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Abstract
Innate and adaptive immune dysfunction, also referred 
to as cirrhosis-associated immune dysfunction syn-
drome, is a major component of cirrhosis, and plays 
a pivotal role in the pathogenesis of both the acute 
and chronic worsening of liver function. During the 
evolution of the disease, acute decompensation events 
associated with organ failure(s), so-called acute-on 
chronic liver failure, and chronic decompensation with 
progression of liver fibrosis and also development of 
disease specific complications, comprise distinct clinical 
entities with different immunopathology mechanisms. 
Enhanced bacterial translocation associated with sys-
temic endotoxemia and increased occurrence of sys-
temic bacterial infections have substantial impacts on 
both clinical situations. Acute and chronic exposure to 
bacteria and/or their products, however, can result in 
variable clinical consequences. The immune status of 
patients is not constant during the illness; consequent-
ly, alterations of the balance between pro- and anti-in-

flammatory processes result in very different dynamic 
courses. In this review we give a detailed overview of 
acquired immune dysfunction and its consequences 
for cirrhosis. We demonstrate the substantial influence 
of inherited innate immune dysfunction on acute and 
chronic inflammatory processes in cirrhosis caused by 
the pre-existing acquired immune dysfunction with lim-
ited compensatory mechanisms. Moreover, we highlight 
the current facts and future perspectives of how the 
assessment of immune dysfunction can assist clinicians 
in everyday practical decision-making when establish-
ing treatment and care strategies for the patients with 
end-stage liver disease. Early and efficient recognition 
of inappropriate performance of the immune system is 
essential for overcoming complications, delaying pro-
gression and reducing mortality.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Innate and adaptive immune dysfunction, also 
referred to as cirrhosis-associated immune dysfunction 
syndrome, plays a pivotal role in the pathogenesis of 
cirrhosis in both acute and chronic disease progres-
sion. During progression, acute decompensation is 
associated with organ failure(s), the so-called acute-
on chronic liver failure, and chronic decompensation 
with progression of liver fibrosis and development of 
disease specific complications comprise distinct clinical 
entities with different immunopathology mechanisms. 
Enhanced bacterial translocation associated with sys-
temic endotoxemia and systemic bacterial infections 
have substantial impacts in both clinical situations. In 
this review the authors provide overview of immune 
dysfunction and its consequences in cirrhosis.
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INTRODUCTION
Cirrhosis is the final stage of  chronic liver diseases from 
any cause and is associated with various levels of  im-
mune dysfunction, which are referred to as cirrhosis-
associated immune dysfunction syndrome (CAIDS)[1]. 
Acquired alterations of  both the innate and the adaptive 
immune functions are diverse, encompassing recogni-
tion, effector and regulatory mechanisms[2]. Paradoxi-
cally, depression and overstimulation exist concurrently 
in the system, and result in an enhanced susceptibility 
to acute inflammatory processes and their exaggerated 
courses, both locally and far from the portal of  entry 
of  the microbes or the non-microbial toxic agents. The 
worst consequence of  the imbalance in the pro- and 
anti-inflammatory processes is the development of  
acute-on-chronic liver failure (ACLF). Subtle immune 
dysfunction, however, also favors a shift towards persis-
tence of  inflammation leading to progression of  liver 
fibrosis and development of  different complications 
(portal hypertension and hepatic encephalopathy). From 
a pathogenetic point of  view, the predominant mecha-
nisms are different during acute and chronic worsening 
of  liver function in cirrhosis[3]. Enhanced bacterial trans-
location (BT)[4] associated with systemic endotoxemia 
and increased occurrence of  systemic bacterial infections 
have substantial impacts on both clinical situations[5]. 
The other important feature is that the immune status 
of  patients is not constant during the illness, and the 
extent of  the acquired immune dysfunction is related to 
the severity and etiology of  the liver disease. The more 
severe the liver disease, the more subtle is the immune 
dysfunction[6]. In the case of  an alcoholic etiology, more 
profound alterations are generally expected[7]. Lastly, in 
cirrhosis, the clinical effect of  functional variations of  
innate immunity-related genes are more pronounced 
compared to non-cirrhotic cases because of  a pre-exist-
ing acquired immune dysfunction with limited compen-
satory mechanisms.

INNATE IMMUNE DYSFUNCTION
Pattern recognition receptors 
Different classes of  germ line-encoded pattern recogni-
tion receptors (PRRs) recognize invading pathogens, and 
monitor the extracellular and intracellular compartments 
of  host cells for signs of  microbes. Sequential detection 
of  a pathogen by various PRRs in different subcellular 
compartments is essential and results in activation and 
the complex interplay of  downstream, conserved signal-
ing pathways[8]. PRRs are widely distributed in different 
forms with various functions all over the human body. 
They are abundant at the sites of  possible entry for 

pathogenic microorganisms. PRRs are anchored in in-
nate immune cells as surface or intracellular receptors, 
and are involved in signaling, resulting in an inflammato-
ry response and subsequent cellular activation. The other 
type of  PRRs includes various soluble receptors that 
move around freely and are considered as functional an-
cestors of  the immunoglobulins (Ig). They act as phago-
cytic receptors, mediating direct non-opsonic uptake 
of  pathogenic microbes and/or their products. On the 
basis of  their function, scavenger receptors (SR), which 
are cell membrane-bound PRRs, also belong to this lat-
ter group[8]. These molecules recognize conserved struc-
tures, designated pathogen-associated molecular patterns 
(PAMPs), on microbes. Many of  these molecules are 
present in commensals and opportunistic pathogens 
(MAMPs, microbial-associated molecular patterns)[9]. 
Moreover, PRRs interact not only with exogenous mi-
crobial molecules, but also with endogenous structures. 
Damaged or stressed cells that pose a “danger” to self-
tissues are recognized through danger (or damage)-as-
sociated molecular patterns (DAMPs)[10]. A multifaceted 
interplay of  different PRRs results in a complex spec-
trum of  pro- and anti-inflammatory, immunogenic and 
suppressive responses induced within the host.

Altered expression and function of  the PRRs are 
well-known features of  cirrhosis. Of  the acquired altera-
tions in toll-like receptors (TLRs), PRRs are the most 
extensively studied and are reported to have a substan-
tial impact on the pathogenesis and evolution of  the 
disease[11,12]. Recently, interesting data has been revealed 
about other PRRs, such as the cluster of  differentiation 
14 (CD14)[13], macrophage SR, soluble(s) CD163[14], or 
C-type lectin receptors[15].

Altered TLR expression and functions
A wide range of  TLRs is expressed to various extents in 
the liver parenchymal and non-parenchymal cells[12,16,17]. 
Acquired alterations in TLR signaling pathway have a ma-
jor influence on the development of  the disease and have 
been extensively studied in cirrhosis[18]. Previous experi-
mental studies on animals, mostly rodent models of  liver 
fibrosis mimicking different etiologies of  chronic liver 
diseases (CLD)[17,19] and models with knock-outs of  cer-
tain members of  cell signaling molecules, delineated the 
most relevant signaling routes involved in the pathogen-
esis of  fibrosis, namely the TLR2, 4 and 9 pathways[20]. 
TLR2 and TLR9 recognize their ligands, di- and triacyl 
lipoproteins and unmethylated CpG-DNA, respectively, 
while the lipid A component of  lipopolysaccharide (LPS) 
triggers the activation of  TLR4[11,12,21]. The above men-
tioned animal models also highlighted that hepatic stellate 
cells (HSCs) are the ultimate effectors of  TLR ligand-
mediated fibrogenesis in the liver[22] and that maintenance 
of  liver homeostasis depends upon the summation of  
pro- and anti-fibrotic effects of  various immune cells on 
HSCs. Profibrotic immune cells, like M1 macrophages, 
neutrophils, T helper (Th) 17 cells, CD8+ T cells and na-
ture killer T (NKT) cells, promote fibrosis via secretion 
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of  proinflammatory cytokines and mediators activating 
HSCs, while secretion of  interleukin (IL)-10 and IL-22, 
interferon gamma (IFNγ), tumor necrosis factor related 
apoptosis inducing ligand (TRAIL), and direct killing of  
HSCs by anti-fibrotic immune cells (M2 macrophages, 
CD11b+Gr1+ bone marrow cells, regulatory T cells (Treg), 
Th17 cells, NK cells and NKT cells) can negatively regu-
late HSCs. Interestingly, macrophages, NKT cells, Th17 
cells and dendritic cells seem to possess dual functions 
in this regard[23]. Thus, NK cell-mediated elimination of  
activated HSCs is a key component of  maintaining liver 
homeostasis and preventing fibrogenesis, principally in 
the early stages of  liver fibrosis[24,25]. 

Changes in TLR signaling pathways are caused by 
the prolonged exposure to intestine-derived bacterial 
products (LPS, unmethylated CpG containing DNA and 
lipoteichoic acid), foreign toxic agents (ethanol and acet-
aldehyde derived adducts) and also damaged hepatocyte-
derived endogenous TLR ligands[26], which are well-
established components of  CAIDS[1]. Intestinal bacterial 
overgrowth, altered composition of  the gut microbiome, 
bowel dysmotility, impaired local intestinal mucosal im-
munity and multifactorial disruption of  the intestinal mu-
cosa barrier (increased oxidative stress, mucosal edema 
and consequential mucosal structural changes causing 
an enhanced intestinal permeability) ,together result in 
pathological BT in cirrhosis[4,27]. Moreover, the decreased 
capacity of  the liver to filter these bacterial products by 
hepatic resident macrophages [Kuppfer cells (KC)] and 
reduced LPS scavenging capacity of  albumin caused by 
oxidization[28] and low levels of  high density lipoprotein 
(HDL) and apolipoprotein A- Ⅰ[29], further assist the 
elevation of  the above-mentioned, potentially immuno-
genic bacterial products in the systemic circulation. At-
tenuation or complete inhibition of  LPS/TLR4 pathways 
by either intestinal decontamination (administration of  a 
non-absorbable antibiotic, rifaximin) or the use of  TLR4 
mutant mice showed, significant reduction of  HSC acti-
vation, angiogenesis, portal hypertension and fibrosis[30].

Changes in TLR expression in response to acute 
or chronic stimuli are shown by parenchymal and non-
parenchymal hepatic cells, as well as peripheral blood 
mononuclear cells (PBMCs). Although LPS and other 
TLR ligands can activate different signaling pathways in 
various cell types (immune and non-immune), promoting 
a proinflammatory and profibrogenic cascade in acute 
circumstances, anti-inflammatory and anti-fibrogenic 
mechanisms are present concurrently to balance these 
processes and maintain liver homeostasis and immuno-
tolerance. The phenomenon of  LPS hyporesponsiveness 
or LPS tolerance has been observed in monocytes, KCs 
and liver sinusoidal endothelial cells (LSEC) in response 
to repetitive stimulation with low dose of  LPS. LPS tol-
erance accompanied by reduced nuclear translocation 
of  nuclear factor (NF)-κB is caused by alterations in the 
TLR-4 signaling pathway. In LSECs, this process is asso-
ciated with surface expression of  CD54 or other leuko-
cyte adhesion molecules and chemokines [e.g., monocyte 

chemotactic protein-1 (MCP-1)], while in rest of  the 
above-mentioned cell populations it is associated with 
decreased TLR-4 expression[31].

Functional impairment of  TLR2 and TLR4, the most 
important PRRs for bacterial recognition, caused by sus-
tained LPS exposure, appears to play a significant role 
in the risk of  infection in cirrhotic patients[32]. Studies 
on PBMCs collected from patients with cirrhosis clearly 
showed that there was dampened TLR2 function, even 
in the early stage of  cirrhosis[33,34]. Moreover, at least in 
advanced cirrhosis, TLR4 impairment was also pres-
ent[33,35-38], where TLR function was assessed by TNF-α 
production in culture. Antibiotic or probiotic treatment 
was able to relieve the TLR disruption by increasing TLR4 
levels and restoring receptor function[35,38]. It must be 
noted, however, that there are also some contradictory re-
sults, probably reflecting the heterogeneity of  the patient 
population and methodological differences. Decreased 
TLR levels are not sufficient to alter the TLR function, 
which also suggests probable intracellular dysfunction[32].

Functional polymorphisms of PRR
Inherited variations of  PRR gene functions have proven 
to underlie the risk of  infection in cirrhosis. In a pro-
spective study by Nischalke et al[39], a TLR2 GT micro-
satellite polymorphism and nucleotide-binding oligo-
merization domain (NOD) 2 variants were independent 
predictors of  spontaneous bacterial peritonitis (SBP) (OR 
= 3.8, P = 0.002 and OR = 3.3, P = 0.011, respectively) 
in a multivariate analysis. Both the NOD2 variants[40] and 
the TLR2 microsatellite polymorphism[41] were associ-
ated with reduced levels of  NF-κβ activation, suggesting 
a signaling defect in vitro and decreased release of  pro-in-
flammatory cytokines, such as TNF-α, IL-12, IL-6 upon 
in vitro stimulation with bacterial lysates. Additionally, 
in a study by Bruns et al[42], patients carrying the TLR2 
polymorphism Arg753Gln (the GA genotype) had SBP 
more often than patients with the GG genotype (55.6% 
vs 18.2%, P = 0.019).

Genetic immune defects could also contribute to 
the high risk of  systemic bacterial infections in cirrhosis 
beyond SBP. In a retrospective Spanish study[43], patients 
with ascites carrying the TLR4 D299G polymorphism 
showed a trend towards a higher incidence of  history 
of  bacterial infections and a significantly higher num-
ber of  infections per patient than wild-type patients. 
This single SNP has been shown to change the ligand-
binding site of  the receptor, because it is located close to 
the TLR-4-MD-2 binding areas[44] and is associated with 
blunted physiological response to LPS[45]. However, the 
functional impact of  TLR4 (D299G) polymorphisms on 
the LPS-induced cytokine response is controversial[46-48]. 
Mannose-binding lectin deficiency (MBL)[15] and hapto-
globin (Hp) polymorphism type 1-1[49] have been found 
to confer a higher risk of  systemic bacterial infections in 
patients with cirrhosis (OR = 2.14, P = 0.04 and OR = 
2.74, P = 0.015, respectively) independently of  disease 
severity. MBL, belonging to C-type lectin family, recog-
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nizes surface carbohydrate sequences of  a wide range of  
pathogens and stimulates direct opsonophagocytosis via 
the lectin pathway of  the complement system. In case of  
MBL deficiency, both the recognition and the eradica-
tion of  the pathogens are impaired. Hp is an acute phase 
plasma protein. Three phenotypes of  the molecule exist, 
each with biologically important differences in their anti-
oxidant, scavenging and immunomodulatory properties. 
These differences influence the course of  subsequent 
inflammatory diseases. Hp1-1 has a weaker bacteriostatic 
effect than Hp2-2 and potentiates a Th2 immune re-
sponse, thus predisposing subjects with Hp1-1 to devel-
op bacterial infections. There is also a link between Hp 
polymorphisms and the body’s iron store. Excessive iron 
accumulation has an adverse effect on immunity. Iron 
overload seems to exert a subtle effect on the immune 
system by altering the proliferation of  T and B-lympho-
cytes. Furthermore, bacteria utilize the iron of  the host 
organism as an important nutrient[50-52].

Though all the above-mentioned host genetic fac-
tors associated with significant ORs suggest an impor-
tant role of  single nucleotide polymorphisms (SNPs) 
in determining infection risk, a key question remaining 
is how these markers could be utilized in these clinical 
settings. Several points are worth considering. First, the 
frequencies of  these polymorphisms in the population 
are relatively low (around 10%), limiting their efficacy as 
predictors. Second, ethnic and geographical differences 
in these functional polymorphisms exist. For example, 
the occurrence of  the NOD2 risk alleles is highest in 
central Europe, but is absent from certain non-Cauca-
sian populations, thus preventing their universal applica-
tion[53]. One study[39] showed that the combination of  the 
markers (simultaneous presence of  both genetic variants, 
TLR2 GT microsatellite polymorphism and NOD2 risk 
variant) specifically improved the identification of  pa-
tients with a high risk for SBP (OR = 11.3, P < 0.001). 
ORs of  single clinical factors or laboratory markers were 
indeed inferior to ORs obtained using SNPs related to 
host immunity. In contrast, disease severity determined 
by a more complex way, using the Child-Pugh, score was 
superior to single SNPs to predict the infections, mainly 
in patients with advanced disease. However, this aspect 
was rarely examined in the above-mentioned studies. 
In one of  our studies[49], the presence of  the advanced 
disease (Child C) was associated with the highest risk of  
infection (HR = 4.43, P < 0.001) and was at least double 
the risk value of  any other clinical or laboratory marker 
in a multivariate Cox regression model. The occurrence 
of  the Child C disease stage was 29% in this popula-
tion. There is no data regarding the added value of  us-
ing host genetic risk factors to assess infection risk in 
combination with Child-Pugh stages. In earlier stages of  
the disease, combination of  clinical score with genetic 
markers more likely enhances the risk assessment of  the 
infections than in advanced stage of  the disease. This 
approach could help to optimize patient care by identi-
fying a high-risk population in which prophylactic anti-

biotic treatment might prevent SBP and other systemic 
infections and, therefore, mitigate the acute and chronic 
progression of  the disease and prolong survival.

Functional genetic variations of  PRRs associated 
with stronger pro-inflammatory response, however, 
might pave the way to progression from the chronic in-
flammatory state to the definite breakdown of  the liver 
tissue, resulting in the development of  cirrhosis. Support 
for this concept comes from the study of  Brun et al[13]. 
The authors reported enhanced progression of  fatty liver 
disease according to -159C/T promoter polymorphism 
in the CD14 gene. This polymorphism was proved to 
influence the transcriptional activity, thus determining 
the expression level of  CD14. Subjects carrying the TT 
genotype had the most prominent elevation in CD14[54] 
and TNF-α[13] levels. As previously mentioned, several 
hepatic cell populations involved in liver damage and fi-
brogenesis can directly respond to LPS. Thus, increased 
CD14 expression in patients carrying the TT genotype 
might enhance their sensitivity to intestinal LPS and so 
augment the pro-inflammatory responses and disease 
progression in obese subjects. Accordingly, the TT 
genotype distribution was significantly higher in non-
alcoholic steatohepatitis (NASH) patients than in control 
subjects or non-alcoholic fatty liver disease patients[13]. In 
patients with chronic hepatitis C infection, the-399T/I 
TLR4 polymorphism was one of  seven SNPs that may 
predict the risk of  cirrhosis (for CC genotype: OR = 3.11, 
P < 0.001), supposedly related to its functional impact 
on the LPS-induced cytokine response[55].

MONOCYTES
Impaired monocyte function, including defects in che-
motaxis, superoxide generation[56], phagocytosis and 
killing activity, as well as a decrease in the production 
of  lysosomal enzymes, are well-known components of  
CAIDS[57-59]. Numerous studies have investigated the role 
of  monocytes in liver inflammation and fibrosis exten-
sively[60-63], along with their indispensable involvement 
in “cirrhosis associated immunological dissonance”[37] 
and its clinical manifestation of  increased susceptibility 
to bacterial infections or in ACLF. Zimmermann et al[61] 
found a significant increase in circulating monocytes, with 
a shift towards non-classical CD14+CD16++ monocyte 
subset in CLD patients. This non-classical monocyte sub-
set possesses pro-inflammatory and pro-fibrogenic po-
tentials; moreover, they express higher levels of  CXCR3, 
MHC-Ⅱ (HLA-DR), FcγRⅡ and IL-2R (CD25) than the 
classical CD14++CD16- monocyte subset[62,63]. Chemokine-
mediated recruitment, accumulation and activation of  
CD14+CD16++ cells in the liver, along with consequent 
direct HSC activation, also contribute to the ongoing fi-
brogenetic processes[61-63]. Novel findings from Seidler et 
al[64] indicated that sIL-2R (sCD25) might be a potential 
biomarker of  immune cells’, especially CD14+CD16++ 
monocytes’, activation in CLD. Independently of  the un-
derlying etiology, significantly elevated serum sIL-2R lev-
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els were observed in established cirrhosis compared with 
controls and non-cirrhotic patients. sIL-2R levels were 
also correlated positively with total monocyte counts and 
subsets or non-invasive markers of  fibrosis, and were in-
versely correlated with parameters reflecting the biosyn-
thetic capacity of  the liver. It should be noted that sIL-
2R levels are influenced by renal function. Monocytes 
from ascitic patients with alcoholic cirrhosis, especially a 
subgroup with elevated LBP levels indicating enhanced 
BT, showed higher expressions of  TNF-α, HLA-DR and 
CD80. Norfloxacin treatment via intestinal decontamina-
tion, and the consequential decrease of  circulating bac-
teria and bacterial products, could normalize the number 
of  circulating monocytes along with reduction of  TNF-α 
expression and activated phenotype in these patients[65]. 
Intestinal decontamination with antibiotics, therefore, 
should be considered as a therapeutic weapon in restor-
ing immune status and monocyte function in cirrhosis[66].

In contrast, functional monocyte deactivation, a phe-
nomenon similar to in vitro LPS tolerance, is also described 
in patients with Child C cirrhosis and ACLF[36,37,67,68]. This 
phenomenon is presented as “immune paralysis” in the 
literature and is defined as downregulation of  HLA-DR 
expression on monocytes. The etiological factor of  “im-
mune paralysis” was proven to be chronic endotoxemia 
by Lin et al[37]. Serum LPS levels correlated inversely 
with HLA-DR expression and positively with serum 
IL-10 levels, an anti-inflammatory cytokine. Supporting 
this observation, in vitro stimulation with LPS was able 
to suppress HLA-DR expression in monocytes derived 
from healthy volunteers in an IL-10-dependent man-
ner. Monocytes from cirrhotic patients expressing low 
levels of  HLA-DR showed a decreased ability to secrete 
TNF-α, accompanied by decreased expression of  in-
ducible nitric oxide synthase (iNOS) and co-stimulatory 
molecules (CD40, CD86). Furthermore, reduction 
in HLA-DR expression (< 40%) was associated with 
poor outcome in patients with ACLF[36,67], especially if  
monocytes were unable to show improvement in HLA-
DR expression. The overall prognostic power, however, 
remains inferior to conventional markers. The sensitivity 
and specificity of  reduced HLA-DR expression (< 40%) 
to predict the 90-d mortality were 59% and 80%, respec-
tively[69]. In conclusion, “immune paralysis” is character-
ized by dominance of  anti-inflammatory (elevated serum 
IL-6 and IL-10 levels) and suppression of  pro-inflam-
matory processes (decreased TNF-α levels)[36,37,67,68]. In 
sepsis patients with reduced monocyte HLA-DR expres-
sion, the function of  these cells could be restored with 
immunomodulatory agents like granulocyte-monocyte 
colony-stimulating factor (GM-CSF) and IFN-γ, thus 
their effect on monocyte function should be investigated 
in cirrhosis and ACLF[67].

MACROPHAGES
The resident macrophages in the liver are the KCs and 
account for approximately 80% of  all macrophages in 

the body[70]. At the same time, KCs are the second most 
abundant non-parenchymal cell type populating liver 
tissue after LSEC[11]. Three major pathogenetic roles of  
KCs are relevant to cirrhosis: (1) as the main orchestrat-
ing immune cells in the liver; the KCs and their cross talk 
with HSCs, the ultimate effectors of  fibrogenesis in the 
liver, are in the focus of  attention for understanding fi-
brogenetic mechanisms. Activation of  KCs by PAMPs or 
DAMPs via PRR signaling pathways results in activation 
of  HSCs and recruitment of  phagocytic cells through 
secretion of  proinflammatory cytokines, chemokines (i.e., 
MCP-1) and upregulation of  adhesion molecules, thus 
contributing to fibrogenetic processes[71]; (2) in addition, 
activated KCs, along with recruited bone marrow (BM)-
derived macrophages through production of  vasocon-
strictor agents like thromboxane A2 (TXA2), seem to 
increase portal pressure in normal and in fibrotic animal 
models[72]. This concept is supported by recently pub-
lished studies, which found a strong correlation between 
sCD163, a biomarker of  macrophage activation, and the 
hepatic venous pressure gradient (HVPG)[14,73-75]; and (3) 
additionally, the deficient phagocytic capacity of  KCs in 
advanced cirrhosis can also eventually lead to decreased 
elimination of  blood-borne pathogens and mainly intes-
tine-derived bacterial products, thereby contributing to 
an increased risk of  bacterial infection[76].

Recently, CD163 has been proposed to be a specific 
marker of  monocyte/macrophage cell populations[77]. 
The utility of  this SR is not yet fully understood, but it 
supposedly functions as an innate immune sensor for 
bacteria[78] and has an essential role in the inflammatory 
processes. During the local activation of  macrophages, 
the extracellular portion of  CD163 is cleaved by me-
talloproteinases and enters the circulation as a soluble 
protein (sCD163)[79]. It is now evident that sCD163 is 
very useful as a biomarker of  macrophage activation in 
various inflammatory diseases, as well as in chronic liver 
diseases. An elevated sCD163 level is related to portal 
hypertension, indicated by HVPG value in patients with 
cirrhosis[75]. In a very recent prospective clinical study by 
Waidmann et al[14] high sCD163 levels were shown to be 
associated with both the development of  variceal bleed-
ing and mortality in cirrhosis, independently of  endo-
scopic risk factors and the disease severity, respectively.

MCP-1 is one of  the most potent chemokines for 
monocytes/macrophages and activated lymphocytes dur-
ing infections[80]. MCP-1 also plays a role in the recruit-
ment and maintenance of  the inflammatory infiltrate 
during liver injury[81]. Similar to PRR genes, a functional 
polymorphism of  MCP-1 gene (-2518 G/A) can also 
influence both the risk of  bacterial infections and he-
patic inflammation and fibrosis progression. In a small 
study by Gäbele et al[82], the 2518 MCP-1 genotype AA 
was identified as a risk factor for SBP in patients with 
alcoholic cirrhosis, supposedly caused by reduced MCP-1 
protein level in ascites. Evaluating HCV patients, Müh-
lbauer et al[83] reported that carriers of  the G allele were 
significantly more frequent among patients with more 
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advanced fibrosis and severe inflammation. In support of  
this, hepatic MCP-1 mRNA levels and cytokine-induced 
MCP-1 secretion of  isolated HSC were significantly high-
er in patients carrying the G allele. Furthermore, there 
was a binding activity in nuclear extracts from activated 
HSCs specifically to the G allele, providing a potential 
mechanism for the differences observed.

The liver, inter alia, functions as a bacterial filter and 
the sinusoidal KCs play an important role in the elimina-
tion of  intestinal bacteria and endotoxins translocated 
from the intestine. Patients with cirrhosis have impaired 
function of  the reticuloendothelial system (RES), along 
with a decrease in the number and function of  KCs[76,84]. 
Additionally, because of  the formation of  collateral 
circulation, a certain proportion of  the blood-volume 
bypasses the liver, reaching the systemic circulation di-
rectly. Although limited data is available regarding RES 
dysfunction, Rimola et al[76] found that patients with 
decreased RES phagocytic activity developed bacte-
rial infections more frequently compared with patients 
with normal RES function. Dysfunction of  KCs was 
also proven in new studies with superparamagnetic iron 
oxide-magnetic resonance image (SPIO-MRI) in NASH 
and cirrhosis[85,86]. Furthermore, impairment of  Fcγ-
receptor function and consequential decrease in clear-
ance capacity in macrophages also contributes to an 
increased incidence of  bacterial infections in cirrhosis[87].

NEUTROPHILS
Polymorphonuclear leukocytes (PMNs) are present in a 
fully activated state in the peripheral blood in cirrhosis 
and alcoholic hepatitis, possibly because of  sustained ex-
posure to bacterial products, such as endotoxins[88]. This 
results in an energy depleted status of  the PMNs, which 
have an inability to function properly (decreased che-
motaxis, phagocytosis and bactericidal capacity)[66,89,90]. 
Removal of  endotoxins in vitro[91] as well as attenuation 
of  endotoxemia in vivo with probiotic[38] treatment can 
restore PMN function in cirrhosis, further support-
ing this hypothesis. Increased priming[92] and therefore 
“ready to act” status of  PMNs is indicated by decreased 
L-selectin levels, overexpression of  hydrogen peroxide 
and increased levels of  neutrophil elastase)[93]. As a re-
sult of  this preparedness to defeat bacteria and PMN 
activation with high resting respiratory burst activity[94], 
there is an elevation in harmful reactive oxygen species 
(ROS) in the circulation and the PMNs’ microenviron-
ment, establishing a platform for further potential cell 
and tissue injury. Necessarily, PMNs become energy 
depleted and unable to respond properly to further 
bacterial stimuli with phagocytosis[66,89]. Impaired tuft-
sin activity[95], hyponatremia and hyperammonemia[96,97], 
along with inadequate generation of  superoxide anion 
caused by deficient phospholipase C (PLC) activity[98], 
all contribute to the aforementioned decrease of  PMNs’ 
phagocytic capacity. Elevated resting oxidative burst and 
the decreased phagocytic capacity appeared to correlate 

with the rate of  infections and mortality[91]. These altera-
tions can be restored in vitro by endotoxin removal[91] 
or GM-CSF incubation[99]. Analogous to other innate 
immune cells, dichotomy in PMN function (hyperactiv-
ity then dysfunction) manifests in different ways and 
contributes to the pathogenic processes in the distinct 
stages of  cirrhosis. Recruitment of  hyperactive PMNs to 
the liver can contribute to fibrogenesis, while exhausted 
PMNs defective in chemoattraction, enhanced adhesion 
to endothelial cells and deficient migration in later stage 
of  cirrhosis can result in deficient influx into infected 
sites[90,100]. An in vitro study in cirrhotic patients demon-
strated that G-CSF could enhance neutrophil transendo-
thelial migration, despite having no effect on enhanced 
neutrophil adhesion[100]. Notably, in a randomized clini-
cal trial, administration of  G-CSF improved survival of  
patients with ACLF, partially through restoring PMN 
dysfunction. Though the exact mechanism of  G-CSF 
improvement of  PMN function has not yet been deter-
mined, increases in PMN surface antigen CD11b/CD18 
expression, along with elevated plasma elastase-α1AT 
complex levels, were previously detected following 
G-CSF administration[101]. Apart from various functional 
impairments of  PMNs, a decrease in cell volume as a 
result of  hyponatremia and hyperammonemia[96,97] with 
reduced cell number (neutropenia) as a consequence 
of  hypersplenia and shortened neutrophil survival via 
apoptosis[102], are also known features of  CAIDS. The 
epidemiology[103], pathogenesis and clinical consequences 
of  cirrhosis-associated neutropenia were reviewed in a 
recent publication by Kalambokis et al[104].

Genetically determined enhanced myeloperoxidase 
(MPO) activity caused by an SNP in the promoter re-
gion of  the enzyme (G-463-A MPO polymorphism) 
in patients with GG-MPO genotype was found to be 
independently associated with increased risk of  hepato-
cellular carcinoma (HCC) and liver-related death with or 
without HCC in alcoholic cirrhosis (HR = 4.7 and 3.6, 
respectively, P < 0.001 for both)[105]. Activated KCs and 
liver-infiltrating neutrophils release MPO into the extra-
cellular space and mediate oxidative processes by hypo-
chlorus acid[106].

COMPLEMENT SYSTEM
Low opsonic activity and decreased complement levels, 
mainly C3, weaken the bacterial recognition and bacte-
ricidal capacity in cirrhosis[107,108], further contributing to 
an increased susceptibility to bacterial infections. One 
interesting feature of  bacterial infections in the cirrhotic 
patient population is the extreme sensitivity to Pneumo-
coccus pneumonia and the high mortality. The defect in 
early bactericidal activity of  alveolar lining components 
(reduced levels of  lysozyme and complement C3) is a 
probable explanation[109]. Overall, bacterial pneumonias 
are the third most frequent infections in cirrhosis, and 
comprise 15% of  all systemic infections. In addition, 
the mortality rate of  pneumonia is much higher than 
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that in any non-cirrhotic population[110]. Data concern-
ing alterations of  the lectin pathway of  the complement 
system and their effect on the susceptibility to bacte-
rial infection are scarce. Our group reported that MBL 
levels were significantly reduced in patients with the 
most advanced stages of  cirrhosis and absolute MBL 
deficiency (< 100 ng/mL) was associated with higher 
probability and shorter time to develop bacterial infec-
tions in cirrhosis[15]. MBL antigen levels in the sera, 
estimated by a mannan-binding assay or complement ac-
tivation in the C4b deposition assay, accurately indicated 
the function[111]. The serum levels of  functional MBL 
also correlate well with underlying MBL2 genotypes. In 
this regard, other components of  this third arm of  the 
complement system (ficolins or MBL-associated serine 
protease-2) have not yet been studied.

ADAPTIVE IMMUNE DYSFUNCTION
B-cells and immunoglobulins
A broad defect of  B-cells in patients with ALD and its 
association with the exposure to circulating antigens as 
a consequence of  shunting, or KC abnormality, or both, 
has been known for a long time[112]. A very recent study 
of  Doi et al[113] revealed novel information about the na-
ture of  the profound abnormalities in peripheral B-cell 
phenotype and function. B-cell dysfunction strongly 
implicated hepatic fibrosis and/or portal hypertension 
in the development of  this phenotype, and it was inde-
pendent of  the etiology of  the cirrhosis. Moreover, this 
study highlighted how these B-cell defects could explain, 
in part, the vaccine hyporesponsiveness and susceptibil-
ity to bacterial infection in this population. B-cell pheno-
types were assessed by flow cytometry. CD27+ memory 
B-cells and, more specifically, CD27+IgM+ B cells, were 
found to be markedly less frequent in cirrhotic patients. 
The frequency of  CD27+/CD19+ B cells strongly cor-
related with several laboratory parameters related to 
progressive liver disease. Previously, peripheral B-cell 
CD27 expression was reported to be related directly to 
the capacity of  B-cells activation by CD40 plus TLR9 
ligation[114]. Accordingly, using isolated peripheral blood 
cells, the authors proved that B-cells were hyporespon-
sive to CD40/TLR9 activation, indicated by significantly 
reduced CD70 upregulation, less TNF-β secretion and 
IgG production. The allostimulatory capacity of  cir-
rhotic B-cells on CD4+ T-cell proliferation was also 
diminished. The presence of  bacterial products in the 
circulation playing fundamental roles in driving B-cell 
changes in cirrhosis has been proposed. Soluble fac-
tors associated with BT, such as LPS[115,116] and bacterial 
DNA[117], can often be detected in cirrhotic plasma and 
are capable of  activating B-cells in vitro. As a proof, Doi 
et al[113] found that blockade of  TLR4 and TLR9 signal-
ing abrogated the activation of  healthy donor B-cells by 
cirrhotic plasma. The fate of  lost CD27+ B-cells remains 
incompletely defined.

Stimulation of  B-cells by TLR ligands can lead to 

polyclonal activation and Ig production. Notably, in hu-
mans, TLR-2, TLR-4 and TLR-8 are expressed strongly 
by monocytes/macrophages, but are expressed poorly 
by B-cells. In contrast, TLR-7 and TLR-9 are expressed 
mainly by B lymphocytes and plasmacytoid dendritic 
cells[118,119]. In cirrhosis, there is an enhanced serum IgA 
level, mainly in those with an etiology of  ALD. How-
ever, the mechanisms leading to the increase of  IgA 
levels are not fully understood[120]. Previously, it was 
attributed, at least partially, to a defective clearance of  
IgA and IgA-immune complexes via altered monocytes, 
Fc receptor expression, and subsequent defective Fcα 
receptor-triggered endocytosis[121]. For a long while, it 
was hypothesized that the increase in Ig synthesis in al-
coholic cirrhosis might be associated with bacterial stim-
ulation[112]. Several reports now support this hypothesis. 
Massonnet et al[122] found significantly enhanced absolute 
IgA production by TLR-9 ligand CpG-activated B-cells 
in alcoholic cirrhosis compared to healthy subjects, 
which correlated with their intrinsic ability to produce 
spontaneously more IgA than healthy subjects. Relative 
TLR-9 ligand CpG-induced IgA production by purified 
B-cells from alcoholic cirrhotic patients was, however, 
less prominent, which corresponded to the lower TLR-9 
expression on their B-cells compared to B-cells from 
healthy subjects. Such downregulation of  TLR-9 expres-
sion by B-cells has been reported after in vitro CpG treat-
ment, suggesting that the decrease in TLR-9 expression 
by B-cells from patients suffering in alcoholic cirrhosis 
could reflect in vivo priming by bacterial DNA during 
sustained BT[123].

Concerning IgA production, cirrhosis has another 
characteristic feature, namely the increased occurrence of  
various antibodies against gut bacterial proteins[97,124-127] 
or host proteins having cross-reactive epitopes with 
bacterial constituents[120,128,129] in the sera of  the patients. 
These specific antibodies are present mainly in those 
patients with advanced diseases and portal hyperten-
sion. Moreover, positivity for anti-Saccharomyces cerevisiae 
antibody (ASCA)[97] was an independent risk factor for 
the development of  clinically significant bacterial infec-
tions (OR = 1.63, P = 0.018). Similarly, presence of  
anti-neutrophil cytoplasmic antibody (ANCA) IgA was 
identified as an independent predictor for a shorter time 
to develop an infectious complication in multivariate 
Cox-regression analysis (HR = 1.74, P = 0.006), sug-
gesting that serological response to various microbial 
components might be the consequence of  sustained 
exposure to microbial antigens[129]. In non-vasculitic 
disorders, the presence of  ANCA has been considered 
a sign of  immunological response to enteric bacterial 
antigens[130,131]. Pathogen-induced inflammation might 
result in enhanced presentation of  self-antigens because 
of  molecular mimicry and the known pathogenic fea-
ture of  Helicobacter pylori-associated human autoimmune 
gastritis[132]. In autoimmune liver disorders, atypical peri-
nuclear-ANCA (atypical P-ANCA) has been reported to 
be directed against human β tubulin isotype-5 (TBB-5) 
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and cross-react with the bacterial protein FtsZ because 
of  their extraordinarily high structural homology[133]. In 
the development of  the enhanced IgA production, not 
only systemic overproduction, but also a contribution 
by the gut mucosal compartment is very probable. The 
composition and extent of  the bacterial load in the gut 
have a very clear effect on IgA production. Sustained 
exposure to bacterial antigens during BT derived from 
the mucosal compartment might play a central role in 
the enhanced IgA class antibody formation in cirrhosis. 
Determination of  the ratio of  IgA1 and IgA2 subtypes, 
and detection of  the secretory component (SC) on IgA 
molecules in sera, can help identify the location of  an-
tibody formation (bone marrow or mucosal compart-
ment). An increase in the proportion of  IgA2 subtype 
and the presence of  SC are concurrently considered as 
confirmatory evidence for the mucosal origin of  IgA 
secretion[134,135]. The proportion of  IgA2 is about 10% 
of  total IgA in human sera, while IgA1 is 90%, and they 
largely exist in the monomeric(m) form. The propor-
tion of  SC-containing IgA antibodies from the total IgA 
pool is no more than 1%, because SC is attached to di- 
or polymeric IgA (pIgA) via its transport through the 
epithelial cells into the gut lumen or to other mucosal 
surfaces[136].

Thus, in a recent work by our group[129], a detailed 
characterization of  IgA type ANCAs revealed that the 
proportion of  the ANCA IgA2 subtype was markedly 
elevated (46%), and SCs were present in the majority of  
ANCA IgA positive samples (87%) of  our patients with 
cirrhosis. Moreover, high levels of  total serum sIgA in 
alcoholic cirrhosis were reported in a study by Pelletier 
et al[137]. Both studies support significant gut involvement 
in IgA production. IgA has traditionally been regarded 
as a non-inflammatory antibody. Serum IgA, however, 
potently triggers (pro)-inflammatory activity upon bind-
ing to the myeloid IgA receptor, FcαRI[138]. Whether the 
elevated IgA has any harmful effect on disease progres-
sion remains to be determined. Parallel to specific IgA 
overproduction, there is a diminished IgG production. 
The more severe the liver disease, the more subtle the 
decrease in the specific IgG level in patients with cir-
rhosis[129]. The alcoholic etiology has an obvious negative 
impact on specific IgG production. These alterations in 
the ANCA IgA and IgG response clearly reflect those 
tendencies known from vaccination studies in this pa-
tient population, and presumably reflect the impaired 
adaptive immune system in cirrhosis, mainly in the ad-
vanced stage, and the direct inhibitory effect of  alcohol 
on T-cell-mediated immunity[66]. After pneumococcal 
vaccination, anti-PPS (pneumococcal polysaccharide) 
IgA antibody levels were significantly higher than in 
control subjects, whereas IgG levels were reduced[139]. 
Considerably lower immunogenicity and faster decline 
of  specific, protective IgG responses were reported in 
individuals with cirrhosis, particularly in the alcohol-in-
duced form, after hepatitis B vaccination compared with 
CLD[140]. Patients with compensated cirrhosis were five 

times more likely to respond to hepatitis A vaccination 
compared with cirrhotic patients in the decompensated 
stage[141].

T cells
Different T cell populations could possess either pro-, 
anti-fibrogenetic or dual properties regarding their rela-
tionship with HSCs. Elevated numbers of  CD8+ T cells 
and the consequential decrease in the CD4+/CD8+ ratio 
was associated with promotion of  fibrogenetic processes 
in mice and humans. IL-17 producing CD4+ T cells 
(Th17), along with NKT cells, seemed to be involved in 
fibrosis; however, their role in fibrogenesis is cytokine 
profile-dependent. Production of  IL-17, IL-4 and IL-13 
is somewhat pro-fibrogenetic, while secretion of  IFN-γ, 
TRAIL and IL-22 is anti-fibrogenetic. In contrast, regu-
latory T cells (CD4+ CD25+ forkhead box P3 [FoxP3]) 
in the close vicinity of  HSCs via secretion of  IL-10 rep-
resent anti-fibrogenetic properties[23].

Similar to the changes in B-cell function, broad de-
fects of  T cells were also reported in an early publication 
of  Nouri-Aria et al[112]. A recent study by Márquez et al[142] 
depicted an intensive derangement of  T cell compart-
ments of  the immune system in patients with cirrhosis. 
High antigen load as a consequence of  enhanced BT, 
indicated by elevated LBP levels, can contribute to pro-
longed activation and subsequent “exhaustion” of  T 
lymphocytes. Significant reduction in the total number 
of  peripheral blood T cells (CD3+ cells) was observed 
in cirrhotic patients with ascites. The proportions of  ac-
tivated CD4+ T cells (indicated by expression of  CD25 
and CD122 antigens) and senescence CD8+ T cells 
(CD8+CD45RO+CD57+ cells) significantly increased. 
Additionally, the proportion of  memory CD4+ and 
CD8+ populations expressing apoptosis markers (CD95+) 
was also higher in cirrhotic patients compared with 
healthy controls. Increased proportion of  regulatory T 
cells [CD4+ CD25+ forkhead box P3 (FoxP3)] was also 
observed, and a significant correlation was found with 
LBP levels. Downregulation of  lymphocyte co-stimula-
tory molecules, such as CD28, was also detected. There-
fore, it can be speculated that these changes in adaptive 
immunity could play a role in the immunosupression 
seen in cirrhosis, leading to increased susceptibility to 
bacterial infections.

RISK ASSESSMENT OF CIRRHOSIS 
RELATED BACTERIAL INFECTIONS IN 
THE CLINICAL PRACTICE
Standard clinical factors, and serological and genetic 
markers associated with immune dysfunction in cirrhosis 
all have their potentials, but they also have limitations 
to predict bacterial translocation, infections and dis-
ease progression in cirrhosis. The biological pathways 
involved in these processes, however, are multiple. It is 
most likely that these markers will be used for effective 
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risk assessment in combination, providing complemen-
tary information, rather than used singly. Clinical factors 
are easily accessible without cost, but may change during 
the long natural history and in certain cases are subjec-
tive, suffering from recall bias and inaccuracy. Labora-
tory tests have several advantages over clinical factors, 
such as objectivity, consistency during the disease course 
(for serological markers only in definite clinical circum-
stances) and higher odds ratio. However, they are not 
always widely available, and their costs could represent a 
drawback. Prospective clinical studies must be initiated 
to build up and validate composite score (CS) for risk as-
sessment covering clinical factors and biomarkers.

ACLF
ACLF is an increasingly recognized entity encompassing 
an acute deterioration of  liver function in patients with 
cirrhosis, which is usually associated with a hepatic or ex-
trahepatic precipitating event and results in the failure of  
one or more organs and has high short-term mortality. 
During evolution of  cirrhosis, this condition comprises a 
distinct clinical entity from acute decompensation (AD)[3]. 
The recently published CANONIC study[142] established 
diagnostic criteria for ACLF and provided valuable data 
about its development and progression. The occur-
rence of  ACLF is not rare, with approximately one-third 
of  AD being associated with ACLF. From the immu-
nological aspect, inappropriate regulation of  the host 
inflammatory response to injury and infection plays an 
important role in the development of  the disease. Exag-
gerated pro- and anti-inflammatory responses and their 
imbalance relative to each other are hypothesized to be 
the most important determinants in the disorder. In cir-
rhosis, both the systemic inflammatory response and the 
compensatory anti-inflammatory response (CARS) are 
more pronounced compared with those in normal sub-
jects. It is likely that those patients that do not resolve 
the CARS are the ones that have highest mortality rates. 
The state of  unresolved CARS (the so-called prolonged 
“immunoparalysis” state) may predispose patients to 
acquire infection that would further aggravate a pro-
inflammatory response, resulting in a vicious circle[3,143]. 
In this acute situation, the presence of  bacterial infection 
and/or enhanced BT trigger quite different processes 
compared with those relevant to the chronic progression 
of  liver disease. The development of  ACLF and multi-
organ failure is characterized by significant alteration in 
systemic and hepatic hemodynamics, and worsening of  
the liver and the other organs’ functions[3].

CONCLUSION
In cirrhosis, the precise exploration of  immune dysfunc-
tion has resulted in a more accurate understanding of  the 
processes, leading to recognition of  the development of  
complications in both the acute and the chronic progres-
sion of  the disease. Considering the significant role of  
BT and bacterial infections in these processes, recognition 

how the host defense mechanisms are disrupted against 
invading microorganisms is of  distinct clinical relevance. 
Early and efficient assessment of  immune dysfunction 
using methods routinely available can assist clinicians in 
everyday practical decision-making when establishing 
treatment and care strategies for the patients with end-
stage liver disease. The biological pathways involved in 
hepatic fibrogenesis and bacterial infections are multiple, 
suggesting that this goal can only be achieved by applying 
combinations of  different markers. In the clinical setting, 
the establishment and validation of  a composite score 
comprising clinical, serological and genetic markers could 
help to identify efficiently those patients at high-risk for 
progression and development of  bacterial infections, 
even at an early disease stage. This would therefore lead 
to a decreased risk of  complications, delayed progression 
of  the disease and reduced mortality. Individually tailored 
steps for prophylaxis will enable clinicians to optimize 
patient care and expenditure.
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