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Abstract
It is necessary to find a mechanism that generates first-person inner sensation of 
pleasure to understand what causes addiction and associated behaviour by drugs 
of abuse. The actual mechanism is expected to explain several disparate findings 
in nucleus accumbens (NAc), a brain region associated with pleasure, in an 
interconnected manner. Previously, it was possible to derive a mechanism for 
natural learning and explain: (1) Generation of inner sensation of memory using 
changes generated by learning; and (2) Long-term potentiation as an experimental 
delayed scaled-up change by the same mechanism that occur during natural 
learning. By extending these findings and by using disparate third person 
observations in NAc from several studies, present work provides a framework of 
a mechanism that generates internal sensation of pleasure that can provide 
interconnected explanations for: (1) Ability to induce robust long-term depression 
(LTD) in NAc from naïve animals; (2) Impaired ability to induce LTD in 
“addicted” state; (3) Attenuation of postsynaptic potentials by cocaine; and (4) 
Reduced firing of medium spiny neurons in response to cocaine or dopamine. 
Findings made by this work are testable.

Key Words: Pleasure; Internal sensation; Mind; Memory; Long-term potentiation; Long-
term depression; Nucleus accumbens; Drug addiction

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Pleasure has been studied by examining animal behaviour and its correlations 
with molecular and electrophysiological changes. Drugs of abuse generate pleasure 
along with several seemingly unrelated changes in nucleus accumbens (NAc). When 
pleasure was examined as a first-person inner sensation, it was possible to arrive at a 
framework of a causal mechanism for its generation that can also provide inter-
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connected mechanistic explanations for long-term depression (LTD) in NAc in naïve 
animals, impaired ability to induce LTD in addicted state, attenuation of postsynaptic 
potentials by both cocaine and dopamine, and reduced firing of medium spiny neurons 
in NAc by dopamine. Findings made by this work are testable.

Citation: Vadakkan KI. Framework for internal sensation of pleasure using constraints from 
disparate findings in nucleus accumbens. World J Psychiatr 2021; 11(10): 681-695
URL: https://www.wjgnet.com/2220-3206/full/v11/i10/681.htm
DOI: https://dx.doi.org/10.5498/wjp.v11.i10.681

INTRODUCTION
Around 269 million people used drugs of abuse in 2018 and nearly 35.6 million people 
suffer from drug use disorders globally[1]. Since drugs provide internal sensation of 
pleasure to which users can get addicted, it is necessary to understand the basic 
mechanism that generates pleasure and possible ways this leads to addiction. Current 
studies of brain functions such as perception, memory, fear, anxiety, pleasure, hunger, 
thirst, reward, aversion, and pain are carried out in animal models by examining 
behavioural motor actions indicative of those brain functions. During these examin-
ations, there is an implicit assumption that nervous system generates internal 
sensations of each of those brain functions concurrently with behaviour. Studies have 
found correlations between behavioural motor actions and sets of neurons that fire 
and/or their firing rates in brain regions that have a predominant role in those brain 
functions. In addition, correlations are also found between behaviour and electro-
physiological findings in those brain regions. To understand how the brain operates to 
generate inner sensations of each of the above brain functions, an interconnected 
framework of explanations is necessary. Even though it is not possible to directly test 
formation of first-person properties of inner sensations of a brain function, a first step 
will be to derive plausible mechanisms for their generation using constraints from 
several disparate findings associated with each brain function.

Learning is expected to generate testable changes that are used for generating first-
person inner sensations of memory. By examining fine details of neuronal processes 
and their properties, it was possible to arrive at a learning mechanism from which 
inner sensations of memory can be retrieved[2,3]. A summary of the basis of derivation 
is as follows. Examination of a neuron having thousands of input terminals shows that 
subsets of nearly 140 input signals can fire that neuron[4,5]. Since input signals 
attenuate as they propagate towards neuronal soma, it is possible that even a small 
fraction of one input can fire a neuron, which is being held at a sub-threshold 
activation state short of that input fraction[6,7]. Associative learning between two 
stimuli (stimulus 1 and 2) is expected to take place at a location where signals from 
these stimuli converge. This led to searching for a specific location where learning can 
generate a specific physical change in millisecond timescales that can be retained for 
different durations and then enable a cue stimulus (either stimulus 1 or 2 or their 
components) to generate inner sensation of memory of the second stimulus to explain 
working, short-term and long-term memories[3].

Input terminals of a neuron are the dendritic spines (spines or postsynaptic 
terminals) that synapse with output terminals of many neurons in the previous 
neuronal order. Mean inter-spine distance between spines on the dendrite of a 
pyramidal neuron is more than the mean spine head diameter[8]. Hence, spines that 
are abutted to each other most likely belong to different dendrites. Electron 
microscopic views of cerebral cortex show abutted neuronal processes (including 
spines) with very minimal extracellular matrix (ECM) space between them. To satisfy 
requirements of classical conditioning paradigm, interactions between spines that 
belong to different neurons are necessary[3,9]. This led to the derivation of inter-
postsynaptic (inter-spine) functional LINKs (IPLs) between spine heads that belong to 
different neurons as a general structural change taking place within milliseconds 
during learning. At a later time when one of the cue stimuli reactivates an IPL, it can 
depolarize the “inter-LINKed” second spine from a lateral direction. Head region of 
this inter-LINKed spine gets strongly depolarized during the intermittent arrival of 
action potentials at its presynaptic terminal when signals from a sensory stimulus 

https://www.wjgnet.com/2220-3206/full/v11/i10/681.htm
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arriving from the environment reach that presynaptic terminal. Head regions of all the 
spines including the inter-LINKed spines are continuously getting depolarized by the 
quantal release of neurotransmitter molecules from their corresponding presynaptic 
terminals, even during sleep. These impart a dominant state that depolarization of a 
spine results from its presynaptic terminal. Such dominant states of spines of neurons 
from different neuronal orders can provide a dominant system state that activation of 
a spine occurs from a stimulus arriving from the environment and that activation of a 
specific set of spines occurs from arrival of a specific stimulus. In this context, a 
theoretical possibility is that any instantaneous depolarization of a spine from a lateral 
direction through an IPL can generate a hallucination (internal sensation of a stimulus 
in its absence) at the inter-LINKed spine about specific sensory features of the associ-
atively learned second stimulus as a system property[3,9] (Figure 1). This is anticipa-
ted of a mechanism that generates memory in the nervous system[10]. This hypothesis 
called semblance hypothesis is found to agree with the constraints offered by a large 
number of findings from multiple levels of the system[9].

Ability to induce long-term potentiation (LTP) at a location can be regarded as 
resulting from the formation of IPLs between abutted spines of different neurons at 
that location that receive converging excitatory inputs[11]. Since (1) Membrane 
segments from intracytoplasmic vesicles that carry α-amino-3-hydroxy-5-methyl-4-
isoxazole-propionic acid receptor (AMPAR) subunits can re-organize the cell 
membrane of lateral spine head region; (2) GluR1 AMPAR subunits are located up to 
25 nm beyond the synaptic margin[12], an ideal location for inter-spine interactions; 
and (3) Endocytosis of GluR1 AMPAR vesicles that uses fragments of membranes from 
lateral spine head regions is associated with a reversal of LTP (LTP decay)[13] that can 
be scaled-down to explain the reversal of formed IPLs as a mechanism for 
physiological forgetting, IPL formation can be viewed as a suitable change triggered 
by learning[9]. Since (1) Dopamine has a role in motivation-related associative learning
[14]; (2) Dopamine lead to the persistence of one-trial hippocampus-dependent 
memory[15]; and (3) Dopamine cause spine enlargement[16], release of dopamine is 
expected to augment inter-spine interactions leading to IPL formation and facilitate 
learning in a motivated state[9].

Application of energy of a different configuration than that is necessary to induce 
LTP generates long-term depression (LTD) in specific brain regions. An example of 
such a location is nucleus accumbens (NAc), a brain region associated with generation 
of pleasure. Cellular changes following LTD stimulation lead to depression of net 
excitatory postsynaptic potentials recorded from the recording electrode. Since energy 
is required for stimulation, LTD is an active process and not mere reversal of a 
mechanism responsible for the decay of LTP[13]. Since experimental results show that 
it takes several minutes for LTD induction[17,18], it indicates that LTD induction 
involves time-dependent cellular changes similar to that of LTP induction[11]. Hence, 
it is necessary to explain time-dependent changes occurring at specific locations where 
LTD can be induced. Similar to LTP, LTD in the hippocampal synaptic areas is 
implicated in different types of learning[19-22]. Necessity for stimulation energy and 
significant delay for induction of LTD following stimulation indicate that several IPLs 
are formed during LTD induction, similar to that occur during LTP induction[11]. To 
understand the mechanism that generates internal sensation of pleasure, it is necessary 
to (1) Examine the neuronal connections to NAc; (2) Examine conditions that allow 
experimental induction of LTD at this brain region; and (3) Use constraints from all the 
findings at this region to derive a mechanism for internal sensation of pleasure that 
can be inter-connected with the remaining findings.

NAc CONNECTIONS
Studies have shown that NAc is primary site mediating reward behaviour and is 
associated with both reinforcing and addictive behaviours in response to drug use. 
95% of cells in the NAc are medium spiny neurons (MSNs). MSNs are called “spiny” 
due to the abundance of spines on their dendrites. However, visual examination of 
patterns of distribution of spines on these MSNs[23,24] shows that mean inter-spine 
distance is comparable to that of the mean spine diameter, which almost matches with 
the finding in pyramidal neurons that mean inter-spine distance is more than the mean 
spine diameter[8]. Electron microscopic images of NAc show negligible ECM between 
cellular processes in many locations[25,26]. Hence, it is possible to infer that the 
nearest spine to one spine on the dendrite of an MSN is a spine on a different dendrite, 
which most likely belongs to a different neuron or occasionally to the same neuron.
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Figure 1 Generation of internal sensation of memory which is used as a reference mechanism to examine internal sensation of pleasure. 
A: During associative learning between stimulus 1 and 2, signals from these stimuli propagate towards converging locations where inter-postsynaptic functional LINKs 
(IPLs) between postsynaptic terminals (spines) b and d occur. Spines b and d are depolarized intermittently when action potentials arrive at their presynaptic 
terminals a and c respectively, and the head regions of these spines are continuously being depolarized by quantally-released neurotransmitter molecules from their 
presynaptic terminals. These provide a dominant state that a spine is depolarized by its presynaptic terminal that in turn receive signals from stimuli from the 
environment and is a necessary background condition for generating internal sensation of memory; B: In the above mentioned background state, arrival of stimulus 1 
reactivates IPL b-d to cause an incidental lateral activation of postsynaptic terminal d to spark a cellular hallucination (shown using a blue triangle marked S inside) of 
a sensory stimulus arriving from the environment through its presynaptic terminal c. Details of the method by which sensory qualia of semblions can be determined 
was described previously[3]. This matches with the expectation of a mechanism for memory[10]. Waveform: Synaptic transmission through synapse a and b and 
propagation of depolarization through IPL b-d contribute vector components of oscillating extracellular potentials whose frequency needs to be maintained in a narrow 
range for inducing internal sensation of memory. Specific electrophysiological findings in locations where sensory stimuli converge were found to correlate with 
behavioural motor actions indicative of specific brain functions. Long-term potentiation (LTP) that can be induced at locations where sensory stimuli converge is an 
example[87,88]. After application of a high-energy stimulus at a region rich in synapses and following a delay of at least 20 to 30 s[89,90], application of a regular 
stimulus at the same location generates a potentiated effect when recorded from the postsynaptic dendritic region or postsynaptic neuronal soma. Ability to induce 
LTP has shown several correlations with animals’ ability to learn. It was possible to explain how learning-induced formation of IPLs is artificially produced in a delayed 
scaled-up manner during experimental LTP induction[11]. By keeping correlation between the ability to generate internal sensation of memory that matches with 
sensory features of the item whose memory is retrieved and the ability to induce LTP at specific locations[11], specific electrophysiological changes that can be 
induced at these locations can be examined to arrive at a mechanistic explanation for internal sensation of pleasure. Since there are specific electrophysiological 
changes that can be induced at locations responsible for different brain functions, a comparative examination can be carried out to understand how different internal 
sensations are generated (modified from[3]).

Several studies in addiction research have examined changes in synapses on the 
spines of MSNs in NAc[27-30]. Spines on the dendrites of MSNs receive excitatory 
inputs from hippocampus, amygdala, thalamus and medial prefrontal cortex. Separate 
set of spines of MSNs receives inhibitory inputs from ventral tegmental area (VTA) 
(Figure 2). Dopaminergic inputs from the VTA form additional synapses with the 
heads or necks of spines that synapse with excitatory inputs[31]. In striatum, certain 
dopamine functions necessitate spatiotemporal precision between dopamine release 
sites and receptor locations[32]. It is necessary to find how these connections are 
related to the generation of internal sensation of pleasure and the ability to generate 
experimental LTD in NAc.

KEY FINDINGS IN NAc THAT NEED INTERCONNECTED EXPLANATIONS
There are several disparate findings in NAc. Major requirement to understand the 
mechanism by which pleasure is generated is to reach a single mechanism that can 
provide inter-connected explanations for all those findings. Constraints offered by all 
the findings together provide an opportunity to derive a unique solution (Table 1).
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Table 1 Key findings in nucleus accumbens and constraints provided by them

Finding Constraint

LTD can be induced at the spinous region of MSNs of NAc[17,18,28] Energy applied at the spinous region leads to depression of potentials 
at the recording electrode placed at the postsynaptic region or on MSN 
soma

LTD induction has a time delay following stimulation[17,18] comparable to that 
of LTP induction[13,14]

A time-dependent cellular change is taking place during the delay 
period following LTD stimulation

Similar to LTP, LTD is also NMDA receptor-dependent[82] LTD induction takes place through activation of NMDA receptors of 
glutamatergic synapses

When rewards or conditioned stimuli that predict reward are presented, 
dopamine neurons in the VTA increase their firing[91,92] releasing dopamine in 
their terminals that synapse with spines of MSNs in NAc

Dopamine produces certain changes at the spines of MSNs that 
synapse with excitatory inputs 

Drugs of abuse such as cocaine increase dopamine levels in the NAc[28] Dopamine has certain actions on the spines of MSNs that synapse with 
excitatory inputs 

Dopamine attenuates postsynaptic potentials elicited by stimulation of different 
excitatory inputs to NAc shell region[40]

Action of dopamine on spines of MSNs that synapse with excitatory 
inputs attenuates postsynaptic potentials when these excitatory inputs 
are stimulated through a mechanism 

Dopamine reduces excitability of MSNs in vitro[93] Action of dopamine on the spines of MSNs that synapse with 
excitatory inputs results in inhibition of MSNs through a mechanism 

Exposure to cocaine leads to attenuation of postsynaptic potentials[42] Action of cocaine leads to release of dopamine that acts on spines of 
MSNs that synapse with excitatory inputs and results in attenuation of 
postsynaptic potentials

In response to natural rewards and cocaine exposure, a major set of MSNs show 
depression of firing rate[43-46]

Rewards and drugs cause release of dopamine from VTA and 
dopamine’s action on spines of MSNs that synapse with excitatory 
inputs result in reduced firing rate of MSNs through a mechanism 

Synchronization of membrane potential states in a population of NAc neurons
[53]

A mechanism through gap junctions between inhibitory neurons in 
VTA that provides inputs to NAc neurons and/or a mechanism at the 
level of spines of MSNs 

Brain functions occur optimally in a narrow range of frequency of oscillating 
extracellular potentials especially that of background alpha rhythm as evident 
from electroencephalogram (EEG) findings[49] 

Regional oscillations of extracellular potentials are expected to be 
related to oscillating extracellular potentials of the system

Summary of findings Inter-connected constraints

Drugs cause release of dopamine from VTA, which in turn cause attenuation of 
postsynaptic potentials and depression of MSNs in NAc. Application of energy is 
able to induce delayed LTD through scaled up changes expected to occur 
normally at the synaptic region of NAc, which is likely responsible for 
generating internal sensation of pleasure

Dopamine does certain unique changes at the spines of MSNs of NAc 
that synapse with excitatory inputs to cause attenuation of 
postsynaptic potentials, depression of MSNs and promotes 
experimental induction of LTD. This inter-connected operation is 
expected to explain a mechanism that generates inner sensation of 
pleasure

Constraints provided by disparate findings can be used to find inter-connectable explanations for deriving a unique mechanism, which is expected to 
provide an explanation for the generation of internal sensation of pleasure. NAc: Nucleus accumbens; LTD: Long-term depression; MSNs: Medium spiny 
neurons; NMDA: N-methyl-D-aspartate; VTA: Ventral tegmental area.

MECHANISM OF PLEASURE AND INTERCONNECTED EXPLANATIONS 
FOR FINDINGS IN NAc
By keeping (1) the correlation between associative learning and LTP induction[11]; and 
(2) the ability of inter-LINKed spines of excitatory synapses to induce internal 
sensation of memory[3] as reference mechanisms, a reasonable expectation is that a 
mechanism for generating internal sensation of pleasure that satisfies constraints from 
different findings in NAc (Table 1) will become possible. Dendritic arbors of different 
MSNs overlap. Energy is applied to induce LTD at the synaptic locations of MSNs of 
NAc where spines present on different dendrites are abutted. One set of these spines 
receive inputs from excitatory neurons of different brain regions and another set of 
spines receive inputs from inhibitory neurons of VTA. In addition, the heads or necks 
of spines that synapse with excitatory inputs receive dopaminergic inputs[31] 
(Figure 3). Spines of excitatory synapses that also receive dopaminergic inputs enlarge 
by the action of dopamine[16]. Furthermore, a scaled-up electrophysiological change 
responsible for the generation of pleasure is expected to take place during experi-
mental LTD induction at these synaptic locations.
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Figure 2 Input and output connections of nucleus accumbens. One set of spines of medium spiny neurons (MSNs) in the nucleus accumbens receive 
excitatory inputs (red arrows) from several regions. The same spines of MSNs that receive excitatory inputs receive dopaminergic inputs (violet arrows) from ventral 
tegmental area (VTA). Another set of MSN spines receive inputs from inhibitory interneurons (orange arrow) in the VTA. Large green circles: Different brain regions. 
Small circles: Predominant cell types within brain regions (Red: Excitatory; Orange: Inhibitory; Violet: Dopaminergic). PFC: Prefrontal cortex; NAc: Nucleus 
accumbens; VTA: Ventral tegmental area.

Figure 3 Interactions between spines of medium spiny neurons that synapse with excitatory inputs and spines of medium spiny neurons 
that synapse with inhibitory inputs. A: Adjacent spines (small black circles) on the dendrite of a medium spiny neuron (MSN) (N1) (cell body is drawn in a 
large black circle) that synapse with two excitatory inputs (in blue) to form synapses Sy1 and Sy2). Golgi staining shows that spines are physically well separated 
from each other on the dendrites of MSNs[23,24] such that the inter-spine space is occupied by spines of other dendrites or processes of other neurons or glial cells. 
This increases the probability that the nearest spine to a spine on the dendrite of a MSN is most likely a spine that belongs to another neuron, or in rare cases 
belongs to another branch of the same neuron. Note that dopaminergic inputs synapse either onto the head or neck region of spines that synapse with excitatory 
inputs; B: In between two adjacent spines of MSN N1 shown in figure A, there is a spine that belongs to a second MSN (N2). This spine synapses with an inhibitory 
input (in orange). All the spines are electrically insulated from each other by fluid extracellular matrix. Natural stimulants or cocaine abuse causes release of 
dopamine that will cause enlargement of spines that synapse with excitatory inputs. Since the spine that synapses with the inhibitory input is spatially interposed 
between the expanding spines, inter-postsynaptic functional LINKs are formed between those three spines; C: Same configuration of two spines of MSNs that 
synapse with excitatory inputs and one middle spine synapsing with inhibitory input. Here, these spines belong to three different MSNs.

There are two main methods by which LTD can be induced. (1) Low-frequency 
stimulation induces LTD that requires activation of N-methyl-D-aspartate receptors 
(NMDARs)[33,34]. Modest activation of NMDARs that can be used to induce LTD[28] 
may involve AMPAR endocytosis[35]; (2) By keeping postsynaptic depolarization 
below a threshold, a tetanic stimulation that normally induces LTP can induce LTD
[36]. Removal of surface AMPARs occurs during induction of both NMDAR-
dependent LTD[37,38], and metabotropic glutamate receptor-LTD[39,40]. Since 
endocytosis of vesicles containing AMPAR subunits during expression of LTD in NAc
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[18] is associated with usage of membrane segments from lateral spine head regions 
that reduces spine size, it can lead to reversal of large number of existing IPLs. Even 
though reversal of existing IPLs can explain LTD similar to that of LTP decay[13], it is 
necessary to explain LTD as an active mechanism that requires energy for its experi-
mental induction. Based on findings in NAc (Table 1), it is also necessary to explain (1) 
Attenuation of postsynaptic potentials by the effect of dopamine on MSN spines that 
synapses with excitatory inputs[41,42]; and (2) Reduced firing rate of MSNs[43-46], in 
addition to finding a matching explanation for the generation of internal sensation of 
pleasure. This has been remaining a challenge.

In the above contexts, main question is whether it is possible to explain internal 
sensation of pleasure and all the findings in Table 1 in terms of IPL mechanism. It is 
known that drugs of abuse such as cocaine lead to increased dopamine levels in the 
NAc[28]. Dopamine is known to cause spine enlargement[16]. Since dopaminergic 
inputs synapse with spines that receive excitatory glutamatergic inputs, this is 
expected to cause enlargement of those spines of MSNs. This forces these spines to 
form IPLs with all their abutted spines. Since some MSN spines synapse with 
excitatory inputs and others with inhibitory inputs, it is necessary to take into account 
the possibility for IPL formation between these spines (Figure 3B). In this context, IPL 
formation between MSN spines that synapse with inhibitory inputs and MSN spines 
that synapse with excitatory inputs can be examined in the light of the previous view 
that inhibitory inputs at the input level have a role in information processing[47]. It is 
necessary to combine all this information to obtain a solution for the challenge 
described in the previous paragraph.

Since LTP induction in the cortex usually requires low doses of gamma-amino 
butyric acidA (GABAA) receptor antagonist bicuculline[48] for concomitant reduction of 
GABAergic inhibition, it shows the necessity to block activation of spines that synapse 
with inhibitory inputs. When spines that receive inhibitory inputs are in large 
numbers, such as in NAc, a mere reduction in GABAergic inhibition alone will not be 
able to induce LTP. This is because the numbers of spines that receive excitatory inputs 
are comparatively less to form IPLs between them alone to induce LTP. Now the 
question is, “What is the effect of application of energy on the MSN spines that receive 
excitatory inputs and MSN spines that receive inhibitory inputs that are distributed 
somewhat equally?” This increases the probability for the formation of IPLs between 
those spines. This can lead to propagation of hyperpolarization from the spines that 
synapse with inhibitory inputs to neutralize and even hyperpolarize the spines that 
synapse with excitatory inputs. In experimental LTD stimulation, this will result in 
depression of net potentials at the recording electrode responsible for LTD.

Now the question is, “Can formation of IPLs between MSN spines that synapse with 
excitatory inputs and MSN spines that synapse with inhibitory inputs explain the 
generation of internal sensation of pleasure?” At this juncture, a reasonable inference 
is that semblance generated at the location where LTD can be experimentally induced 
is associated with internal sensation of pleasure. Now, one can ask, “What type of a 
semblance can be anticipated based on the nature of inputs at the spines of MSNs and 
IPLs that are formed between them?” In physiological conditions, hyperpolarization of 
spines that receive inhibitory inputs is expected to propagate to spines that receive 
excitatory inputs through the IPLs formed between them. This is expected to generate 
a conformational change in the net local semblance induced from all the inter-LINKed 
spines of MSNs and contribute to internal sensation of pleasure (Figure 4). Brain 
functions such as pleasure take place only in a state of normal consciousness 
associated with a narrow range of oscillating extracellular potentials as evident from 
EEG findings[49]. Synaptic transmission at the synapses and propagation of potentials 
across the IPLs are expected to contribute vector components to both regional and 
system level oscillating extracellular potentials[3]. Narrow range of background 
oscillating extracellular potentials is expected to be generated from continuous 
reactivation of the large number of IPLs formed from common background stimuli to 
which nervous system is exposed[50,51]. The latter event continues to generate a 
background semblance in which internal sensation of pleasure is formed (Figure 4). 
Explanation for the functional significance of background semblance was explained 
previously[9].

Several inhibitory neurons in the VTA are expected to get activated through gap 
junctions between them similar to that contribute to cortical oscillations[52]. It can lead 
to synchronization of membrane potential states in a population of NAc neurons[53] 
and can explain how continuous reactivation of newly formed IPLs in NAc maintains 
pleasure. In physiological conditions, formation of IPLs between MSN spines that 
synapse with excitatory inputs and MSN spines that synapse with inhibitory inputs 
can explain how it leads to attenuation of postsynaptic potentials while getting 
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Figure 4 A schematic representation of units of internal sensations whose integral generates pleasure in a background net semblance of 
the system. Left: Normal semblance as shown in Figure 1. Inter-postsynaptic functional LINK (IPL) between spines B and D that receive excitatory inputs (in blue). 
An action potential arriving at presynaptic terminal A from a stimulus depolarizes its postsynaptic terminal B, which in turn propagates through the IPL B-D and 
depolarizes (shown as a positive waveform) inter-LINKed spine D. This generates units of internal sensations (shown as a blue triangle projected upwards from 
presynaptic terminal C that denotes semblance). Middle: Reactivation of an IPL between spine Q of a medium spiny neuron (MSN) that synapse with an inhibitory 
input (in orange) and another spine F of a MSN that synapse with an excitatory input (in blue) results in spread of hyperpolarization from spine Q to spine F. This 
leads to changes in both the waveform of spine depolarization (red waveform) and conformation of semblance (shown as a dip in the blue triangle). Right: Here, spine 
H that synapses with an excitatory input (in blue) forms IPLs with spines S and U that synapse with inhibitory inputs (orange). Net effect of hyperpolarization results in 
profound changes in both waveform of spine depolarization (red waveform) and conformation of semblance (shown as a deep dip in the blue triangle). Net effect of 
changes in semblances from all the inter-LINKed spines of MSNs in nucleus accumbens (NAc) is expected to generate a special semblance of pleasure.

exposed to dopamine[41]. In addition, it can also explain reduced firing of MSNs when 
animals are exposed to both natural rewards and cocaine[43-46]. The scaled-up change 
in experimental stimulation that generates LTD is a net effect of depression in the sum 
of potentials arriving at the recording electrode. A summary of these interconnected 
findings is shown in Figure 5.

HOMEOSTATIC CHANGES DURING DRUG ABUSE AND WITHDRAWAL
IPL formation involves interaction between outer membranes of spines by excluding 
the insulating fluid ECM[3]. Exocytosis of intra-cytoplasmic vesicles provides 
membrane segments that allow re-organization of the cell membrane at the lateral 
margins of spines that can promote IPL formation. Conversely, endocytosis of GluR1 
AMPAR vesicles is associated with a reversal of LTP (LTP decay)[13]. Similar 
mechanisms can be expected to cause the formation and reversal of IPLs during LTD 
induction and decay respectively.

After 10 to 14 d of repeated in vivo cocaine exposure, both the ratio of 
AMPAR/NMDAR-mediated excitatory postsynaptic currents (EPSCs) and magnitude 
of LTD are reduced[17]. One of the reasons for a reduction in the AMPAR/NMDAR -
mediated EPSC ratio is a decrease in the number of AMPARs. Based on the IPL 
mechanism, cocaine exposure results in the enlargement of spines that predisposes the 
IPLs formed between these spines to undergo fusion pore formation. In this context, 
endocytosis of vesicles containing GluR1AMPARs following cocaine administration 
can be viewed as a homeostatic mechanism for preventing IPL fusion. During vesicle 
endocytosis, usage of membrane segments from lateral spine head regions can reduce 
the size of spine heads and reverse extreme changes of IPLs such as IPL fusion. 
Endocytosis of these vesicles observed during experimental LTD induction[18,54,55] 
can be viewed as a scaled-up physiological response for preventing IPL fusion, 
especially in locations where dopamine is released. In this context, the finding that a 
challenge dose of cocaine after weeks of cocaine withdrawal terminates withdrawal 
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Figure 5 Nucleus accumbens circuitry that matches with constraints from several findings. Spines B and F belonging to different medium spiny 
neurons (MSNs) synapse with inhibitory inputs arriving through presynaptic terminals A and E respectively.  Spine D on a third MSN synapses with excitatory input 
arriving through presynaptic terminal C. Two inter-postsynaptic functional LINKs (IPLs) are formed between spines B, D and F. These IPLs between spines that 
synapse with excitatory and inhibitory inputs lead to mixing of depolarization on the spines that synapse with excitatory input and hyperpolarization on the spines that 
synapse with inhibitory inputs. This leads to alternation of configuration of the net postsynaptic potentials as shown in a trace. Net semblance from a large number of 
inter-LINKed spines is expected to generate a special semblance for internal sensation of pleasure. Due to propagation of hyperpolarization, sum of potentials 
reaching many MSNs may not cross the threshold for firing, which leads to reduced firing of MSNs. A specific stimulation pattern applied at the presynaptic region 
using stimulating electrode S1 results in the formation of a large number of the above-mentioned types of IPLs in a time-dependent manner (inferred from delay 
between stimulation and long-term depression (LTD) induction[17,18]) resulting in LTD recorded from either recording electrode R1 (extracellular field recording) or 
R2 (whole-cell recording). Two inhibitory inputs to MSN and one inhibitory output from MSN are shown in orange. Excitatory synapse is shown in blue. Dopaminergic 
neuron of ventral tegmental area is shown in violet. DO: Dopaminergic output; IO: Inhibitory output; VTA: Ventral tegmental area.

along with endocytosis of AMPARs[28] can be considered as an augmented 
homeostatic mechanism.

During early withdrawal, administration of dopamine alone restores both spine 
structure and LTD[56] that can be explained in terms of IPL formation between MSN 
spines that synapse with excitatory inputs and MSN spines that synapse with 
inhibitory inputs indicating that the system is highly dynamic. During later periods of 
withdrawal, an increase in AMPARs at the membrane surface is observed[57,58]. 
During this time, a strong potentiation of AMPAR-mediated synaptic transmission is 
observed in the synapses on the spines of NAc MSNs. At this time, a single exposure 
to cocaine suddenly reverses the synaptic potentiation to depression[59]. This indicates 
that after a very lengthy drug-free period, the system reaches a near normal state and 
starts responding like a naïve system by forming IPLs between spines that synapse 
with excitatory inputs and spines that synapse with inhibitory inputs.
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PATHOLOGICAL CHANGES FOLLOWING DRUG ABUSE
Inter-spine fusion is a possible consequence of drug abuse
Based on the IPL mechanism, conditions such as excessive drug use that cause 
excessive release of dopamine can lead to progression of IPLs to an extreme end of the 
spectrum of IPL changes, namely IPL fusion[6]. Defects in normal homeostatic 
mechanisms described in the above paragraph or changes in membrane composition 
can augment IPL fusion. Fusion between expanding spines matches with the previous 
observation of dye diffusion between neurons in NAc under the influence of 
dopamine[60]. Since transcriptomes of even neighboring neurons of similar type are 
different in the brain[61-63], IPL fusion that occurs between spines that belong to two 
neurons (Figure 3B and C) can lead to cytoplasmic content mixing and protein precip-
itation. An initial cellular response is expected to seal off the IPL fusion pore. When 
this fails, neurons are expected to protect themselves by removing fused spines from 
them[64], which can explain spine loss during cocaine abuse[65,66]. Loss of spines at 
the input regions of NAc MSNs in cocaine users will reduce the number of abutted 
spines and will reduce the probability of IPL formation. This will prevent experimental 
induction of LTD as evidenced from different studies[67,68].

Drug addiction
Major consequence of IPL fusion is the eventual loss of spines of MSNs[65,66] as a 
homeostatic mechanism to protect neuronal cells[64]. Since “non-addicted” animals 
regain the ability to generate LTD after two weeks of discontinuing self-administration 
of cocaine[68], it indicates that these animals may not have lost their spines. However 
during early stages of spine loss, the remaining spines can form IPLs to generate 
internal sensation of pleasure only if they can expand. This necessitates release of 
dopamine that in turn necessitates the availability of drugs. A natural consequence of 
this is initiation of drug seeking behavioural motor actions elicited through separate 
pathways. In later stages when more spines are lost, more amount of drug will become 
necessary even to maintain internal sensation of normal comfort. At this stage, 
reduced number of spines on MSNs will lead to persistent impaired LTD in 
“addicted” animals[68].

DISCUSSION 
LTD can be experimentally induced in many brain regions and by different methods. 
Translating this to understand how it is related to conformational changes in 
semblance and the nature of internal sensations require examination of all the 
connections and findings at those regions. Excitatory neurons are controlled by 
inhibitory neurons both at the output level, for example, in the visual cortex[69] and at 
the input level[70,71]. The present work has explained a new testable function of 
inhibitory neurons at their output level. By explaining IPL formation between MSN 
spines that synapse with inhibitory inputs and MSN spines that synapse with 
excitatory inputs, it became possible to provide mechanistic explanations for previous 
assumptions that (1) Increased firing of VTA dopaminergic neurons encode an array of 
sensory, motor and cognitive variables[72]; and (2) Reduced activity of NAc MSNs 
encode reward[73-76]. The finding that coupling of potentials between MSNs were 
found to occur only in neurons that also showed dye coupling[60] matches with the 
IPL mechanism explained in the present work because IPLs with fusion pores can 
allow both dye diffusion through the fusion pore and propagation of potentials across 
the connecting membrane segments. The inference that input-specific filtering of 
excitatory inputs in the NAc is provided by dopamine[77] can be explained in terms of 
IPL formation between MSN spines that both synapse with excitatory inputs and 
enlarge under the influence of dopamine and MSN spines that receive inhibitory 
inputs.

Further examination is needed to understand the role of cholinergic inputs that 
synapse with the spines of MSNs in NAc[78]. It is also necessary to examine the 
difference in dopamine’s actions on MSN spines in the shell and core regions of NAc
[79,80] for their contributions on pleasure generation. Comparable findings in neurons 
of lateral hebenula, a brain region associated with reward, whose spines synapse with 
excitatory, inhibitory and dopaminergic inputs[81]can be examined to further 
understand this related brain function.
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Fast kinetics of AMPA current in glutamatergic synapses allows initial depolar-
ization of the spine head region. It is known that glutamate released from the 
presynaptic boutons is necessary to depolarize their spines, which will relieve 
blockage of NMDARs by Mg2+[82]. Furthermore, postsynaptic depolarization below 
certain threshold induces LTD when tetanic stimulation that normally induces LTP is 
used[36]. Hyperpolarization from inter-LINKed spines that synapse with inhibitory 
inputs can provide suitable conditions for the above. It is also possible that timing of 
hyperpolarization propagating from an inter-LINKed spine that synapse with an 
inhibitory input also determines the conformation of semblance generated at the 
spines of excitatory synapses shown in Figures 4 and 5. Understanding details of the 
mechanism can provide information regarding selection of different types of 
glutamate receptors, their distribution and functional roles in different brain regions.

Based on the present work, sequence of appearance of neurotransmitters glutamate 
and GABA[83,84] is likely to provide information about the period when internal 
sensation of pleasure started appearing during evolution. The enzyme glutamic acid 
decarboxylase (GAD) catalyzes decarboxylation of glutamate to form GABA. Even 
though GABAergic interneurons were present in the common ancestor of all amniotes
[85], it is difficult to trace the sequence of appearance of glutamatergic and GABAergic 
neurons. A possibility is that as neurons started receiving a large number of inputs, 
several combinations of IPLs started generating different internal sensations, which 
allowed natural selection of neurons that started expressing GAD. By selecting config-
urations of inputs that led to the formation of IPLs generating internal sensation of 
pleasure, animals were likely able to seek certain items and perform certain actions 
that were essential for survival, which those animals would not have performed 
otherwise.

CONCLUSION
By viewing pleasure as a first-person internal sensation, it was possible to extend IPL 
mechanism to formulate a framework of a specific mechanism taking place at the 
dendritic spine regions of MSNs in NAc responsible for pleasure. It matches with 
constraints provided by disparate findings such as the ability to induce robust LTD in 
NAc from naïve animals, impaired ability to induce LTD in addicted state, attenuation 
of postsynaptic potentials by cocaine, and reduced firing of MSNs in response to 
cocaine or dopamine. IPL mechanism that provided inter-connectable explanations for 
pleasure and disparate findings in NAc can be subjected to further verification. Since 
IPLs are expected to be of roughly 10nm2 in area as inferred from theoretical studies of 
membrane bilayers[86], advanced microscopic methods are necessary to detect their 
real-time formation, stabilization, and reversal in normal conditions and conversion to 
fusion states in addicted animals.
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