonate metabolism. Sci Signal 2015; 8(370): re4 [PMID: 25829448 DOI: 10.1126/scisignal.2005970] 515

- 516 20 MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. Annu 517 Rev Immunol 2013; 31: 259-283 [PMID: 23298210 PMCID: PMC3606674 DOI: 518 10.1146/annurev-immunol-032712-095956]
- Zhou C, Zhong X, Gao P, Wu Z, Shi J, Guo Z, Wang Z, Song Y. Statin use and its 519 21 520 potential therapeutic role in esophageal cancer: a systematic review and meta-analysis. Cancer 521 Manag Res 2019; 11: 5655-5663 [PMID: 31417309 PMCID: PMC6592054 DOI: 522 10.2147/CMAR.S193945]

523 22 Nguyen T, Khan A, Liu Y, El-Serag HB, Thrift AP. The Association Between Statin 524 Use After Diagnosis and Mortality Risk in Patients With Esophageal Cancer: A Retrospective 525 Cohort Study of United States Veterans. Am J Gastroenterol 2018; 113(9): 1310 [PMID: 29946180 DOI: 10.1038/s41395-018-0169-6] 526

527 23 Nimako GK, Wintrob ZA, Sulik DA, Donato JL, Ceacareanu AC. Synergistic Benefit of

528 Statin and Metformin in Gastrointestinal Malignancies. J Pharm Pract 2017; 30(2): 185-194 529 [PMID: 26811340 DOI: 10.1177/0897190015627255]

24 Cardwell CR, Spence AD, Hughes CM, Murray LJ. Statin use after esophageal cancer 530

diagnosis and survival: A population based cohort study. Cancer Epidemiol 2017; 48: 124-130 531 [PMID: 28486205 DOI: 10.1016/j.canep.2017.04.015]

532

533 25 Alexandre L, Clark AB, Bhutta HY, Chan SS, Lewis MP, Hart AR. Association Between

Statin Use After Diagnosis of Esophageal Cancer and Survival: A Population-Based Cohort Study. 534

Gastroenterology 2016; 150(4): 854-865 e851; quiz e816-857 [PMID: 26775632 DOI: 535 536 10.1053/j.gastro.2015.12.039]

26 Lacroix O, Couttenier A, Vaes E, Cardwell CR, De Schutter H, Robert A. Statin use 537 538 after diagnosis is associated with an increased survival in esophageal cancer patients: a Belgian population-based study. Cancer Causes Control 2019; 30(4): 385-393 [PMID: 30820714 DOI: 539

10.1007/s10552-019-01149-3] 540

541 27 Deng HY, Lan X, Zheng X, Zha P, Zhou J, Wang RL, Jiang R, Qiu XM. The association 542 between statin use and survival of esophageal cancer patients: A systematic review and 543 meta-analysis. Medicine (Baltimore) 2019; 98(29): e16480 [PMID: 31335710 PMCID:

PMC6709309 DOI: 10.1097/MD.000000000016480] 544

28 Thomas T, Loke Y, Beales ILP. Systematic Review and Meta-analysis: Use of Statins Is 545 Associated with a Reduced Incidence of Oesophageal Adenocarcinoma. J Gastrointest Cancer 546 2018; 49(4): 442-454 [PMID: 28691139 PMCID: PMC6208835 DOI: 547 10.1007/s12029-017-9983-0] 548

549 29 Kim ST, Kang JH, Lee J, Park SH, Park JO, Park YS, Lim HY, Hwang IG, Lee SC, Park 550 KW, Lee HR, Kang WK. Simvastatin plus capecitabine-cisplatin versus placebo plus 551 capecitabine-cisplatin in patients with previously untreated advanced gastric cancer: a 552 double-blind randomised phase 3 study. *Eur J Cancer* 2014; 50(16): 2822-2830 [PMID: 553 25218337 DOI: 10.1016/j.ejca.2014.08.005]

554 30 Konings IR, van der Gaast A, van der Wijk LJ, de Jongh FE, Eskens FA, Sleijfer S. The 555 addition of pravastatin to chemotherapy in advanced gastric carcinoma: a randomised phase II 556 trial. *Eur J Cancer* 2010; 46(18): 3200-3204 [PMID: 20727735 DOI: 557 10.1016/j.ejca.2010.07.036]

Nam DH, Lee H, Park JC, Shin SK, Lee SK, Hyung WJ, Lee YC, Kang MW, Noh SH.
Long-term statin therapy improves oncological outcome after radical gastrectomy for stage II and
III gastric cancer. *Anticancer Res* 2014; 34(1): 355-361 [PMID: 24403487]

Spence AD, Busby J, Hughes CM, Johnston BT, Coleman HG, Cardwell CR. Statin use
and survival in patients with gastric cancer in two independent population-based cohorts. *Pharmacoepidemiol Drug Saf* 2019; 28(4): 460-470 [PMID: 30456916 DOI:
10.1002/pds.4688]

565 33 Singh PP, Singh S. Statins are associated with reduced risk of gastric cancer: a 566 systematic review and meta-analysis. *Ann Oncol* 2013; 24(7): 1721-1730 [PMID: 23599253 567 DOI: 10.1093/annonc/mdt150]

Wu XD, Zeng K, Xue FQ, Chen JH, Chen YQ. Statins are associated with reduced risk
of gastric cancer: a meta-analysis. *Eur J Clin Pharmacol* 2013; 69(10): 1855-1860 [PMID:
23748751 DOI: 10.1007/s00228-013-1547-z]

35 Cheung KS, Chan EW, Wong AYS, Chen L, Seto WK, Wong ICK, Leung WK. Statins 571 572 Were Associated with a Reduced Gastric Cancer Risk in Patients with Eradicated Helicobacter 573 Pylori Infection: A Territory-Wide Propensity Score Matched Study. Cancer Epidemiol 574 **Biomarkers** Prev 2020; 29(2): 493-499 [PMID: 31792089 DOI: 10.1158/1055-9965.EPI-19-1044] 575

576 36 Poynter JN, Gruber SB, Higgins PD, Almog R, Bonner JD, Rennert HS, Low M,
577 Greenson JK, Rennert G. Statins and the risk of colorectal cancer. *N Engl J Med* 2005; 352(21):
578 2184-2192 [PMID: 15917383 DOI: 10.1056/NEJMoa043792]

579 37 Farwell WR, Scranton RE, Lawler EV, Lew RA, Brophy MT, Fiore LD, Gaziano JM.
580 The association between statins and cancer incidence in a veterans population. *J Natl Cancer Inst*

581 2008; 100(2): 134-139 [PMID: 18182618 DOI: 10.1093/jnci/djm286]

582 38 Taylor ML, Wells BJ, Smolak MJ. Statins and cancer: a meta-analysis of case-control

583 studies. Eur J Cancer Prev 2008; 17(3): 259-268 [PMID: 18414198 DOI:

584 10.1097/CEJ.0b013e3282b721fe]

Li Y, He X, Ding Y, Chen H, Sun L. Statin uses and mortality in colorectal cancer
patients: An updated systematic review and meta-analysis. *Cancer Med* 2019; 8(6): 3305-3313
[PMID: 31069997 PMCID: PMC6558478 DOI: 10.1002/cam4.2151]

588 40 Graaf MR, Beiderbeck AB, Egberts AC, Richel DJ, Guchelaar HJ. The risk of cancer in
589 users of statins. *J Clin Oncol* 2004; 22(12): 2388-2394 [PMID: 15197200 DOI:
590 10.1200/JCO.2004.02.027]

591 41 Dale KM, Coleman CI, Henyan NN, Kluger J, White CM. Statins and cancer risk: a
 592 meta-analysis. *JAMA* 2006; 295(1): 74-80 [PMID: 16391219 DOI: 10.1001/jama.295.1.74]

Liu Y, Tang W, Wang J, Xie L, Li T, He Y, Deng Y, Peng Q, Li S, Qin X. Association
between statin use and colorectal cancer risk: a meta-analysis of 42 studies. *Cancer Causes*

595 *Control* 2014; 25(2): 237-249 [PMID: 24265089 DOI: 10.1007/s10552-013-0326-6]

Lee JE, Baba Y, Ng K, Giovannucci E, Fuchs CS, Ogino S, Chan AT. Statin use and
colorectal cancer risk according to molecular subtypes in two large prospective cohort studies. *Cancer Prev Res (Phila)* 2011; 4(11): 1808-1815 [PMID: 21680706 PMCID: PMC3192239 DOI:
10.1158/1940-6207.CAPR-11-0113]

600 44 Ibanez-Sanz G, Guino E, Pontes C, Quijada-Manuitt MA, de la Pena-Negro LC,

601 Aragon M, Dominguez M, Rodriguez-Alonso L, Blasco A, Garcia-Rodriguez A, Morros R,

- Moreno V. Statin use and the risk of colorectal cancer in a population-based electronic health records study. *Sci Rep* 2019; 9(1): 13560 [PMID: 31537841 PMCID: PMC6753123 DOI:
- 604 10.1038/s41598-019-49877-5]

Kim G, Jang SY, Han E, Lee YH, Park SY, Nam CM, Kang ES. Effect of statin on
hepatocellular carcinoma in patients with type 2 diabetes: A nationwide nested case-control study. *Int J Cancer* 2017; 140(4): 798-806 [PMID: 27861855 DOI: 10.1002/ijc.30506]

- 46 Tsan YT, Lee CH, Ho WC, Lin MH, Wang JD, Chen PC. Statins and the risk of
 hepatocellular carcinoma in patients with hepatitis C virus infection. *J Clin Oncol* 2013; 31(12):
 1514-1521 [PMID: 23509319 DOI: 10.1200/JCO.2012.44.6831]
- 61147Tsan YT, Lee CH, Wang JD, Chen PC. Statins and the risk of hepatocellular carcinoma612in patients with hepatitis B virus infection. J Clin Oncol 2012; 30(6): 623-630 [PMID: 22271485
- 613 DOI: 10.1200/JCO.2011.36.0917]

614 48 Simon TG, Bonilla H, Yan P, Chung RT, Butt AA. Atorvastatin and fluvastatin are

- 615 associated with dose-dependent reductions in cirrhosis and hepatocellular carcinoma, among
- 616 patients with hepatitis C virus: Results from ERCHIVES. *Hepatology* 2016; 64(1): 47-57 [PMID:
- 617 26891205 PMCID: PMC4917438 DOI: 10.1002/hep.28506]
- 618 49 Simon TG, King LY, Zheng H, Chung RT. Statin use is associated with a reduced risk
- of fibrosis progression in chronic hepatitis C. J Hepatol 2015; 62(1): 18-23 [PMID: 25135867
- 620 PMCID: PMC4272642 DOI: 10.1016/j.jhep.2014.08.013]

621 50 Chang FM, Wang YP, Lang HC, Tsai CF, Hou MC, Lee FY, Lu CL. Statins decrease
622 the risk of decompensation in hepatitis B virus- and hepatitis C virus-related cirrhosis: A
623 population-based study. *Hepatology* 2017; 66(3): 896-907 [PMID: 28318053 DOI:
624 10.1002/hep.29172]

51 Zhang Y, Liang M, Sun C, Qu G, Shi T, Min M, Wu Y, Sun Y. Statin Use and Risk of
Pancreatic Cancer: An Updated Meta-analysis of 26 Studies. *Pancreas* 2019; 48(2): 142-150
[PMID: 30640225 DOI: 10.1097/MPA.00000000001226]

52 Bonovas S, Filioussi K, Sitaras NM. Statins are not associated with a reduced risk of
pancreatic cancer at the population level, when taken at low doses for managing
hypercholesterolemia: evidence from a meta-analysis of 12 studies. *Am J Gastroenterol* 2008;
103(10): 2646-2651 [PMID: 18684187 DOI: 10.1111/j.1572-0241.2008.02051.x]

632 53 Walker EJ, Ko AH, Holly EA, Bracci PM. Statin use and risk of pancreatic cancer:
633 results from a large, clinic-based case-control study. *Cancer* 2015; 121(8): 1287-1294 [PMID:
634 25649483 PMCID: PMC4393339 DOI: 10.1002/cncr.29256]

Archibugi L, Arcidiacono PG, Capurso G. Statin use is associated to a reduced risk of
pancreatic cancer: A meta-analysis. *Dig Liver Dis* 2019; 51(1): 28-37 [PMID: 30314951 DOI:
10.1016/j.dld.2018.09.007]

Kirkegard J, Lund JL, Mortensen FV, Cronin-Fenton D. Statins and pancreatic cancer
risk in patients with chronic pancreatitis: A Danish nationwide population-based cohort study. *Int J Cancer* 2020; 146(3): 610-616 [PMID: 30861115 DOI: 10.1002/ijc.32264]

641 56 Huang BZ, Chang JI, Li E, Xiang AH, Wu BU. Influence of Statins and Cholesterol on
642 Mortality Among Patients With Pancreatic Cancer. *J Natl Cancer Inst* 2017; 109(5) [PMID:
643 28040693 DOI: 10.1093/jnci/djw275]

Lee HS, Lee SH, Lee HJ, Chung MJ, Park JY, Park SW, Song SY, Bang S. Statin Use
and Its Impact on Survival in Pancreatic Cancer Patients. *Medicine (Baltimore)* 2016; 95(19):
e3607 [PMID: 27175667 PMCID: PMC4902509 DOI: 10.1097/MD.00000000003607]

Wu BU, Chang J, Jeon CY, Pandol SJ, Huang B, Ngor EW, Difronzo AL, Cooper RM.
Impact of statin use on survival in patients undergoing resection for early-stage pancreatic cancer. *Am J Gastroenterol* 2015; 110(8): 1233-1239 [PMID: 26195180 PMCID: PMC4877304 DOI: 10.1038/ajg.2015.217]

59 Jouve JL, Lecomte T, Bouche O, Barbier E, Khemissa Akouz F, Riachi G, Nguyen Khac

E, Ollivier-Hourmand I, Debette-Gratien M, Faroux R, Villing AL, Vergniol J, Ramee JF,

653 Bronowicki JP, Seitz JF, Legoux JL, Denis J, Manfredi S, Phelip JM, investigators/collaborators

654 P-. Pravastatin combination with sorafenib does not improve survival in advanced hepatocellular

 655
 carcinoma. J Hepatol 2019; 71(3): 516-522 [PMID: 31125576 DOI:

 656
 10.1016/j.jhep.2019.04.021]

- 657 60 Kawata S, Yamasaki E, Nagase T, Inui Y, Ito N, Matsuda Y, Inada M, Tamura S, Noda S,
- 658 Imai Y, Matsuzawa Y. Effect of pravastatin on survival in patients with advanced hepatocellular
- 659 carcinoma. A randomized controlled trial. Br J Cancer 2001; 84(7): 886-891 [PMID: 11286466

660 PMCID: PMC2363838 DOI: 10.1054/bjoc.2000.1716]

- 661 61 Hong JY, Nam EM, Lee J, Park JO, Lee SC, Song SY, Choi SH, Heo JS, Park SH, Lim
- 662 HY, Kang WK, Park YS. Randomized double-blinded, placebo-controlled phase II trial of
- simvastatin and gemcitabine in advanced pancreatic cancer patients. *Cancer Chemother Pharmacol* 2014; 73(1): 125-130 [PMID: 24162380 DOI: 10.1007/s00280-013-2328-1]
- 665 62 Gbelcova H, Lenicek M, Zelenka J, Knejzlik Z, Dvorakova G, Zadinova M, Pouckova P,
- Kudla M, Balaz P, Ruml T, Vitek L. Differences in antitumor effects of various statins on human
 pancreatic cancer. *Int J Cancer* 2008; 122(6): 1214-1221 [PMID: 18027870 DOI:
 10.1002/ijc.23242]
- 669 63 Wu SY, Fang SC, Shih HJ, Wen YC, Shao YJ. Mortality associated with statins in men
 670 with advanced prostate cancer treated with androgen deprivation therapy. *Eur J Cancer* 2019;
 671 112: 109-117 [PMID: 30827745 DOI: 10.1016/j.ejca.2018.11.032]
- 672 64 Clendening JW, Pandyra A, Li Z, Boutros PC, Martirosyan A, Lehner R, Jurisica I, 673 Trudel S, Penn LZ. Exploiting the mevalonate pathway to distinguish statin-sensitive multiple myeloma. Blood 2010; 115(23): 4787-4797 [PMID: 20360469 DOI: 674 10.1182/blood-2009-07-230508] 675
- 676 65 Longo J, Mullen PJ, Yu R, van Leeuwen JE, Masoomian M, Woon DTS, Wang Y, Chen
 677 EX, Hamilton RJ, Sweet JM, van der Kwast TH, Fleshner NE, Penn LZ. An actionable
 678 sterol-regulated feedback loop modulates statin sensitivity in prostate cancer. *Mol Metab* 2019;
 679 25: 119-130 [PMID: 31023626 PMCID: PMC6600047 DOI: 10.1016/j.molmet.2019.04.003]
- 66 Chang WC, Cheng WC, Cheng BH, Chen L, Ju LJ, Ou YJ, Jeng LB, Yang MD, Hung
 681 YC, Ma WL. Mitochondrial Acetyl-CoA Synthetase 3 is Biosignature of Gastric Cancer
 682 Progression. *Cancer Med* 2018; 7(4): 1240-1252 [PMID: 29493120 PMCID: PMC5911630 DOI:
 683 10.1002/cam4.1295]
- 684 67 Goard CA, Chan-Seng-Yue M, Mullen PJ, Quiroga AD, Wasylishen AR, Clendening
 685 JW, Sendorek DH, Haider S, Lehner R, Boutros PC, Penn LZ. Identifying molecular features
 686 that distinguish fluvastatin-sensitive breast tumor cells. *Breast Cancer Res Treat* 2014; 143(2):
- 687 301-312 [PMID: 24337703 DOI: 10.1007/s10549-013-2800-y]
- 688 68 Kimbung S, Lettiero B, Feldt M, Bosch A, Borgquist S. High expression of cholesterol
- 689 biosynthesis genes is associated with resistance to statin treatment and inferior survival in breast
- 690 cancer. *Oncotarget* 2016; 7(37): 59640-59651 [PMID: 27458152 PMCID: PMC5312337 DOI:
- 691 10.18632/oncotarget.10746]
- 692 69 Bjarnadottir O, Romero Q, Bendahl PO, Jirstrom K, Ryden L, Loman N, Uhlen M,

- 693 Johannesson H, Rose C, Grabau D, Borgquist S. Targeting HMG-CoA reductase with statins in a
- 694 window-of-opportunity breast cancer trial. *Breast Cancer Res Treat* 2013; 138(2): 499-508
 695 [PMID: 23471651 DOI: 10.1007/s10549-013-2473-6]
- 696 70 Clendening JW, Pandyra A, Boutros PC, El Ghamrasni S, Khosravi F, Trentin GA,
 697 Martirosyan A, Hakem A, Hakem R, Jurisica I, Penn LZ. Dysregulation of the mevalonate
 698 pathway promotes transformation. *Proc Natl Acad Sci U S A* 2010; 107(34): 15051-15056
- 699 [PMID: 20696928 PMCID: PMC2930553 DOI: 10.1073/pnas.0910258107]
- 700 71 Lipkin SM, Chao EC, Moreno V, Rozek LS, Rennert H, Pinchev M, Dizon D, Rennert
- 701 G, Kopelovich L, Gruber SB. Genetic variation in 3-hydroxy-3-methylglutaryl CoA reductase
- modifies the chemopreventive activity of statins for colorectal cancer. *Cancer Prev Res (Phila)*
- 703
 2010; 3(5): 597-603 [PMID: 20403997
 DOI: 10.1158/1940-6207.CAPR-10-0007]
- 704 72 Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B,
- 705 Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, Viswanathan SR, Chattopadhyay S, Tamayo
- 706 P, Yang WS, Rees MG, Chen S, Boskovic ZV, Javaid S, Huang C, Wu X, Tseng YY, Roider EM,
- Gao D, Cleary JM, Wolpin BM, Mesirov JP, Haber DA, Engelman JA, Boehm JS, Kotz JD, Hon
- 708 CS, Chen Y, Hahn WC, Levesque MP, Doench JG, Berens ME, Shamji AF, Clemons PA,
- 709 Stockwell BR, Schreiber SL. Dependency of a therapy-resistant state of cancer cells on a lipid
- 710 peroxidase pathway. *Nature* 2017; 547(7664): 453-457 [PMID: 28678785 PMCID:
 711 PMC5667900 DOI: 10.1038/nature23007]
- 712 73 Warita K, Warita T, Beckwitt CH, Schurdak ME, Vazquez A, Wells A, Oltvai ZN.
 713 Statin-induced mevalonate pathway inhibition attenuates the growth of mesenchymal-like cancer
 714 cells that lack functional E-cadherin mediated cell cohesion. *Sci Rep* 2014; 4: 7593 [PMID:
 715 25534349 PMCID: PMC4274516 DOI: 10.1038/srep07593]
- 716 74 Yu R, Longo J, van Leeuwen JE, Mullen PJ, Ba-Alawi W, Haibe-Kains B, Penn LZ.
 717 Statin-Induced Cancer Cell Death Can Be Mechanistically Uncoupled from Prenylation of RAS
 718 Family Proteins. *Cancer Res* 2018; 78(5): 1347-1357 [PMID: 29229608 DOI:
 719 10.1158/0008-5472.CAN-17-1231]
- 720 75 Moon SH, Huang CH, Houlihan SL, Regunath K, Freed-Pastor WA, Morris JPt,
 721 Tschaharganeh DF, Kastenhuber ER, Barsotti AM, Culp-Hill R, Xue W, Ho YJ, Baslan T, Li X,
- 722 Mayle A, de Stanchina E, Zender L, Tong DR, D'Alessandro A, Lowe SW, Prives C. p53
- Represses the Mevalonate Pathway to Mediate Tumor Suppression. *Cell* 2019; **176**(3): 564-580
- 724 e519 [PMID: 30580964 PMCID: PMC6483089 DOI: 10.1016/j.cell.2018.11.011]
- 725 76 Turrell FK, Kerr EM, Gao M, Thorpe H, Doherty GJ, Cridge J, Shorthouse D, Speed A,
 726 Samarajiwa S, Hall BA, Griffiths M, Martins CP. Lung tumors with distinct p53 mutations
 727 respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity. *Genes*728 *Dev* 2017; **31**(13): 1339-1353 [PMID: 28790158 PMCID: PMC5580655 DOI:

729 10.1101/gad.298463.117]

730 77 Parrales A, Ranjan A, Iyer SV, Padhye S, Weir SJ, Roy A, Iwakuma T. DNAJA1 controls

the fate of misfolded mutant p53 through the mevalonate pathway. *Nat Cell Biol* 2016; **18**(11):

732 1233-1243 [PMID: 27775703 PMCID: PMC5340314 DOI: 10.1038/ncb3427]

733 78 Tutuska K, Parrilla-Monge L, Di Cesare E, Nemajerova A, Moll UM. Statin as
734 anti-cancer therapy in autochthonous T-lymphomas expressing stabilized gain-of-function
735 mutant p53 proteins. *Cell Death Dis* 2020; 11(4): 274 [PMID: 32332697 PMCID: PMC7181693

736 DOI: 10.1038/s41419-020-2466-4]

737 79 Wong WW, Clendening JW, Martirosyan A, Boutros PC, Bros C, Khosravi F, Jurisica I,

Stewart AK, Bergsagel PL, Penn LZ. Determinants of sensitivity to lovastatin-induced apoptosis
in multiple myeloma. *Mol Cancer Ther* 2007; 6(6): 1886-1897 [PMID: 17575117 DOI:
10.1158/1535-7163.MCT-06-0745]

741 80 Ling Y, Yang L, Huang H, Hu X, Zhao C, Huang H, Ying Y. Prognostic Significance of 742 Statin Use in Colorectal Cancer: A Systematic Review and Meta-Analysis. Medicine (Baltimore) 743 2015: 94(25): e908 [PMID: 26107680 PMCID: PMC4504590 DOI: 10.1097/MD.000000000000908] 744

Voorneveld PW, Reimers MS, Bastiaannet E, Jacobs RJ, van Eijk R, Zanders MMJ,
Herings RMC, van Herk-Sukel MPP, Kodach LL, van Wezel T, Kuppen PJK, Morreau H, van de
Velde CJH, Hardwick JCH, Liefers GJ. Statin Use After Diagnosis of Colon Cancer and Patient
Survival. *Gastroenterology* 2017; 153(2): 470-479 e474 [PMID: 28512021 DOI:
10.1053/j.gastro.2017.05.011]

Garwood ER, Kumar AS, Baehner FL, Moore DH, Au A, Hylton N, Flowers CI, Garber
J, Lesnikoski BA, Hwang ES, Olopade O, Port ER, Campbell M, Esserman LJ. Fluvastatin
reduces proliferation and increases apoptosis in women with high grade breast cancer. *Breast Cancer Res Treat* 2010; 119(1): 137-144 [PMID: 19728082 PMCID: PMC4087110 DOI:
10.1007/s10549-009-0507-x]

755 83 Shimoyama S. Statins are logical candidates for overcoming limitations of targeting 756 therapies on malignancy: their potential application to gastrointestinal cancers. Cancer 757 Chemother Pharmacol 2011; 67(4): 729-739 [PMID: 21327931 DOI: 758 10.1007/s00280-011-1583-2]

Krens LL, Baas JM, Gelderblom H, Guchelaar HJ. Therapeutic modulation of k-ras
signaling in colorectal cancer. *Drug Discov Today* 2010; 15(13-14): 502-516 [PMID: 20594936
DOI: 10.1016/j.drudis.2010.05.012]

762 85 Baas JM, Krens LL, ten Tije AJ, Erdkamp F, van Wezel T, Morreau H, Gelderblom H,

763 Guchelaar HJ. Safety and efficacy of the addition of simvastatin to cetuximab in previously

treated KRAS mutant metastatic colorectal cancer patients. Invest New Drugs 2015; 33(6):

765 1242-1247 [PMID: 26386973 PMCID: PMC4648966 DOI: 10.1007/s10637-015-0285-8]

Baas JM, Krens LL, Bos MM, Portielje JE, Batman E, van Wezel T, Morreau H,
Guchelaar HJ, Gelderblom H. Safety and efficacy of the addition of simvastatin to panitumumab
in previously treated KRAS mutant metastatic colorectal cancer patients. *Anticancer Drugs* 2015;

769 **26**(8): 872-877 [PMID: 26053280 DOI: 10.1097/CAD.00000000000255]

770 87 Krens LL, Simkens LH, Baas JM, Koomen ER, Gelderblom H, Punt CJ, Guchelaar HJ.

771 Statin use is not associated with improved progression free survival in cetuximab treated KRAS

772 mutant metastatic colorectal cancer patients: results from the CAIRO2 study. PLoS One 2014;

773 9(11): e112201 [PMID: 25375154 PMCID: PMC4223044 DOI: 10.1371/journal.pone.0112201]

274 88 Lee J, Hong YS, Hong JY, Han SW, Kim TW, Kang HJ, Kim TY, Kim KP, Kim SH, Do

IG, Kim KM, Sohn I, Park SH, Park JO, Lim HY, Cho YB, Lee WY, Yun SH, Kim HC, Park YS,

776 Kang WK. Effect of simvastatin plus cetuximab/irinotecan for KRAS mutant colorectal cancer

and predictive value of the RAS signature for treatment response to cetuximab. Invest New

778 *Drugs* 2014; **32**(3): 535-541 [PMID: 24468885 DOI: 10.1007/s10637-014-0065-x]

779 89 Tsai HK, Katz MS, Coen JJ, Zietman AL, Kaufman DS, Shipley WU. Association of

statin use with improved local control in patients treated with selective bladder preservation for
 muscle-invasive bladder cancer. *Urology* 2006; 68(6): 1188-1192 [PMID: 17141846 DOI:

782 10.1016/j.urology.2006.08.1078]

783 90 Mace AG, Gantt GA, Skacel M, Pai R, Hammel JP, Kalady MF. Statin therapy is 784 associated with improved pathologic response to neoadjuvant chemoradiation in rectal cancer. 785 Dis Colon Rectum 2013; **56**(11): 1217-1227 [PMID: 24104995 DOI: 10.1097/DCR.0b013e3182a4b236] 786

91 Armstrong D, Raissouni S, Price Hiller J, Mercer J, Powell E, MacLean A, Jiang M, Doll
788 C, Goodwin R, Batuyong E, Zhou K, Monzon JG, Tang PA, Heng DY, Cheung WY, Vickers MM.
789 Predictors of Pathologic Complete Response After Neoadjuvant Treatment for Rectal Cancer: A
790 Multicenter Study. *Clin Colorectal Cancer* 2015; 14(4): 291-295 [PMID: 26433487 DOI:

791 10.1016/j.clcc.2015.06.001]

792 92 Katz MS, Minsky BD, Saltz LB, Riedel E, Chessin DB, Guillem JG. Association of
793 statin use with a pathologic complete response to neoadjuvant chemoradiation for rectal cancer.
794 Int J Radiat Oncol Biol Phys 2005; 62(5): 1363-1370 [PMID: 16029794 DOI:
795 10.1016/j.ijrobp.2004.12.033]

796 93 Kollmeier MA, Katz MS, Mak K, Yamada Y, Feder DJ, Zhang Z, Jia X, Shi W, Zelefsky

797 MJ. Improved biochemical outcomes with statin use in patients with high-risk localized prostate

cancer treated with radiotherapy. Int J Radiat Oncol Biol Phys 2011; 79(3): 713-718 [PMID:

799 20452139 DOI: 10.1016/j.ijrobp.2009.12.006]

800 94 Hardie C, Jung Y, Jameson M. Effect of statin and aspirin use on toxicity and

- 801 pathological complete response rate of neo-adjuvant chemoradiation for rectal cancer. Asia Pac J
- 802 *Clin Oncol* 2016; **12**(2): 167-173 [PMID: 26947944 DOI: 10.1111/ajco.12468]
- Nubel T, Damrot J, Roos WP, Kaina B, Fritz G. Lovastatin protects human endothelial
 cells from killing by ionizing radiation without impairing induction and repair of DNA
 double-strand breaks. *Clin Cancer Res* 2006; 12(3 Pt 1): 933-939 [PMID: 16467108 DOI:
 10.1158/1078-0432.CCR-05-1903]
- 807 96 Holler V, Buard V, Gaugler MH, Guipaud O, Baudelin C, Sache A, Perez Mdel R,
- Squiban C, Tamarat R, Milliat F, Benderitter M. Pravastatin limits radiation-induced vascular
 dysfunction in the skin. *J Invest Dermatol* 2009; 129(5): 1280-1291 [PMID: 19212344 DOI:
 10.1038/jid.2008.360]
- 811 97 Wedlake LJ, Silia F, Benton B, Lalji A, Thomas K, Dearnaley DP, Blake P, Tait D,
- 812 Khoo VS, Andreyev HJ. Evaluating the efficacy of statins and ACE-inhibitors in reducing 813 gastrointestinal toxicity in patients receiving radiotherapy for pelvic malignancies. *Eur J Cancer*
- 814 2012; **48**(14): 2117-2124 [PMID: 22386574 DOI: 10.1016/j.ejca.2011.12.034]
- 815 98 Jameson MB, Gormly K, Espinoza D, Hague W, Asghari G, Jeffery GM, Price TJ,
- 816 Karapetis CS, Arendse M, Armstrong J, Childs J, Frizelle FA, Ngan S, Stevenson A, Oostendorp
- 817 M, Ackland SP. SPAR a randomised, placebo-controlled phase II trial of simvastatin in addition
- 818 to standard chemotherapy and radiation in preoperative treatment for rectal cancer: an AGITG
- 819 clinical trial. *BMC Cancer* 2019; 19(1): 1229 [PMID: 31847830 PMCID: PMC6918635 DOI:
 820 10.1186/s12885-019-6405-7]
- 821 99 Wang R, Green DR. Metabolic checkpoints in activated T cells. *Nat Immunol* 2012;
 822 13(10): 907-915 [PMID: 22990888 DOI: 10.1038/ni.2386]
- 100 Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. *Immunity* 2013; 38(4): 633-643 [PMID: 23601682 PMCID: PMC3654249 DOI:
 10.1016/j.immuni.2013.04.005]
- 826 101 Xia Y, Xie Y, Yu Z, Xiao H, Jiang G, Zhou X, Yang Y, Li X, Zhao M, Li L, Zheng M, Han
- 827 S, Zong Z, Meng X, Deng H, Ye H, Fa Y, Wu H, Oldfield E, Hu X, Liu W, Shi Y, Zhang Y. The
- Mevalonate Pathway Is a Druggable Target for Vaccine Adjuvant Discovery. *Cell* 2018; 175(4):
 1059-1073 e1021 [PMID: 30270039 DOI: 10.1016/j.cell.2018.08.070]
- 830 102 Ma X, Bi E, Lu Y, Su P, Huang C, Liu L, Wang Q, Yang M, Kalady MF, Qian J, Zhang
- 831 A, Gupte AA, Hamilton DJ, Zheng C, Yi Q. Cholesterol Induces CD8(+) T Cell Exhaustion in
- the Tumor Microenvironment. Cell Metab 2019; 30(1): 143-156 e145 [PMID: 31031094
- 833 PMCID: PMC7061417 DOI: 10.1016/j.cmet.2019.04.002]
- 834

Figure 2. Activation of the MVA pathway drives oncogenic signalling pathways.

841 Table 1. RCT of statins combination therapy.

Cancer type	Study	Statin	Combination	Outcome	
	type	(Dose)	therapies		
Gastric cancer	Phase III	Simvastatin	Capecitabine and	Simvastatin + capecitabine-cisplatin did not	
		(40 mg/d)	cisplatin	increase PFS compared to	
				capecitabin-ecisplatin alone	
	Phase II	Pravastatin	Epirubicin, cisplatin	Pravastatin + standard chemotherapy was	
		(40 mg/d)	and capecitabine	well tolerated, but did not improve	
				progression-free rate at 6 months compared	
				to chemotherapy alone	
Colorectal	Phase III,	Simvastatin	FOLFIRI/XELIRI	Simvastatin + FOLFIRI/XELIRI did not	
		(40 mg/d)		increase PFS compared to FOLFIRI/XELIRI	
				alone	
Hepatocellular	Phase III	Pravastatin	Sorafenib	Pravastatin + sorafenib did not improve OS	
		(40 mg/d)		or PFS compared to sorafenib alone	
	Phase II	Pravastatin	Transcatheter	Pravastatin + standard therapy prolonged OS	
		(40 mg/d)	arterial	compared to standard therapy alone	
			embolization		
			followed		
			by fluorouracil		
Pancreatic	Phase II	Simvastatin	Gemcitabine	Simvastatin + gemcitabine was well tolerated,	
		(40 mg/d)		but did not decrease TTP compared to	
				gemcitabine alone	

843 Table 2. Properties of statins.

Statin	Solubility ^[3]	Metabolism ^[3]	Human dose to lower cholesterol (mg)		
Statin			Low	Moderate	High
Simvastatin	Lipophilic	CYP3A4	10	20-40	-
Atorvastatin	Lipophilic	CYP3A4/2C9	-	10-20	40-80
Fluvastatin	Lipophilic	CYP2C9	20-40	80	-
Pitavastatin	Lipophilic	Non-CYP450	-	1-4	-
Lovastatin	Lipophilic	CYP3A4/2C9	20	40-80	-
Rosuvastatin	Hydrophilic	Non-CYP450	-	5-10	20-40
Pravastatin	Hydrophilic	Non-CYP450	10-20	40-80	-