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Abstract
A growing body of evidence suggests that tight junction (TJ) proteins play a 
crucial role in the pathogenesis of various diseases, including gastrointestinal (GI) 
cancer and hepatocellular carcinoma (HCC). TJ proteins primarily maintain the 
epithelial and endothelial cells intact together through integral proteins however, 
recent reports suggest that they also regulate gene expression necessary for cell 
proliferation, angiogenesis, and metastasis through adapter proteins such as 
zonula occludens (ZO). ZO proteins are membrane-associated cytosolic 
scaffolding proteins that modulate cell proliferation by interacting with several 
transcription factors. Reduced ZO proteins in GI cancer and HCC are correlated 
with tumor development and poor prognosis. Pubmed has searched for using the 
keyword ZO and gastric cancer, ZO and cancer, and ZO and HCC for the last ten 
years to date. This review summarized the role of ZO proteins in cell proliferation 
and their expression in GI cancer and HCC. Furthermore, therapeutic 
interventions targeting ZO in GI and liver cancers are reviewed.

Key Words: Tight junction; Zonula occludens-1; Zonula occludens-1 associated nucleic 
acid binding protein; Hepatocellular carcinoma; Colon cancer; Gastric cancer

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Zonula occludens (ZO) proteins (ZO-1, -2, -3) are primarily involved in tight 
junction formation. Additionally, ZO proteins regulate cell proliferation by interacting 
with various transcription factors, among which ZO/ZO-1 associated nucleic acid-
binding protein pathway is of particular importance. Reduced expression of ZO proteins 
is correlated with poor prognosis in gastrointestinal cancer and hepatocellular 
carcinoma. Modulating ZO proteins expression with polyphenols, probiotics and 
peptides may represent promising therapeutic agents for cancer treatment.
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INTRODUCTION
Tight junction (TJ) proteins are intercellular cell adhesion molecules located at the apical region of 
epithelial and endothelial cells and firmly seal the gap between adjacent cells. TJ proteins confer cell 
polarity and prevent the free flow of lipids and proteins within the cell membrane preventing their 
translocation from apical to the basolateral domain. It also forms a mechanical barrier to restrict the 
movement of solutes, ions, and water through the paracellular pathway, which is essential for 
physiological homeostasis in tissues and organs[1]. Recent data suggest that apart from gate and fence 
function, TJ proteins have also been linked to communicate various signaling cascades through adapter 
proteins and regulate gene expression necessary for cell proliferation and differentiation[2]. TJ is 
composed of a dynamic set of protein complexes which includes integral transmembrane proteins such 
as claudins, occludin, and cytosolic scaffolding proteins such as zonula occludens (ZO) proteins ZO-1, 
ZO-2, and ZO-3.

ZO proteins interconnect actin-cytoskeleton with transmembrane TJ proteins and contribute to 
cellular adhesion[3]. Moreover, in the cells deprived of TJ, ZO proteins were seen to be attached with 
cadherin-dependent adherens junction through alpha-catenin. In addition, ZO proteins also interact 
with gap junctions by directly binding with connexin (Cx) proteins such as Cx-36, Cx-43 and Cx-45[4]. 
The ZO proteins belong to members of a subfamily of membrane-associated guanylate kinase 
(MAGUK) proteins, share some common structural domains such as PSD/disc large/ZO-1 (PDZ) 
domain, Src Homology 3 (SH3) domain, and catalytically inactive guanylate kinase (GUK) domain. 
These domains interact with the homologous domain of other proteins and form a mutual protein-
protein interaction for various cellular processes. Importantly, the PDZ domain is required to 
polymerize claudins and occludin at the junctional site to stabilize TJ[5]. These domains also interact 
with various cytoplasmic proteins, transcription factors, and signaling molecules to regulate gene 
expression[6]. These functions of ZO proteins pinpoint a critical role not only in the maintenance of 
intercellular adhesion and communication but also suggest a non-canonical function in various cellular 
growth and differentiation. Perturbation or disruption of TJ proteins expression is associated with the 
progression of a variety of cancers, including gastrointestinal (GI) cancer such as stomach cancer, colon 
cancer, and hepatocellular carcinoma (HCC)[7].

Furthermore, various cytokines, growth factors, pathogens, and miRNA are known to regulate TJ 
proteins expression[2]. In addition, TJ proteins also maintain the intestinal epithelial barrier integrity 
and any compromise in intestinal permeability due to inflammation or gut bacterial overgrowth 
contributing initiation or progression of GI cancer[8]. Here, we mainly focused on the role of ZO 
proteins in GI and liver cancers progression and possible therapeutic intervention for the clinical 
outcome.

STRUCTURAL FEATURES OF ZO PROTEINS
ZO-1 is the first identified 220 kD peripheral cytoplasmic protein consisting of three PDZ domains, an 
SH3 domain, catalytically inactive GUK domain, and alternatively spliced a carboxy half terminal which 
binds to actin filament[3]. ZO-2 and ZO-3 (160 kD and 130 kD, respectively) proteins contain a similar 
domains and bind to ZO-1 via their corresponding PDZ-2 domain[3]. Besides these domains, ZO 
proteins also contain variable motifs U1 to U6 inter-located between PDZ, SH3, and GUK domains. PDZ 
domains are evolutionarily conserved regions found in bacteria, fungi, mammals, and plant lineages 
consisting of 80-100 amino acid residues[6]. These domains form dimers with corresponding PDZ 
domains, attached to C-terminal sequences of integral membrane proteins or cytoplasmic proteins and 
play a key role in epithelial cellular integrity and signal transduction. This PDZ containing proteins is 
specifically localized at the intercellular junction of epithelial cells, the cell membrane of lymphocyte 
and erythrocyte and neuromuscular junctions, and maintains cellular adhesion, regulation of 
paracellular transport, and intracellular signaling[6].

The first PDZ domain of all the ZO proteins binds to the C-terminal sequence of claudins. In contrast, 
the second and third PDZ domains interact with junction adhesion molecule (JAM), which is critical for 
constructing TJ and its function[1]. Indeed, Umeda et al[5] showed polymerization of claudins at TJ is 
functionally regulated by ZO-1 and ZO-2 PDZ binding domains. Similarly, the SH3 domain consists of a 
short segment of around 60 amino acid residues which was first found in viral adapter protein c-Crk as 
the conserved sequence. This domain was later found in several cytosolic tyrosine kinases and non-

https://www.wjgnet.com/2307-8960/full/v10/i12/3647.htm
https://dx.doi.org/10.12998/wjcc.v10.i12.3647
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catalytic parts of phospholipase enzymes. The SH3 domain participates in protein-protein interaction by 
recognizing proline-rich ligands of cytoskeletal proteins, Src kinases, and various other proteins 
regulating a wide array of biological functions such as enzyme activity, formation of multimeric protein 
complexes, and assembly of the cytoskeleton[9]. The SH3-U5-GUK-U6 domain of ZO-1 binds to 
occludin and stabilizes its polymerization at TJ. The U5 motif present at the hinge region is imperative 
for ZO-1-occludin stabilization and localization of ZO-1 at TJ[10]. The GUK domain in the presence of 
ATP converts GMP to GDP. Moreover, other MAGUK family proteins such as p55 and Lin-2, where this 
domain is catalytically active and contains GMP and ATP binding sites, the ZO-1 GUK domain lacks 
this function. It is believed that the catalytic activity of the GUK domain was gradually lost with the 
evolutionary emergence of subfamily members of MAGUK proteins, as demonstrated by phylogenetic 
analysis[4]. Previous studies showed that the GUK domain also participates in inter-protein interaction 
and several proteins such as brain enriched guanylate kinase-associated protein (BEGAIN), 
microtubule-associated protein (MAP1A), and kinesin-like protein (GAKIN) containing GUK binding 
ligands. Furthermore, the GUK domain also communicates intramolecularly with the SH3 domain[10].

Moreover, when the cells lacking the U6 motif encompassing the GUK domain of ZO-1 were 
introduced, the ectopic TJ strands consisting of claudin and occludin were formed. However, it failed to 
recruit cytoplasmic junctional plaque molecules[10]. In addition, ZO proteins serve as an essential 
intermediate molecule linking TJ strands with actomyosin cytoskeleton, where actin filament interacts 
with ZO proteins through their carboxy-terminal (ZO-1 and ZO-2) and N-terminal end (ZO-3)[11].

ZO PROTEINS AS REGULATORS OF CELL PROLIFERATION
ZO proteins are confined to maintaining TJ integrity and govern cell proliferation, maturation, and cell 
cycle transition. The drosophila’s Disc large (Dlg) protein, a member of MAGUK family, shares 
homology with mammalian ZO-1 in which the SH3 domain has tumor suppressor activity. Therefore, 
ZO-1 might play a role as a tumor suppressor protein. Consequently, beta catenin-mediated reduced 
ZO-1 expression is associated with enhanced proliferation of colorectal epithelial cells[12]. In contrast, 
the ectopic introduction of ZO-1 showed reduced cell proliferation and transformation in MDCK cells
[13]. Moreover, ZO-1 knockout mice showed embryonic lethality due to abnormal angiogenesis and 
embryonic cells apoptosis in the yolk sac[13]. Apart from protein-binding domains, ZO-1 contains 
nuclear localization signal (NLS) and nuclear export signal (NES). Thus, it can scaffold between plasma 
membrane and nucleus, suggesting direct involvement in gene transcription[10]. Gottardi et al[14] 
showed nuclear expression of ZO-1 before TJ maturation in proliferating subconfluent cell culture of 
epithelial cells. However, not all investigators have found the nuclear expression of ZO-1, and its role in 
the nucleus remains elusive. One of the mechanisms by which ZO-1 regulates cell proliferation might be 
the binding of ZO-1 with transcription factor ZO-1 associated nucleic acid-binding protein (ZONAB)
[15].

ZONAB is a multifunctional Y-box transcription factor containing sequences of inverted CAAT box 
that bind to the SH3 domain of ZO-1 protein and regulate gene expression and cell proliferation[16]. A 
previous study in MDCK cells shows that cell density determines the cytosolic and nuclear fraction of 
ZO-1 and ZONAB[15]. Thus, in high proliferating low-density cells, the ZONAB is highly expressed in 
the nucleus while; ZO-1 expression is reduced at the junctional site[15]. Ectopic overexpression of ZO-1 
or by ZONAB RNA interference reduces the nuclear pool of ZONAB, thereby inhibiting MDCK cell 
proliferation[15]. Moreover, enhanced expression of ZONAB through lentivirus or knockdown of ZO-1 
by RNA interference increased the proliferation of retinal pigment epithelial (RPE) cells associated with 
epithelial to mesenchymal transition (EMT) of RPE cells[17]. The above study suggests that ZO-1 might 
inhibit cell proliferation by cytoplasmic concealment of ZONAB at the junctional site and proves that 
nuclear accumulation of ZONAB depends on cellular proliferation rate. However, a study by Spadaro et 
al[18] confirmed that ZO-1 alone is not responsible for ZONAB activity and cellular content; rather, it 
also requires ZO-2 and ZO-3. Therefore, reduction of any one of ZO proteins has a barren effect on 
subcellular localization of ZONAB, whereas reduced expression of both ZO-1 and ZO-2 is coupled with 
concomitant reduction of ZO-3 preventing junctional localization of ZONAB and reinforcing its 
transition to the nucleus[18].

ZO-1/ZONAB axis regulates cell proliferation by interacting with proteins involved in cell cycle 
progressions such as cyclin-dependent kinase 4 (CDK4), cyclin D1 (CD1), and proliferating cell nuclear 
antigen (PCNA)[15,19]. ZONAB promotes nuclear accumulation of CDK4, thus causing the transition of 
the cell cycle progression from G1 to S phase while ZO-1 sequestering ZONAB at the junctional site 
prevents the accumulation of CDK4 in the nucleus[15]. ZONAB also induces transcription of CD1 and 
PCNA genes through the CCAAT inverted promoter sequence resulting in epithelial cell proliferation 
while the ZO-1-SH3 domain reduces the cellular protein content of CD1[18]. ZO-1 also regulates erbB2 
protooncogene transcription[15]. ZONAB act as a repressor of erbB2 protooncogene, which is involved 
in cellular growth and neoplastic transformation and its expression is highly increased in cancer cells
[15]. However, in non-transformed cells, overexpression of ZO-1 reduces cell proliferation by alleviating 
endogenous erbB2 levels[15]. The erbB2 gene is involved in cell differentiation and organogenesis[20]. 
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Symplekin, an mRNA polyadenylation factor, is another target of ZONAB through which it regulates 
gene expression and inhibits cell differentiation[21]. Nuclear symplekin accumulation interacts with 
heat shock inducible transcription factor 1 (HSF1) and induces polyadenylation of heat-shock protein 70 
(Hsp70) mRNA[22]. In the colon epithelial cells, ZONAB-symplekin complex also represses the activity 
transcription factor acute myeloid leukemia 1 (AML1) protein inhibiting cell differentiation[10]. Apg-2 is 
a stress-responsive molecule that interacts with the ZO-1 through the SH3 domain and regulates 
ZONAB transcriptional functions as both Apg-2 and ZONAB competitively bind to the same SH3 
domain of ZO-1. Accordingly, in MDCK cells, heat shock treatment or overexpression of Apg-2 activates 
transcriptional activity of ZONAB and stimulates cell proliferation, while Apg-2 silencing favors 
colocalization of ZONAB with ZO-1at the junctional site[10].

ZO-2 also shares structural features common to ZO-1, in addition, it also possesses NLS and NES[23]. 
An embryonic lethality with altered yolk sac angiogenesis and apoptosis was also observed in ZO-2 
knockout mice similar to ZO-1[24]. However, when ZO-2(-/-) chimeric mice were generated, these mice 
were viable with altered blood-testis barrier without affecting the levels of other TJ proteins such as 
claudin, occludin, ZO-1, and ZO-3. These results suggest that ZO-2 is not required for proper embryo-
genesis rather, it is vital for the development of extraembryonic tissues and the formation of the blood-
testis barrier[25]. ZO-2 is the only ZO subfamily protein transiently expressed in the nucleus. ZO-2 
accumulates inside the nucleus in sparse culture whereas, in confluent monolayer cells, ZO-2 is seen at 
TJ strands in MDCK and endothelial cells[23]. Additionally, ZO-2 regulates cell proliferation by binding 
various transcription factors such as c-myc, fos, Jun, and C/EBP, and SAF-B[26]. In particular, ZO-2 
inhibits cell cycle progression by inhibiting c-myc dependent RNA transcription and protein 
degradation of CD1, thus arresting the cell cycle at G0/G1 phase[27]. Furthermore, the PDZ domains of 
ZO-2 binds to Armadillo repeated gene deleted in velo-cardio-facial syndrome (ARVCF) protein which 
is closely related to the p120 catenin family proteins and colocalize at TJ in non-proliferating cells while 
breach of intercellular adhesion leads to nuclear accumulation of ARVCF where it induces gene 
expression by activating kaiso protein[10,28].

In addition, at the epithelial junction, the carboxy-terminal of ZO-2 binds to hScrib protein which is 
homologous to tumor suppressor scribble protein in drosophila, suggesting its tumor suppressor role
[29]. ZO-2 also interacts with another transcription factor Yes-associated protein (YAP) of the Hippo 
signaling pathway through the PDZ domains and regulates the nuclear accumulation of YAP for gene 
expression[30]. Accordingly, the knockdown of ZO-2 promoted renal hypertrophy by activating the 
nuclear accumulation of YAP[31]. Formation of TJ strand at cell junction required dual expression of 
ZO-1 and ZO-2. Umeda et al[5] showed that inhibition of ZO-1 and ZO-2 expression by RNA 
interference leads to altered claudin polymerization with impaired TJ strand formation. In contrast, the 
ectopic introduction of ZO-1 and ZO-2 corrected conformational claudin polymerization and restored TJ 
formation in ephrin-4 (EpH4) cells. Similarly, when coexpression of ZO-1 and ZO-2 were depleted in the 
embryo, the TJ establishment was altered in extraembryonic endothelial cells, which were crucial for 
normal cavitation and survival of the embryo, whereas individual deletion did not affect TJ integrity
[32]. In addition, increased paracellular permeability was observed in MDCK cells by dual depletion 
ZO-1 and ZO-2[4].

TJ ZO-3 binds to ZO-1 via the PDZ2 domain and not to ZO-2. Unlike other ZO proteins (ZO-1 and 
ZO-2), the mice lacking ZO-3 have no embryonic lethality, and TJ strands were completely formed, 
suggesting ZO-3 is nonobligatory for TJ assembly[24]. However, Kiener et al[33] showed that ZO-3 is 
imperative for normal TJ construction in the epidermis layer of zebrafish embryos. Furthermore, 
aberrant expression of ZO-3 has been proclaimed in the number of cancers such as breast cancer, 
suggesting its additional role in cell proliferation, however, the mechanism has yet to be identified[34]. 
One possible mechanism may be the knockdown of ZO-3 resulted in protein degradation of CD1 and 
arrested cell cycle at G0/G1 phase inhibiting cell proliferation[13]. As discussed above, ZO proteins are 
critical for TJ assembly and control cell proliferation by interacting with various transcription factors 
and cell cycle-related genes (Figure 1).

EXPRESSION OF ZO PROTEINS IN GASTRIC CANCER
Tissue microarray results showed enhanced expression of ZO-1 staining in gastric intestinal-type 
adenocarcinoma, whilst reduced ZO-1 expression in diffused gastric adenocarcinoma[35,36]. Moreover, 
compared to normal gastric mucosa, reduced ZO-1 immunostaining was observed in gastric cancer 
patients[37,38]. Similarly, high cytoplasmic expression of ZO-1 was reported in GI stromal tumor (GIST) 
tissue indicating the malignant phenotype of GIST and might serve as a favorable prognosis in GIST 
patients[39]. In addition, ZO-1 and ZO-2 were also depleted in scirrhous gastric carcinoma cells 
(OCUM-12) derived from patients with scirrhous gastric carcinoma[40]. Furthermore, ZONAB 
expression was upregulated in gastric cancer tissue while silencing of ZONAB in gastric cancer cell line 
decreased expression of adenomatous polyposis coli (APC), CD1, and E-cadherin and inhibited cell 
proliferation[41].
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Figure 1 Mechanism by which zonula occluden 1, 2, and 3 proteins regulate cell proliferation. Zonula occludens (ZO)-1, ZO-2, and ZO-3 localizes 
at the tight junction along with claudin and occludin. ZO-1 regulates cell proliferation by cytoplasmic sequestration of ZO-1 associated nucleic acid binding protein 
(ZONAB) from the nucleus to repress the transcription of cell cycle related genes such as cyclin dependent kinase 4, cyclin D1 (CD1), and proliferating cell nuclear 
antigen. ZONAB also interacts with symplekin to regulate gene expression. ZO-2 interacts with several transcription factors such as Jun, fos, c-Myc, and yes 
associated protein and regulates gene expression. ZO-3 degrade the protein expression of CD1 and inhibits cell cycle progression. CDK4: Cyclin dependent kinase 4; 
ZONAB: Zonula occludens-1 associated nucleic acid binding protein; ZO: Zonula occludens; PCNA: Proliferating cell nuclear antigen; YAP: Yes associated protein.

The shreds of evidence from previous studies in gastric cancer cells have shown that various factors 
regulated the expression of ZO proteins. For example, Helicobacter pylori Cag protein redistributed 
intercellular ZO-1 to small vesicles in primary gastric epithelial cells[42]. Similarly, in TMK-1 cells, a 
poorly differentiated gastric carcinoma cell line, ZO-1 staining was observed in cytoplasm while the 
addition of fresh serum or epidermal growth factor (EGF) relocated the ZO-1 from cytosol to the cell 
membrane, which was mediated by protein kinase C (PKC)[43]. Similarly, in noncancerous gastric 
epithelial cell line IMGE-5, hepatocyte growth factor (HGF) treatment causes translocation of ZO-1 from 
the TJ strand to cytosol and nucleus, thereby increasing transepithelial resistance, accompanied by 
phosphatidylinositol 3-kinase (PI3K) dependent ZO-1 tyrosine phosphorylation. This phosphorylation 
prevented the binding of ZO-1 to occludin, suggesting that HGF hinders the accumulation of ZO-1 at TJ 
amid cell differentiation[44]. In another study, HGF treatment to gastric epithelial cell line MKN74, the 
cytoplasmic translocation of ZO-1 was observed, which was associated with cell migration rather than 
increased cell proliferation. In addition, they also found increased tyrosine phosphorylation of occludin, 
whereas ZO-1 phosphorylation was not affected, and paracellular permeability was not compromised. 
However, ZO-1/occludin interaction was affected[45]. Moreover, circular RNAs (circRNAs) circSMC3 
promoted gastric cancer cells proliferation and motility by targeting ZO-1[46].

EXPRESSION OF ZO PROTEINS IN COLON CANCER
In primary colorectal cancer (CRC) tissue loss of ZO-1 expression was found, whereas liver metastasized 
tissues showed reexpression of ZO-1. The decreased expression of ZO-1 in CRC was due to tyrosine 
phosphorylation of ZO-1 mediated by epidermal growth factor receptor (EGFR), while ZO-1 in liver 
metastasized tissue was found to be dephosphorylated. This indicates that phosphorylation of ZO-1 
reduces its functional capacity, which is necessary for glandular dedifferentiation in CRC acquiring 
invasive properties of CRC tissue, whereas glandular redifferentiation liver metastasis might require 
reexpression of ZO-1[47]. Similarly, in colon cancer biopsy tissue, decreased expression of ZO-1 was 
positively correlated with high tumor grade and poor outcome in CRC patients[48]. Furthermore, in 
colon adenocarcinoma tissue, reduced ZO-1expression was correlated with tumor cell differentiation
[49]. In patients with colitis-associated colorectal carcinoma (CAC), ZO-1 expression was not altered 
compared to adjoining intraepithelial neoplastic tissue and normal mucosa[50]. Liu et al[51] showed 
increased expression of ZONAB in CRC, which was associated with cell invasion, degree of differen-
tiation, and metastasis in those patients. Conversely, knockdown of ZONAB by short-hairpin RNA 
impeded cell proliferation, enhanced apoptotic activity, halted cell cycle progression in CRC cell lines, 
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and inhibited tumor growth in xenograft mice. In addition, knockdown of ZONAB in CRC cells 
upregulated the expression of p38, suggesting the involvement of ZONAB in CRC progression through 
MAPK pathways, however, further investigation is needed to correlate ZONAB expression and CRC 
development[52].

Past studies from in vitro models suggested that ZO proteins were regulated by various factors in the 
pathogenesis of colon cancer. ZO-1 expression was decreased in various colon cancer cell lines[12]. ZO-1 
was expressed at the apical border of T84 colon cancer cells and in the cytoplasm of COLO320DM cells, 
while in DLD-1 cells, ZO-1 was expressed at the cell border showing an intermediate epitheloid 
phenomenon between T84 cells and DLD-1. These observations indicated that the ZO-1 expression is 
associated with epitheloid disorganization in colon cancer[53]. Upregulated miR-103 promoted CRC by 
targeting ZO-1 and binds to 3’ UTR of ZO-1[54]. Similarly, miR-200b upregulated the ZO-1 expression 
in Caco-2 cells via myosin light chain kinase phosphorylation and alleviated tumor necrosis factor-alpha 
(TNF-α) induced interleukin-8 (IL-8) secretion[55]. Moreover, overexpression of miR-212 decreased ZO-
1 expression in Caco-2 cells, while lentivirus-mediated knockdown of miR-212 increased ZO-1 
expression[56]. Furthermore, upregulated miR-191a, decreased protein and mRNA expression of ZO-1 
in intestinal epithelial cells (IEC-6), whereas its inhibition increased TNF-α induced cell injury[57]. 
Cancer secreted exosomal miR-25-3-p promoted CRC metastasis to liver and lung in mice by downregu-
lating ZO-1, kruppel like factor (KLF) 2, and KLF4 expression and by upregulating vascular endothelial 
growth factor receptor 2 expression[58]. In addition, long non-coding RNAs, AFAP1-AS1 knockdown 
inhibited colon cancer cell lines proliferation by upregulating ZO-1[59]. Similarly, ZC3H13, a CCCH 
zinc finger protein, inhibited the proliferation of CRC cells by upregulating ZO-1. The reduced 
expression of ZC3H13 in CRC specimens was associated with TNM stage and lymph node metastasis
[60]. Deoxycholic acid downregulated ZO-1 expression via NLRP3 inflammasome in Caco-2 cells and 
promoted colon carcinogenesis[61]. Patulin, a mycotoxin present in the food, phosphorylate and lowers 
the ZO-1 expression in the colon cancer Caco-2 cell line, promoting colon cancer[62]. Acetylsalicylic acid 
(NSAIDs) decreased ZO-1 expression through reactive oxygen mediated in Caco-2 cells[63].

ZO proteins are a critical component of TJ and are involved in maintaining intestinal barrier integrity. 
Recent studies demonstrated increased intestinal permeability associated with colon cancer progression
[64,65]. Inflammation is a precipitating factor for intestinal permeability. For example, inflammatory 
cytokine TNF-α treatment downregulated the expression of ZO-1 in colon cancer Caco-2 cells and 
induced intestinal permeability. This was mediated by activating the nuclear factor kappa B (NF-κB) 
transcription factor. Subsequently, inhibition of NF-κB activity modulated TNF-α expression and 
reappearance of ZO-1 at the apical border in Caco-2 cells[2]. Similarly, IL-15 enhanced the expression of 
ZO-1 and ZO-2 in the colon cancer T84 cell line and improved the TJ barrier[66]. Estrogen treatment 
reduced gene and protein expression of ZO-1, including its promoter activity in Caco-2 cells, mediated 
by NF-κB activation[67]. Similarly, intestinal alkaline phosphatase (IAP) increased the expression of ZO-
1 and ZO-2 in colon cancer Caco-2 and T84 cell lines. In addition, IAP ameliorated lipopolysaccharide 
(LPS)-induced inflammation and relocation of ZO-1 at TJ improving epithelial barrier integrity[68]. 
Furthermore, Phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) inhibited the expression of ZO-1 
in Caco-2 cells and decreased TJ barrier permeability which was improved after PIK3R3 inhibitor TAT-
N 15[69]. Transcription factor JunD repressed ZO-1 expression through cAMP response element-
binding protein-binding (CREB) in colon cancer Caco-2 cells impairing intestinal barrier integrity[30]. 
The above studies suggested that inflammation is a prime mediator of alteration in TJ protein 
expression contributing to intestinal permeability.

EXPRESSION OF ZO PROTEINS IN HCC
In the liver, ZO proteins are localized in the hepatocytes and hepatic endothelial cells, forming the blood 
biliary barrier. It is also highly expressed in the cholangiocytes forming the intact intrahepatic bile duct. 
Altered expression of ZO proteins or mislocalization of ZO proteins plays a crucial role in liver biology. 
The hepatic knockout of ZO-1 and ZO-2 in rodents did not show major organ abnormalities at birth but 
was lethal after 6 wk. However, distinct abnormal features in the liver were observed in those knockout 
mice where hepatocyte polarity was lost with a concomitant reduction in bile duct structure and 
disorganized sinusoidal vessels indicating ZO-1 and ZO-2 are necessary for normal liver physiological 
function[70]. Accordingly, Takaki et al[71] showed that after 2/3rd partial hepatectomy, expression of 
ZO-1 was reduced, and it reappeared after 3 d indicating ZO-1 is critical for liver regeneration. Orbán et 
al[72] reported reduced ZO-1 mRNA expression in HCC liver tissue and colorectal liver metastasis 
tissue compared to the normal liver sample. Furthermore, ZO-1 cellular localization was observed in the 
HCC liver showing reduced positivity, whereas colorectal metastasis liver tissue showed increased 
positivity attributing to glandular dedifferentiation. Another study by Zhang et al[73] showed reduced 
mRNA and protein expression of ZO-1 in HCC tissue compared to adjacent non-tumorous tissue. 
Accordingly, overexpression of ZO-1 inhibited HepG2 cell proliferation and blocked the cell cycle 
transition at the G1 interphase.
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Furthermore, reduced expression of ZO-1 was associated with shorter overall survival in patients 
with HCC after partial hepatectomy[74]. In our previous study in HCC patients, decreased hepatic ZO-1 
expression was correlated with poor outcomes. A positive interrelationship was observed between 
increased plasma ZO-1 concentration and hsCRP, indicating inflammation disrupts TJ protein 
expression in HCC patients[75]. Similarly, in the diethylnitrosamine (DEN) and N-nitrosomorpholine 
(NMOR) induced HCC mouse model, we found reduced hepatic ZO-1 protein expression. In contrast, 
ZONAB expression was increased, indicating ZO-1/ZONAB pathway plays a critical role in HCC 
pathogenesis[76]. Similarly, Ponziani et al[77] showed increased plasma ZO-1 levels correlated with 
inflammatory markers in HCC patients compared to healthy volunteers. ZO-2 and ZO-3 expressions 
data are scarce in liver cancer, indeed, reduced expression of ZO-2 was associated with progressive 
familial intrahepatic cholestasis (PFIC) type 4[78,79]. Similarly, a missense mutation was identified in 
the first PDZ domain of ZO-2 in patients with familial hypercholanemia[80]. In addition, expression of 
ZONAB was increased in HCC tissue which was correlated with advanced stages of HCC. In contrast, 
the nuclear ZONAB expression in HCC tissue showed a poor prognosis in HCC patients. Moreover, this 
nuclear localization was caused by T to G transversion and methylation of the ZONAB promoter region
[81,82]. Hypoxia-inducible factor-1αmediated upregulation of miR-191 promoted ischemia/reperfusion 
liver injured through ZONAB/CyclinD1 axis[83]. In this context, Gao et al[84] showed Insulin-like 
growth factor II mRNA-binding protein 3 (IGF2BP3) enhanced HCC cell invasion by upregulating miR-
195-5p induced suppression of ZO-1 expression. Table 1 summarizes the expression of ZO proteins in 
gastric cancer, colon cancer, and HCC under clinical settings.

THERAPEUTIC APPROACH TARGETING ZO PROTEINS FOR PREVENTION OF GI AND 
LIVER CANCERS
As discussed above, ZO proteins play multiple roles in cancer progression, including cell proliferation, 
metastasis, and invasion, thereby contributing to the pathogenesis of GI and liver cancers. Targeting TJ 
proteins such as ZO may ablate disease progression.

Other than ZO proteins that were downregulated, the transmembrane TJ proteins such as claudin 
family proteins were upregulated in a variety of GI cancer. Accordingly, in recent years several 
antibodies targeting claudins proteins have been developed. Monoclonal antibodies (mAB) against 
claudin 1, 2, 3, 4, 6 and 18.2. has been generated and is under the preclinical and clinical stages[7]. For 
example, mAB 6F6 against claudin 1 is in the preclinical stage for CRC treatment, whereas the 
claudiximab, mAB against claudin 18.2 is in a clinical trial for gastric cancer therapy[7]. Since several 
claudins proteins were found to be upregulated in GI cancer, mAB therapy might be useful, however, 
ZO proteins are cytosolic scaffolding proteins and were found to be downregulated in GI cancer. The 
same approach may be difficult to apply for the treatment of GI cancers. Therefore, the compounds 
which can directly target ZO proteins and regulate their expression might represent a promising 
candidate for ZO targeted therapy. One such compound 4,-hydroxyphenylmethylene hydantoin (PMH), 
a non-toxic compound isolated from marine sponge, was able to attenuate prostate cancer growth and 
prevent distance metastasis by preventing TJ disruption, accompanied by upregulation of ZO-1 
expression[85]. Further studies are needed to identify small molecules targeting ZO proteins that can 
directly modulate their expression, which might be useful for the treatment of GI cancer.

Targeting PDZ domain
Most of the current generation of anticancer drugs are targeted to the cell surface receptor or 
intracellular kinases, modulation of cytosolic protein-protein interactions mediated by non-enzymatic 
domains is an underexplored area for the development of new anti-cancer chemotherapeutic agents. 
One such domain is a PDZ domain that possesses non-enzymatic actions through which several 
proteins interact and transmit signal transduction for cellular homeostasis. ZO proteins contain 
evolutionarily conserved PDZ domains. Hence, targeting the PDZ domain to modulate protein-protein 
interaction with small molecule inhibitors or peptides might block the cellular signaling pathways 
required for cancer growth. Accordingly, various small molecule inhibitors or peptides regulating PDZ 
domains have been identified[86]. For example, ZL006 and IC87201, a small molecule inhibitor of PDZ 
domain of PSD-95 (postsynaptic density) protein, prevented binding of neuronal nitric oxide synthase 
(nNOS) and attenuated cerebral ischemia brain injury when administered in mice[86]. Similarly, a 
mammalian protein named GIPC (GAIP-interacting protein, C terminus) contains a central PDZ domain 
that regulates insulin-like growth factor-1 receptor (IGF-1R) expression through PDZ-domain 
dependent[87]. Octapeptide CR1023 (N-myristoyl-PSQSSSEA), a GIPC-PDZ inhibitor, attenuated the 
pancreatic cancer growth with a significant reduction in IGF-1R expression. CR1166 [N-myristoyl-
PSQSK(εN-4-bromobenzoyl) SK (εN-4-bromobenzoyl)A] another peptide inhibitor of GIPC-PDZ, 
inhibited the cell proliferation and induced apoptosis in pancreatic and breast cancer cells as well as in 
the xenograft model. CR1166 prevented the interaction between GIPC-PDZ domain and IGF-1R with a 
concomitant reduction in protein expression of IGF-1R and epidermal growth factor receptor (EGFR)
[88]. Further, small molecule inhibitors like NSC668036, J01-017a, and FJ9 have been identified targeting 
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Table 1 Expression of zonula occludens proteins in gastric, colon and liver cancers

Ref. ZO-
protein Specimen and methods Observation Potential clinical relevance

Resnick 
et al[35]

ZO-1 Tissue sample by microarray 
staining

Increased expression in gastric intestinal-type 
adenocarcinoma while Reduced expression 
in diffuse gastric cancer

Associated with tumor differentiation

Kimura et 
al[36]

ZO-1 Tissue sample by immunohisto-
chemistry

Reduced expression in poorly differentiated 
gastric adenocarcinoma

Correlated with tumor differentiation

Lee et al
[37]

ZO-1 Tissue sample by immunohisto-
chemistry

Reduced expression in diffuse gastric cancer Associated with tumor differentiation

Ohtani et 
al[38]

ZO-1 Tissue sample by immunohisto-
chemistry

Reduced expression in undifferentiated-type 
gastric adenocarcinoma

Associated with reduced overall survival

Zhu et al
[39]

ZO-1 Tissue sample by microarray 
staining

Increased expression in gastrointestinal 
stromal tumor

Positively correlated with longer survival

Wang et 
al[41]

ZONAB Tissue sample by western blotting 
and immunofluorescence

Increased expression in gastric cancer tissue Knockdown of ZONAB by siRNA inhibited 
cyclin D1 mediated cell invasion and 
enhanced chemosensitivity of 5-fluorouracil

ZO-2 and 
ZO-3

Not studied in gastric cancer patients

Kaihara 
et al[47]

ZO-1 Tissue sample by immunohisto-
chemistry

Reduced expression in primary colorectal 
cancer

Reduced expression is attributed by tyrosine 
phosphorylation of ZO-1 and is required for 
dedifferentiation of glandular structure in 
CRC

Resnick 
et al[48]

ZO-1 Tissue sample by microarray 
staining

Reduced expression in colon cancer Low expression is correlated with high tumor 
grade

Jeong et 
al[49]

ZO-1 Tissue sample by immunohisto-
chemistry

Reduced expression in colon adenocarcinoma Reduced expression is correlated with tumor 
cell differentiation

Mees et al
[50]

ZO-1 Tissue sample by immunofluor-
escence

No difference in expression between 
colorectal carcinoma, adjoining intrae-
pithelial neoplasia, and normal mucosa

Unknown

Orbán et 
al[72]

ZO-1 Tissue sample by PCR and 
immunohistochemistry

Reduced mRNA and protein expression in 
primary HCC; Increased protein expression 
in secondary colorectal liver metastasis tissue

Differential expression of ZO-1 is associated 
with distinct histological features in these 
tumors

Liu et al
[51]

ZONAB Tissue sample by immunohisto-
chemistry

Increased expression in CRC Increased expression is correlated with 
invasion, degree of differentiation, and 
colorectal metastasis

ZO-2 and 
ZO-3

Not studied in colorectal cancer patients

Zhang et 
al[73]

ZO-1 Tissue sample by PCR and 
western blotting

Reduced mRNA and protein expression in 
HCC

Overexpression of ZO-1 inhibited HepG2 cell 
proliferation

Nagai et 
al[74]

ZO-1 Tissue sample by PCR Reduced mRNA expression in HCC Reduced expression is correlated with shorter 
overall survival and poor prognosis in HCC 
patients

Ram et al
[75]

ZO-1 Tissue sample by immunohisto-
chemistry; Plasma sample by 
ELISA

Reduced expression in HCC; Increased 
plasma concentration in HCC

Associated with inflammation and poor 
clinical outcome in HCC patients

Ram et al
[76]

ZO-1 Tissue sample by western blotting Reduced expression in HCC Associated with inflammation and disease 
pathogenesis in DEN and NMOR induced 
HCC

Yasen et 
al[81]

ZONAB Tissue sample by immunohisto-
chemistry

Increased expression in HCC liver tissue Nuclear staining of ZONAB is correlated with 
poor prognosis in HCC patients

ZO-2 and 
ZO-3

Not studied in HCC patients

CRC: Colorectal cancer; DEN: Diethylnitrosamine; NMOR: N-nitrosomorpholine; HCC: Hepatocellular carcinoma; ZO-1: Zonula occludens-1; ZO-2: 
Zonula occludens-2; ZO-3: Zonula occludens-3; ZONAB: Zonula occludens-1 associated nucleic acid binding protein.

PDZ domains of Disheveled (Dvl) proteins, an important regulator of wnt/β catenin pathway[86]. These 
compounds blocked the interaction of the Dvl-PDZ domain with frizzled proteins, hampering the 
downstream wnt/β catenin signaling pathway, which propagate the carcinogenesis process[86]. 
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However, these compounds have not been tested for the selective inhibition of PDZ domains of ZO 
proteins. It will be interesting to see whether these compounds can modulate ZO-PDZ protein-protein 
interaction binding partners. Further studies are needed to develop new small molecules or peptide 
modulators to examine the specific regulation of the PDZ domain of ZO proteins which can be 
implemented for cancer therapy.

Natural compounds
Reduced expression of ZO-1 is associated with intestinal permeability, which contributes to colon cancer 
and HCC progression[89]. Therefore, compounds that can modify the expression of ZO proteins and 
preserve barrier integrity might be employed to prevent CRC and HCC progression. Previous studies 
have shown that various polyphenols can modulate ZO-1 protein expression and preserve TJ barrier 
integrity in vitro and in vivo[90]. In HT-29 colon epithelial cells, treatment with red polyphenol 
upregulated ZO-1 expression and attenuated cytokine-stimulated intestinal barrier permeability[91]. 
Resveratrol treatment enhanced the expression of ZO-1 and preserved TJ barrier integrity both in vivo 
and in vitro[92]. Curcumin treatment restored intestinal epithelial barrier integrity by upregulating ZO-1 
expression in colon epithelial cells[93]. In addition, curcumin also attenuated TNF-α induced intestinal 
ischemia/reperfusion injury by increasing the ZO-1 expression in Caco-2 cells[94]. Kaempferol, a 
flavonoid improved intestinal TJ barrier integrity by upregulating ZO-1 expression in colon cancer cell 
lines[95]. Berberine is a natural antioxidant that increases ZO-1 expression in colon epithelial tissue and 
reduces LPS mediated TJ barrier permeability[96]. Proanthocyanidin, a grape seed extract, ameliorated 
LPS-induced inflammation and oxidative stress by improving barrier integrity by upregulating ZO-1 
expression in Caco-2 cells[97]. Treatment with curcumin, quercetin, and naringenin reduced dextran 
sodium sulphate-induced colitis in mice and also reduced colonic barrier permeability by upregulating 
ZO-1 protein expression[98]. In our previous study, nimbolide, a terpenoid, increased hepatic ZO-1 
protein expression in HCC mice and ameliorated disease pathogenesis. Moreover, we also found ZO-1 
has a ligand-binding cavity for nimbolide[76]. Furthermore, we also found nimbolide treatment restores 
intestinal barrier integrity by upregulating ZO-1 expression in HCC mice [unpublished data]. Vitamin 
D3 supplementation upregulated the expression of ZO-1 via the beta-catetin-TCF-4 pathway in colon 
cancer cells[99]. Similarly, treatment with retinoic acid in colitis mice with compromised gut barrier 
significantly upregulated ZO-1 expression and improved TJ permeability[100]. Lycopene a carotenoid 
inhibited the cell proliferation of human cutaneous squamous cell carcinoma cell line COLO-16 by 
upregulating ZO-1 expression[101]. However, limited studies have been conducted in gastric cancer, 
colon cancer, and in HCC animal models directly targeting ZO proteins with natural compounds, which 
might inhibit the carcinogenesis process, which remains an unexplored area.

Prebiotics and probiotics
Previous studies have provided substantial evidence that prebiotic can modulate TJ proteins and might 
preserve intestinal barrier integrity for the prevention of disease pathogenesis[102]. Administration of 
inulin fermentation products preserved tissue barrier integrity by upregulating ZO-1 mRNA expression 
in intestinal epithelial cells[103]. Similarly, treatment with fructo-oligosachharide and butyrate 
upregulated the ZO-1 expression and enhanced barrier integrity in Caco-2 cells[104,105]. Furthermore, 
supplementation of galacto-oligosaccharide attenuated inflammatory response and intestinal 
permeability by upregulating ZO-1 gene expression in LPS-challenged mice[106]. In vivo study showed 
that dietary tryptophan supplementation improved intestinal barrier permeability by upregulating ZO-
1 expression[107].

Probiotics represent another approach to restore TJ barrier integrity. Accordingly, probiotic E. coli 
Nissle1971 supplementation to DSS-induced colitis mice markedly improved barrier permeability by 
upregulating ZO-1 expression[108]. Furthermore, treatment with probiotic VSL#3 upregulated ZO-1 
expression and enhanced barrier integrity in various cancer models both invitro in vivo[109,110]. VSL#3 
treatment to DEN-induced HCC rats restored mucosal barrier integrity and alleviated tumor burden
[111]. Lactobacillus plantarum ZLP001 and Lactobacillus reuteri I5007 alleviated inflammation and 
strengthened intestinal barrier integrity by upregulating ZO-1 expression in vitro and in vivo[112,113]. 
Enterococcus faecium HDRsEf1 treatment protected LPS-induced intestinal epithelial cell injury model by 
upregulating ZO-1 expression in IPEC-J2 cells[114]. However, the use of prebiotics and probiotics 
supplementation in rodent models of gastric cancer, CRC, and HCC specifically targeting ZO proteins is 
limited, and further investigation is required.

Histone deacetylase inhibitors
Histone deacetylase (HDAC) enzymes regulate gene expression by histone modification and altering the 
chromatin structure. In addition, HDAC participates in post-translational modification of proteins by 
acetylation and deacetylation, and thus enhances or represses the activity of proteins. It was reported 
that HDAC inhibitors modulate TJ protein expression[115]. In support of this, treatment with HDAC 
inhibitor sodium butyrate to rat fibroblast cells significantly increased ZO-1 and ZO-2 expression by 
inhibiting HDAC activity and favoring cell differentiation. However, further studies are needed to 
delineate the mechanism of HDAC inhibitor-mediated upregulation of ZO proteins to treat GI cancer 
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and HCC[116].

CONCLUSION
In conclusion, ZO proteins are shown to critical for preserving barrier integrity by communicating with 
various transcription factors, thereby regulating cell proliferation, differentiation, and cell cycle 
progression. Moreover, ZO proteins were distinguished as tumor suppressor genes. Importantly, the 
ZO-1/ZONAB pathway was found to be crucial in the TJ-mediated regulation of gene expression. In 
addition, reduced expression of ZO-1 was correlated with poor prognosis in patients with gastric, colon 
and liver cancers. However, scarce literature shows the role of ZO-2 and ZO-3 in GI cancer. Therefore, 
modulation of ZO proteins expression by small molecules or peptides and gene transfer may represent a 
potential candidate for cancer treatment. Additionally, natural polyphenols, prebiotics and probiotics 
also show potential therapeutic intervention for the modulation of ZO-1 expression in GI cancer and 
HCC pathogenesis. Indeed, future studies are warranted to delineate the mechanism of alteration of ZO 
proteins expression in GI cancer and HCC and subsequent development to the new chemotherapeutic 
drug.
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