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Abstract
Liver-gut communication is vital in fatty liver diseases, and gut microbes are the 
key regulators in maintaining liver homeostasis. Chronic alcohol abuse and 
persistent overnutrition create dysbiosis in gut ecology, which can contribute to 
fatty liver disease. In this review, we discuss the gut microbial compositional 
changes that occur in alcoholic and nonalcoholic fatty liver diseases and how this 
gut microbial dysbiosis and its metabolic products are involved in fatty liver 
disease pathophysiology. We also summarize the new approaches related to gut 
microbes that might help in the diagnosis and treatment of fatty liver disease.

Key Words: Fatty liver disease; Alcoholic fatty liver disease; Non-alcoholic fatty liver 
disease; Gut microbiome; Dysbiosis

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In this review, we compare the gut microbial composition in two different 
fatty liver diseases: Alcoholic fatty liver and nonalcoholic fatty liver. This review 
enables readers to recognize the gut microbiota compositional differences that occur in 
these two histopathologically analogous conditions and to explore these gut microbial 
compositional variations in their research. Additionally, this review will also be helpful 
in the design of new experiments aiming to develop new diagnostic and/or therapeutic 
methodologies.
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INTRODUCTION
Significant increases in mortality and morbidity due to chronic fatty liver disease have 
raised great global health concerns. Alcoholic fatty liver disease (AFLD) and 
nonalcoholic fatty liver disease (NAFLD) are the most common chronic fatty liver 
illnesses in the Western world, with prevalences of 6% and 25%, respectively[1], and 
are the leading causes of liver transplantation[2,3]. Both AFLD and NAFLD start with 
fat accumulation in the liver, known as benign or simple steatosis, which leads to 
inflammation identified as steatohepatitis. Advanced disease includes fibrosis and 
cirrhosis, which can lead to a more severe state, including hepatocellular carcinoma 
and liver failure, and ultimately can cause death. Only 20% of patients with AFLD and 
NAFLD develop progressive liver disease[4,5]. In addition to fat accumulation, 
increased inflammation, and alcohol consumption, other causes, such as an altered gut 
microbial composition, gut microbial metabolites, or gut barrier function, are 
associated with the exacerbation of chronic liver disease[6,7].

The recent increase in the understanding of the microbiota and its metabolites has 
changed the perspectives of various chronic diseases[8]. The human gut microbiota 
represents a complex ecosystem with various species of microbes that are approx-
imately 1-2 kg in weight in total[9,10]. The gut microbiota maintains homeostasis by 
interacting with the host and has important functions, including metabolism, 
digestion, vitamin production, mucosal immune reaction, and the translocation of 
microbial-associated molecular patterns[11-14]. Importantly, the gut microbiota is 
known to have a significant role in liver disease progression, but the associated 
mechanisms are still not fully established.

The liver is the first organ exposed to gut microbial metabolites through portal vein 
blood. Therefore, the gut microbial community has a vital role in liver homeostasis, 
and dysbiosis in gut microbial ecology can produce microbial metabolites and 
components that can have a direct impact on the liver[15-19]. Similarly, the liver also 
influences gut microbial ecology, particularly in the intestine, through primary bile 
acids[20-22]. In this way, the liver and gut share a close bidirectional relationship. 
Interestingly, fecal microbiota transplantation (FMT) studies showed a proof of 
concept in alcohol-associated and metabolic disease generation and establishment[19,
23,24].

Although AFLD and NAFLD have similar histopathological characteristics, they 
have different etiologies[25]. Thus, gut microbial composition in AFLD and NAFLD 
could have some commonalities as well as dissimilarities at various classification 
levels[16,26]. These gut microbial compositional similarities in AFLD and NAFLD 
could help not only establish common pathophysiological pathways but also increase 
the chance of finding common treatments. Conversely, gut microbial compositional 
variations in AFLD and NAFLD could be helpful for the development of specific 
disease-based signatural gut microbiota profiles. Additionally, these disease-specific 
gut microbiota profiles could be valuable for the design of gut-microbiota-based 
therapies such as probiotics[27], synbiotics[28], postbiotics[29] and/or FMT[30] to 
ameliorate liver disease. These microbial therapeutics also could provide access for 
developing personalized patient-based treatments to restore liver functions in AFLD 
and/or NAFLD. AFLD and/or NAFLD-specific gut microbiota profiles could also be 
useful in the future as diagnostic biomarker tools for the early diagnosis of these 
diseases.

Considering the importance of the disease-specific gut microbial signature in AFLD 
and/or NAFLD, herein, we review the gut microbial compositions related to AFLD 
and/or NAFLD development, especially focusing on the relationship of these compos-
itions with the progression of both diseases, particularly in humans. We also explicitly 
focus on the microbial signature pertaining to AFLD and/or NAFLD and common 
microbes in both fatty liver conditions. This review also helps in the understanding of 
the deep association between the gut microbiota and fatty liver diseases, which can 
also be considered microbiota-associated fatty liver diseases.

GUT MICROBIAL COMMUNITY EUBIOSIS
The gut microbiota is an endogenous ecosystem that coevolves with the host as a 
symbiotic organ and regulates the normal physiological functions of the gut, such as 
food digestion and nutrient absorption, and provides essential micronutrients to the 
host[31]. The gut microbial ecosystem maintains a balance between the microbial 
species living inside the gut known as “eubiosis” that is crucial for good health. 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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Microbial colonization in the gastrointestinal tract starts immediately after birth and is 
dominated by the Bifidobacterium genus, and a decline in this dominance is observed in 
the first year of life[32]. The infant gut microbiota is changeable, as this microbial 
colonization is affected by multiple external factors, such as the mode of delivery, 
medications, nourishment[33,34], age, genetic background, and cultural/geographic 
influence[32,35,36]. Similarly, breastfed infants have a less diverse gut microbiota than 
formula-fed infants, which is the best possible explanation for the difference in gut 
microbial composition between United States infants and non-United States infants, as 
United States infants have 28 operational taxonomic units dominated by the Prevotella 
genus[32]. As children start consuming solid foods, the gut microbiota becomes more 
diverse and starts stabilizing[32,35,37,38]. Fecal samples collected from different 
geographical regions showed that the gut microbiota composition took shape toward 
an adult-like configuration until 3 years of age[32], after which the gut composition 
became more persistent[39].

Primarily, the Firmicutes and Bacteroidetes phyla dominated the adult human gut 
microbial composition, and Actinobacteria, Proteobacteria and Verrucomicrobia were 
found in lesser abundance. Fecal metagenomic analysis from 4 different countries 
identified well-classified robust gut microbial communities, named enterotypes, 
represented through multiple numbers of 3 genera: Prevotella, Ruminococcus and 
Bacteroides[40], and this classification of enterotype was independent of nationality, 
age, body mass index (BMI), and sex. However, this enterotype-based classification 
remains a topic of debate because external factors such as diet are considered primary 
regulators of gut microbiota composition and functions[41,42] and fail to be identified 
in healthy and elderly individuals[43]. In addition to diet, aging is also a considerable 
factor that changes the gut microbiota composition. Bacteria belonging to the 
Bacteroidaceae, Lachnospiraceae and Ruminococcaceae families are negatively correlated 
with aging independent of geographical region, lifestyle, and dietary habits[44-46]. 
Moreover, healthy aging showed increased microbial richness and higher numbers of 
Bifidobacterium, Oscillospira, Akkermansia, and Christensenellaceae[45]. Emerging meta-
genomic empirical evidence suggests that a healthier gut always has a more diverse 
microbiota population and that a healthy gut is essential to maintain human health[47,
48].

GUT MICROBIAL COMMUNITY DYSBIOSIS
A change or alteration in gut microbial composition, which can be related to diseased 
conditions, is termed “dysbiosis”[49]. Gut microbiota composition varies from birth to 
death[50] and is influenced by various environmental factors[51-54]. Gut microbial 
dysbiosis also has a close connection with AFLD and NAFLD.

Gut microbiota alteration in AFLD
Persistent high intake of ethanol is the root cause of AFLD[55], as it disrupts the 
multilayered intestinal defense system involving physical, immunological, and 
humoral components[56]. Normally, the liver enzyme alcohol dehydrogenase and the 
ethanol-oxidizing system convert ethanol to acetaldehyde, which is toxic to hepatic 
cells. Acetaldehyde is immediately metabolized to acetate, released into the 
bloodstream, and used as a biological fuel by cells for energy production. In a 
persistently elevated ethanol consumption state, the accumulation of toxic acetal-
dehyde is increased in the liver, which leads to the production of highly reactive 
molecules that generate an oxidative stress milieu and contribute to liver injuries[16]. 
An increase in the flow of ethanol in the liver alters SIRT1 signaling and initiates fat 
accumulation in hepatocytes[57]. Ethanol reduces SIRT1 expression in the liver, which 
leads to the fat accumulation in liver cells by disrupting multiple SIRT1-dependent 
transcription factors and cofactors, such as peroxisome proliferator-activated receptor 
α, PPARγ coactivator-1α, AMP-activated kinase, lipin-1, β-catenin, forkhead transcrip-
tion factor O1, sterol regulatory element-binding protein 1, nuclear factor activated T 
cells c4, and nuclear transcription factor-κB[57-59]. Ethanol facilitates the inhibition of 
SIRT1, which leads to various signaling network disruptions that increase the accumu-
lation of fat in hepatocytes by decreasing β-oxidation and lipolysis, boosting 
lipogenesis and inflammation, and collectively leading to AFLD. Recently, human and 
animal models suggested that even a small intake of alcohol can harm intestinal 
barrier integrity and raise microbial byproduct levels in the circulation[60,61]. 
Moreover, there is adequate experimental evidence proving that the interrelationship 
between alterations in the intestinal microbiota and alcohol abuse and acute and 
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chronic alcohol exposure is primarily responsible for gut microbiota dysbiosis and can 
lead to AFLD through various pathways, as shown in Figure 1[62]. Animal model-
based studies explain that alcohol-induced microbial dysbiosis in the intestine changes 
homeostasis in the gut-liver axis and that this altered intestinal microbiota plays a 
crucial role as a mediator in the production of the many negative effects of alcohol.

Animal studies have shown that 3 weeks of alcohol exposure causes a ‘leaky gut’, 
which increases the number of Bacteroidetes and Verrucomicrobia and decreases the 
growth of bacteria with anti-inflammatory activity, such as Firmicutes (genera such as 
Lactobacillus, Lactococcus, Leuconostoc and Pediococcus), in the cecum[63]. Another 
rodent alcohol-based model showed that changes in intestinal permeability associated 
with intestinal microbial alterations are related to the decreased expression of hypoxia-
induced factor 1α. These studies showed a relative increase in Actinobacteria and Proteo-
bacteria and a decline in the Firmicutes phylum. Moreover, these changes were restored 
by treatment with probiotic Lactobacillus rhamnosus (L. rhamnosus) GG therapy[64-67].

Interestingly, gnotobiotic animals have become an imperative alcoholic model to 
explore the relationship between the gut and the liver. A comparative study of 
gnotobiotic and wild-type rats showed less proinflammatory cytokine release and 
inflammation in gnotobiotic rats than in wild-type rats when treated with alcohol for 
one week. Moreover, fecal transplantation from alcohol-fed wild-type rats in 
gnotobiotic animals increased hepatic and intestinal inflammation, indicating the 
involvement of the intestinal microbiota in AFLD[68]. Chronic alcohol intake also 
changes the intestinal mucus composition, and mucin knockout animals have less 
bacterial overgrowth, minimal translocation of the bacteria and reduced intestinal 
inflammation when administered alcohol[69]. In other studies, the bacterial species 
Akkermansia muciniphila (A. muciniphila) from the Verrucomicrobia phylum showed 
potential anti-inflammatory properties in AFLD[70], and the depletion of A. 
muciniphila species was noticed in alcoholic animal models[71,72]. A. muciniphila 
improves intestinal markers such as gut barrier function and mucus thickness and 
diminishes the liver damage produced by alcohol[73]. Cumulatively, animal studies 
strongly indicate that alcohol intake considerably changes the intestinal microbial 
composition (as shown in Table 1), which can be responsible for producing early-onset 
AFLD by inducing proinflammatory changes, translocating the bacteria and bacterial 
material by reducing mucus thickness and increasing intestinal permeability.

Likewise, human studies also support the close association between alcohol intake 
and intestinal microbial dysbiosis in the onset of AFLD, similar to animal models. 
Prolonged alcohol intake markedly decreases the Bacteroidetes population and 
increases Proteobacteria, which leads to compromised intestinal permeability and an 
increase in the level of bacterial materials such lipopolysaccharides (LPS) and 
endotoxins in the hepatic circulation and ultimately causes liver injuries[74]. The 
families Ruminococcaceae and Lachnospiraceae and their ratio are considered to be 
protective, whereas Enterobacteriaceae to Bacteroidaceae and their ratio are believed to be 
potential pathobionts in the intestine, especially in those with a liver disease with an 
alcoholic etiology. Therefore, the overgrowth of potentially pathogenic species in the 
gut in chronic alcohol abuse conditions is related to the initiation of liver injuries[74-
76]. The effect of these microbial alterations in the gut is not yet completely 
understood. However, the administration of L. rhamnosus GG improves the Lachnos-
piraceae population and limits the growth of Enterobacteriaceae, which leads to a decline 
in proinflammatory cytokines[77]. A reduction in A. muciniphila was observed in 
patients with alcoholic steatohepatitis compared with healthy controls, and this 
decline in A. muciniphila seems to be related to the severity of liver injuries[73]. 
Additionally, A. muciniphila was considered a health-boosting bacterial species along 
with Bifidobacterium spp., Roseburia hominis, and Feacalibacterium prausnitzii[78]. 
However, human and animal empirical data hinted that alcohol-induced gut microbial 
dysbiosis, especially ethanol consumption, but that some alcoholic beverages, such as 
red wine, could exert a positive impact on gut microbial ecology. A human crossover 
study demonstrated that red wine consumption increased the number of Bacteroides, 
Enterococcus, and Bifidobacterium[79].

Alterations in the gut microbiota due to persistent alcoholic intake are not restricted 
to bacterial species; the fungal composition also changes. Remarkably, alcoholic liver 
disease (ALD) patients have a high risk of bacterial infection, and patients with 
advanced cirrhosis are more prone to fungal infections. Moreover, fungal infections 
increased the mortality rate in cirrhosis and alcoholic hepatitis patients[80-82]. In an 
alcoholic murine model, increased fungal growth, particularly Candida spp., was 
observed and was related to an increase in liver damage[83]. The study results showed 
that liver inflammation was induced by β-glucan, which is a fungal cell wall 
component. β-Glucan binds with Kupffer cell C-type lectin-like receptor and 
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Table 1 Representative studies presenting gut microbial dysbiosis in alcoholic fatty liver disease

Ref. Sequencing method Overgrown microbes Depleted microbes Model
↑Bacteroidales ↓Lactococcus

↑Bacteroides ↓Pediococcus

↑Porphyromonadaceae ↓Lactobacillus

Yan et al[63] (2011) Pyrosequencing

↓Leuconostoc

Murine

↑Corynebacterium ↓Bacteroides

↑Alcaligenes ↓Tannerella

↑Listeria ↓unclassified Lachnospiraceae

↑Acetivibrio ↓undefined Ruminococcaceae

Otterson et al[64] (2013) Pyrosequencing

↑Allobaculum

Murine

↑Actinobacteria ↓Tenericutes

↑Eubacteriaceae ↓Verrucomicrobia

↓Lachnospiraceae

↓Moraxellaceae

Lowe et al[71] (2017) 16S rDNA

↓Akkermansia

Murine

↑Olsenella ↓Acinetobacter

↑Eubacterium ↓Anaerotruncus

↑Acetivibrio ↓Akkermansia

Grander et al[73] (2018) Illumina MiSeq

↓Blautia

Murine

↑Enterobacteriaceae ↓Blautia

↑Veillonellaceae ↓Ruminococcaceae

↓Lachnospiraceae

Kakiyama et al[74] (2013) Pyrosequencing

↓Rikenellaceae

Human

↑Enterococcaeae ↓Clostridiales XIV

↑Staphylococcaceae ↓Ruminococcaceae

Bajaj et al[75] (2014) Pyrosequencing

↑Enterobacteriaceae ↓Lachnospiraceae

Human

↑Candida spp. ↓Epicoccum

↑Candida albicans ↓Unclassified fungi

↑Candida dubliniensis ↓Galactomyces

Yang et al[83] (2017) Illumina MiSeq

↓Debaryomyces

Human

↑Actinobacteria ↓Bacteroidetes

↑Firmicutes ↓Proteobacteria

↑Coriobacteriaceae

↑Odoribacteriacea

↑Clostridiaceae

Ferrere et al[144] (2017) Illumina MiSeq

↑Dorea

Murine

↑Verrucomicrobia ↓Bacteroidetes

↑Proteobacteria ↓Cytophagales

↑Optitutus ↓Flavobacteriales

↑Botrytis ↓Sphingobacteriales

↑Sporothrix ↓Lactobacillales

↓Nitrosomonadales

Wang et al[145] (2019) Illumina MiSeq Monkey
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↓Opitutales

↓Helotiales

↓Ophiostomatales

↑Proteobacteria ↓Ruminococcaceae

↑Fusobacteria ↓Faecalibacterium

↑Fusobacteriaceae ↓Lachnospira

↑Enterobacteriaceae ↓Agathobacter

↑Burkholderiaceae ↓Ruminococcus

↑Fusobacterium

Zhong et al[146] (2021) Illumina MiSeq

↑Escherichia-Shigella

Human

Figure 1 Gut microbiota role in alcoholic fatty liver disease and non-alcoholic fatty liver disease pathogenesis. Intestinal microbes have the 
potential relationship with fatty liver disease progression. Regular intake of alcohol and overnutrition altered the gut microbial composition which influence the various 
pathways and induce the liver injuries and produce the alcoholic fatty liver disease (AFLD) and non-alcoholic fatty liver disease (NAFLD). There are some common 
pathways found in both AFLD and NAFLD diseases (in the purple box) and others are specifically related to a particular disease. AFLD: Alcoholic fatty liver disease; 
NAFLD: Non-alcoholic fatty liver disease; HDED: High dense energy diet; SCFA: Short chain fatty acids; IgA: Immunoglobulin A; IL22: Interleukin 22; Reg3g: 
Regenerating islet-derived protein 3 gamma; C4: Precursor 7α-hydroxy-4-cholesten-3-one; FGF19: Fibroblast growth factor 19; PAA: Phenylacetic acid; TMAO: 
Trimethylamine N-oxide.

upregulates IL-1β. Similarly, ALD patients also showed an increased immune response 
to intestinal fungi compared to healthy controls. These findings suggest that the 
composition of nonbacterial gut microbes, such fungi, can also affect AFLD generation, 
progression, and final outcomes in patients with AFLD.

Gut microbiota alterations in NAFLD
The gut microbiota exacerbates and/or alleviates NAFLD conditions through several 
pathways (Figure 1). Animal and human studies have presented a causal involvement 
of the gut microbiota in NAFLD establishment[84-86] and its severity[87-89]; however, 
a robust correlation between the gut microbiota and NAFLD advancement has not yet 
been established. Differences in gut microbial composition at various hierarchical 
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levels have been recorded in NAFLD patients compared with healthy controls[90,91]. 
In NAFLD, alterations in the gut microbial community have been shown to start at the 
phylum level, where increased Proteobacteria have been reported in many studies[90,
92,93]. Likewise, altered composition has also been observed at the family level, where 
an overgrowth of Enterobacteriaceae[84,92] and suppression of Rikenellaceae[84,94] and 
Ruminococcaceae[91,92,95] have been reported. Moreover, genera such as Escherichia[84,
90], Dorea[94,95], and Peptoniphilus[84,94] were overpopulated, and Anaerosporobacter
[91], Coprococcus[84,90,91], Eubacterium[84,90], Faecalibacterium[84] and Prevotella[90,96] 
were less populated.

In a comparative study, Wang et al[91] showed a higher proportion of gram-
negative bacteria, including Bacteroidetes, and decreased Firmicutes in NAFLD patients 
when the gut microbiota was compared with lean healthy subjects. The decline in 
Firmicutes is associated with short-chain fatty acid (SCFA)-producing bacteria such as 
Lactobacillaceae, Lachnospiraceae, and Ruminococcaceae. An overgrowth of gram-negative 
bacterial species was seen in children with NAFLD, with an increased ratio of 
Gammaproteobacteria and Epsilonproteobacteria compared to their obese and lean 
counterparts[97]. In contrast, bacteria from the Firmicutes phylum (such as 
Lactobacillus, Roseburia, Dorea, and Robinsoniella) were found to be increased in the 
population of NAFLD patients in another study[95]. However, contradictory results 
were reported in other studies that showed increases in Dorea and Ruminococcus in 
NAFLD patients[94,98]. Variability in gut microbial composition was observed with 
different levels of NAFLD severity. Bacteria belonging to Firmicutes were more 
dominant in moderate NAFLD, while the prevalence of Proteobacteria was noted to be 
associated with the severity of disease, as in fibrosis[93]. The bacterial species that 
were dominant in mild NAFLD compared to severe NAFLD conditions were 
Eubacterium rectale and Ruminococcus obeum[93]. These human study results reflect the 
conflicting gut microbiota composition in NAFLD, which needs to be evaluated 
further by implementing a greater number of NAFLD patient-based gut microbial 
compositional studies.

The gut microbial composition was also assessed in severe NAFLD conditions such 
as fibrosis and/or in nonalcoholic steatohepatitis (NASH) to examine the functional 
role of gut microbial dysbiosis in fibrosis progression. The results of these comparative 
studies exhibited a decline in gram-negative bacterial abundance. Comparative 
analysis of the gut microbiota between individuals with severe NAFLD and healthy or 
less severe NAFLD conditions showed a decrease in the Fusobacteria phylum 
population and an increase in Enterobacteriaceae family bacteria such as the genera 
Shigella, Ruminococcin and Bacteroides[92,96]. Similarly, gram-positive bacteria from the 
Firmicutes phylum, the family Prevotellaceae and the genus Prevotella also showed 
increases in severe NAFLD conditions[93]. Recently, a study presented a significant 
alteration based on fibrosis severity in nonobese patients but not in obese patients, 
where Ruminococcaceae and Veillonellaceae were the leading microbes related to fibrosis 
severity in nonobese subjects[99]. Interestingly, oral microbes, including Streptococcus
[76,100,101], Veillonella[91,100], and Prevotella[100,102], are discriminatory microbes for 
advanced NAFLD conditions (especially cirrhosis). Additionally, some microbe 
representations were constant in NAFLD patients compared with healthy individuals, 
but some showed conflicting tendencies[103]. Conclusively, microbial composition in 
NAFLD patients presented a drastic shift in taxonomic group composition by showing 
an increased ratio of pathogenic microbes and a decline in microbes that are 
considered metabolically beneficial microbes. Subsequently, this compositional shift in 
microbial composition might be responsible for NAFLD pathogenesis and exacerbate 
the severity of the disease from simple steatosis to NASH and from NASH to cirrhosis. 
Summarized information on gut microbial dysbiosis in NAFLD is listed in Table 2, 
which provides details regarding the increased and decreased populations of bacteria 
in NAFLD.

The gut microbiota composition in NAFLD presented a considerable contradiction, 
where some microbial taxa showed variability in their occurrence, as shown in Table 2. 
The underlying reasoning behind these contradictory compositional variabilities might 
be related to study design, clinical study end points, result interpretation, etc. 
Moreover, these underlying reasons could be fundamental restraints in the process of 
establishing a robust relationship between the gut and NAFLD. Thus, to determine the 
pathophysiological association between the gut and liver, these fundamental 
limitations should be resolved.
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Table 2 Representative studies presenting gut microbial dysbiosis in non-alcoholic fatty liver disease

Ref. Sequencing method Overgrown microbes Depleted microbes Model
↑Actinobacteria ↓Erysipelotrichia

↑Prevotella ↓Alphaproteobacteria

↑Clostridia ↓Verrucomicrobia

↑Fusobacteria

↑Epsilonproteobacteria

Michail et al[97] (2015) Ion torrent

↑Gammaproteobacteria

Human

↑Bacteroidaceae ↓Lachnospiraceae

↑Prevotellaceae ↓Ruminococcaceae

Wang et al[91] (2016) Pyrosequencing

↓Lactobacillaceae

Human

↑Alphaproteobacteria ↓Ruminococcaceae

↑Lactobacillaceae ↓Oscillibacter

↑Lachnospiraceae ↓Porphyromonadaceae

Raman et al[95] (2013) Pyrosequencing

↑Veillonellaceae

Human

↑Actinobacteria ↓Bacteroidetes

↑Bradyrhizobium ↓Oscillospira

↑Anaerococcus ↓Rikenellaceae

↑Peptoniphilus

↑Propionibacterium acnes

↑Dorea

Chierico et al[94] (2017) Pyrosequencing

↑Ruminococcus

Human

↑Proteobacteria ↓Firmicutes

↑Actinobacteria ↓Euryarchaeota

Hoyles et al[90] (2018) Shotgun

↑Verrucomicrobia

Human

↑Proteobacteria ↓Bacteroidetes

↑Fusobacteria ↓Prevotellaceae

↑Lachnospiraceae ↓Ruminococcaceae

↑Enterobacteriaceae ↓Prevotella

↑Erysipelotrichaceae

↑Streptococcaceae

Shen et al[92] (2017) 16S rDNA

↑Escherichia Shigella

Human

↑Bacteroidetes ↓Actinobacteria

↑Proteobacteria ↓Bidobacteriaceae

↑Alcaligenaceae ↓Clostridiales family XI

↑Campylobacteraceae ↓Lachnospiraceae

Zhu et al[84] (2013) Pyrosequencing

↑Enterobacteriaceae

Human

↑Coriobacteriaceae ↓PorphyromonadaceaeChierico et al[94] (2017) Pyrosequencing

↑Bacteroidaceae ↓Rikenellaceae

Human

↑Firmicutes ↓BacteroidetesMinicis et al[147] (2014) Pyrosequencing

↑Actinobacteria

Murine

↑Firmicutes ↓Bacteroidetes

↑Deferribacters ↓Lactobacillus murinus

Lee et al[148] (2020) 16S rDNA Murine
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↑Helicobacter japonicus

↑Mucispirillum schaedleri

↑Flintibacter butyricus

GUT ROLE IN FATTY LIVER
Trillions of microorganisms reside in the gut, including bacteria, archaea, fungi, and 
viruses, but liver-disease-related research primarily targets the bacterial community, 
which includes more than 10 bacterial phyla[104,105]. The gut microbiota includes 
more than 3 million genes collectively, in comparison to the 23000 genes of the human 
genome; however, human cells and gut bacterial cells are roughly equal in number
[106]. This gut microbial genetic material certainly has a defining role in human 
pathophysiology through multiple mechanisms, especially in liver disease, due to its 
close relationship with the gut[6,107,108].

Gut microbial dysbiosis
Generally, the gut microbiota starts to be shaped at birth and becomes stable in early 
childhood. This balanced and stable gut microbiota acquires a unique quotient for each 
microbial species in a healthy state[38]. As discussed above, gut microbial dysbiosis, 
defined by diminished microbial diversity and distorted gut microbial composition, is 
observed in both AFLD and NAFLD patients compared to healthy controls[18,103]. 
Alcohol abuse and overnutrition deplete several bacterial species and shift the 
microbial composition toward gram-negative bacteria. Microbial species depleted in 
liver diseases are considered beneficial microbes, and overgrown microbial species are 
associated with liver pathophysiology and known as pathobionts[109]. Alcohol 
consumption is linked with diminished fungal diversity generated by an increased 
number of Candida species[83,110,111]. Moreover, gut viruses are the most abundant 
gut microbes; nonetheless, they have not yet been characterized in liver disease.

This gut compositional proclivity toward gram-negative bacterial species influences 
multiple pathways directly or indirectly that contribute to AFLD and NAFLD 
establishment[16,91,92]. The distorted gut microbiota alters various metabolic pro-
cesses, such as bile acids, short-chain fatty acids, and energy harvesting, which leads to 
the initiation of fatty liver disease[112]. The distorted gut microbiota also damages gut 
barrier function, through which microbes and their metabolites can translocate and 
activate the inflammasome in the liver and cause fatty liver[112]. The detailed role of 
the gut microbiota in fatty liver pathogenesis is presented in Figure 1.

Leaky gut syndrome
In the intestine, there are multiple layers of barriers, including physical, biochemical, 
and immunological barriers, that restrict the translocation of microbes and their 
products. Chronic alcohol abuse causes gut barrier dysfunction by altering the gut 
microbial composition[113]. Thus, pathogen-associated molecular patterns, such as 
LPS, are able to translocate from the lumen of the intestine to the liver via the portal 
vein and are recognized by inflammasomes such as Toll-like receptors in the liver to 
stimulate hepatic inflammation, which leads to hepatocyte injuries and liver fibrosis
[112]. Likewise, similar pathophysiological pathways are involved in NAFLD 
progression, but gut disruption and inflammation are stimulated by dietary factors 
other than alcohol[112]. Other types of inflammasomes, including NOD-like receptor 
protein 3 (NLRP3), also respond to LPS and cause liver inflammation. The activation of 
NLRP3 triggers the caspase 1 pathway and produces interleukin-1β and several other 
inflammatory cytokines, which cause apoptosis and fibrosis. Higher levels of inflam-
masomes such NLRP3 and others were found in severe fatty liver conditions induced 
by both alcohol and overnutrition[114,115]. The translocation of the microbial 
metabolites from the intestine to the liver because of the dysfunction of intestinal 
barriers and increased intestinal permeability could be the contributing factor for 
AFLD and NAFLD, but more studies are required to establish robust associations.

Bile acid dysregulation
Bile acid synthesis and secretion are essential functions performed by liver cells. 
Importantly, bile acids not only are crucial for dietary fat emulsification but also act as 
ligands for nuclear and G-protein coupled receptors and regulate various metabolic 
functions, including glucose and fat metabolism[116]. Therefore, smooth regulation of 
bile acids is important for maintaining a healthy metabolic profile, but gut microbial 
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dysbiosis is associated with bile acid dysregulation and is associated with fatty liver 
pathogenesis through metabolites[117].

Normally, conjugated bile acids are released from hepatocytes, carried by the biliary 
duct, and secreted into the intestine. After lipid emulsification, the remaining bile 
acids (primary, hydrophilic, and conjugated) are reabsorbed in the terminal ileum. Bile 
acid secretion from hepatocytes is primarily regulated by the farnesoid X receptor 
(FXR) negative feedback mechanism[118]. The release of primary bile acids in the 
intestine activates intestinal FXR, which precedes the transcription of fibroblast growth 
factor 19 (FGF19). The ileal hormone FGF19 is carried to the liver via the portal vein, 
where FGF19 suppresses CYP7A1 expression and controls bile acid secretion[119]. The 
disruption of bile acid homeostasis is the leading cause of fatty liver[119-121].

The change in the gut microbial composition induced by alcohol abuse and a high 
intake of energy-dense food cause the dysregulation of the bile acid system and 
instigate fatty liver diseases (AFLD and NAFLD)[122,123]. In AFLD and NAFLD, 
pathobionts increased in number and were responsible for the conversion of 
secondary bile acids from primary bile acids and reduced FXR signaling. This 
downregulation of FXR expression increased insulin resistance and altered glucose 
and lipid metabolism, which are the key regulatory pathways in AFLD and NAFLD 
generation. Moreover, AFLD and NAFLD patients showed higher levels of secondary 
bile acids than primary bile acids in feces and blood. Similarly, the dysregulation of 
FXR signaling and FGF19 is increased with the severity of the disease in both AFLD 
and NAFLD[124-127]. These outcomes suggest that FXR and bile acid compositional 
dysregulation are the metabolic features of AFLD and NAFLD and that the dysregu-
lation of both metabolic factors (FXR and bile acids) increases with the severity of 
AFLD and NAFLD.

Although gut bacteria control bile acid metabolism, the involvement of intestinal 
bacteria or other gut microbes (including archaea, fungi, and viruses) in bile acid 
dysregulation in fatty liver patients is not completely understood, and more experi-
mental evidence is required to fill the fundamental gaps.

Short-chain fatty acid dysregulation
Nondigestible carbohydrates in food are fermented by gut bacteria, and SCFAs are 
produced. Butyrate, acetate, and propionate are the most abundant SCFAs found in 
the intestine. SCFAs have many beneficial effects, including being used as an energy 
source by colonocytes and enterocytes, maintaining gut barrier function, suppressing 
hepatic cell proliferation, reducing inflammation, and lowering food intake by 
increasing satiety[128]. Considering the beneficial function of SCFAs in regulating 
metabolic pathways, their level in the body is crucial to maintain good health.

Chronic alcohol abuse is related to reduced SCFA levels in the stool[129]. The SCFA 
concentration and SCFA-producing bacterial concentration are decreased in the feces 
of alcoholic hepatitis patients[109]. The low circulatory butyrate level is also associated 
with serum endotoxin, inflammation, and more advanced liver diseases[130]. In 
contrast, a higher level of SCFAs and an increased number of SCFA-producing 
bacteria were found in NASH patients; however, the study population was small[131]. 
Additionally, increasing levels of SCFAs are related to immune regulation and 
NAFLD progression[131]. Higher fecal concentrations of propionate and butyrate 
were observed in mild to severe NAFLD patients, whereas higher fecal concentrations 
of acetate and formate were found in advanced fibrosis patients[132,133]. There is an 
insufficient amount of empirical proof to establish a concrete relationship between 
SCFAs and fatty liver diseases, and more studies are required to determine the 
association between SCFAs and fatty liver diseases.

Endogenous ethanol production
Microbial fermentation of dietary sugar increases the endogenous alcohol level in 
pediatric NASH patients[84]. Recently, a Klebsiella pneumonia strain was identified in a 
NASH patient fecal sample and was responsible for producing endogenous ethanol 
and increasing the blood ethanol level without alcohol consumption[134]. FMT from 
NASH patients to animals results in liver damage, and the elimination of alcohol-
producing Klebsiella pneumoniae strains reduces liver damage. Additionally, NASH 
patient weight reduction was also related to a reduced ability to produce ethanol in 
the gut microbiome[134]. Another study focusing on comparing the gut microbial 
profile in pediatric NAFLD patients showed higher circulatory ethanol levels in 
diseased patients, which was related to the higher number of Prevotella and 
Gammaproteobacteria[97]. The results from another study showed that a higher 
circulatory level of ethanol in NAFLD patients could be the end result of ethanol 
dehydrogenase activity in insulin-dependent impairment conditions[135]. Thus, gut 
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microbial dysbiosis, which can lead to an increasing level of endogenous ethanol in the 
body, could be an underlying cause of NAFLD and could be responsible for producing 
the same histopathological characteristics as AFLD. However, some inconsistencies in 
the results were observed, and establishing an association between this endogenous 
ethanol phenomenon and NAFLD generation needs more experimental proof[16,136,
137].

Gut microbial virulence factors
Virulence factors are microbial proteins and peptides that help pathobionts colonize 
and are associated with disease generation. A recent study recognized that cytolysin, a 
protein secreted (exotoxin) by E. faecalis, damages hepatocytes and is highly associated 
with increased mortality in alcoholic hepatitis patients[18,138]. Unfortunately, few 
studies have shown any further toxins or other proteins related to gut microbiota that 
can be associated with liver disease.

FUTURE PERSPECTIVES
Fatty liver disease (both AFLD and NAFLD) is intricately linked with the gut 
microbiota and its dysbiosis. Recent advancements in gut microbiome-based metage-
nomics studies related to liver disease have shown that an increase in and/or 
depletion of the specific microbial content could contribute greatly to liver injuries and 
is possibly the key regulator in fatty liver disease establishment and progression[112]. 
Growing evidence regarding the role of the gut microbiota in fatty liver disease 
generation and progression turns this noncommunicable disease into a communicable 
disease[139]. Therefore, targeting the gut microbiota through various techniques may 
be an approach for the management of liver disease in the future.

Prognostic and/or diagnostic biomarkers
As discussed above, the microbial composition in fatty liver diseases is different from 
that in healthy individuals. Gut microbes themselves or their microbial metabolites 
might be useful as prognostic and/or diagnostic tools for the early detection of fatty 
liver conditions. Generally, constant alcohol intake of more than 60 g per day leads to 
alcoholic hepatic steatosis, which also presents with higher levels of liver enzymes, 
such aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and in 
NAFLD, daily alcohol intake is approximately 30 g per day. Typically, two to three 
times higher serum AST levels have been observed compared to serum ALT due to 
alcoholic liver injuries. Patients with AFLD also have higher serum gamma-glutamyl-
transpeptidase levels[140]. Similarly, NAFLD also has noninvasive biomarker 
detection protocols, such as the NAFLD fibrosis score (including age, BMI, the AST-to-
ALT ratio, impaired fasting glucose and diabetes, albumin and platelets), FIB-4 index 
(including age, ALT, AST, and platelets), and FibroTest (including total bilirubin, α2-
macroglobulin, γ-glutamyl transferase, haptoglobin, and apolipoprotein A1 corrected 
for sex and age)[141]. These are the common diagnostic parameters used for AFLD 
and NAFLD diagnosis. However, there is a lack of conclusive biomarkers that can help 
in the early diagnosis of hepatic steatosis, and the repertoire of gut microbes and their 
metabolite profiles might help to fill this gap. Interestingly, a set of gut bacteria 
combined with age and BMI was used to identify liver disease, and a much more 
accurate diagnosis was able to be made with its use in patients with advanced fibrosis
[93]. The gut microbes used as a marker in this study were first identified from 
NAFLD and advanced fibrosis patients via metagenomics analysis and then further 
used for diagnostic purposes[93]. In a separate study, the combination of metagenomic 
signature microbes with age and serum albumin levels precisely identified cirrhosis in 
patients with geographically different origins. Additionally, adding serum aspartate 
aminotransferase levels to these diagnostic tools increased diagnostic efficacy even in 
the early stage of fibrosis[142]. In other studies, gut-microbe-derived metabolites 
showed great potential as diagnostic markers for fatty liver diseases and other liver 
conditions[18,90,143].

Although gut microbes and their metabolites have the potential to be noninvasive 
prognostic and/or diagnostic tools for fatty liver and other liver diseases, larger 
population-based studies are still required to eliminate constraints related to 
geographical factors, ethnicity, and dietary factors. Further studies are also warranted 
to compare the diagnostic ability of gut microbes and their metabolites with contem-
porary in-use investigative practices such as biopsy and image-based approaches.
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CONCLUSION
Gut microbiota is crucial in fatty liver diseases (in both AFLD and NAFLD), thus 
relevance of fatty liver disease specific gut microbial signatures should be further 
explored in longitudinal human studies. Where, a team of clinician and researchers 
can prospectively correlate the deterioration of liver with the alteration in the gut 
microbiota community. Merging fatty liver disease specific gut microbiota with 
microbial derived metabolites can be helpful in the future to diagnose and treat the 
AFLD and NAFLD patients.
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