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Abstract
The development of “mini-guts” organoid originates from the identification of 
Lgr5+ intestinal stem cells (ISCs) and circumambient signalings within their 
specific niche at the crypt bottom. These in vitro self-renewing “mini-guts”, also 
named enteroids or colonoids, undergo perpetual proliferation and regulated 
differentiation, which results in a high-performance, self-assembling and 
physiological organoid platform in diverse areas of intestinal research and 
therapy. The triumphant reconstitution of ISC niche in vitro also relies on 
Matrigel, a heterogeneous sarcoma extract. Despite the promising prospect of 
organoids research, their expanding applications are hampered by the canonical 
culture pattern, which reveals limitations such as inaccessible lumen, confine 
scale, batch to batch variation and low reproducibility. The tumor-origin of 
Matrigel also raises biosafety concerns in clinical treatment. However, the 
convergence of breakthroughs in cellular biology and bioengineering contribute 
to multiform reconstitution of the ISC niche. Herein, we review the recent 
advances in the microfabrication of intestinal organoids on hydrogel systems.

Key Words: Intestinal organoids; Reconstitution; Stem cell niche; Bioengineering; 
Hydrogel
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Core Tip: Organoid technique results in a high-performance, self-assembling and 
physiological platform in intestinal research and therapy. Despite the promising 
prospect of organoids research, their expanding applications are hampered by the 
canonical culture pattern, which reveals limitations such as inaccessible lumen, confine 
scale, batch to batch variation and low reproducibility. The tumor-origin of Matrigel 
also raises biosafety concerns in clinical treatment. The convergence of breakthroughs 
in cellular biology and bioengineering contribute to the development of biomaterial-
based matrix or bioink for intestinal stem cells and incorporation of 3D printing and 
organ-on-a-chip technique, which may further advance organoid in future 
pathophysiological studies or functional tissue reconstitution.

Citation: Xu ZY, Huang JJ, Liu Y, Zhao Y, Wu XW, Ren JA. Current knowledge on the 
multiform reconstitution of intestinal stem cell niche. World J Stem Cells 2021; 13(10): 1564-
1579
URL: https://www.wjgnet.com/1948-0210/full/v13/i10/1564.htm
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INTRODUCTION
In mammals, intestinal epithelium hosts diverse cell types at different stages of differ-
entiation and possesses high self-renewal efficiency regulated by an sophisticated 
extracellular niche environment with a renewal cycle of 4-5 d, to ensure absorption of 
nutrients and defense against microorganisms[1,2]. As the inner layer of the intestinal 
wall, the intestinal epithelium and inferior lamina propria, which line the lumen, 
display a specific organization of crypt and villus structures to maximize the 
absorption surface especially in the small intestine[3].

Over the last 4 decades, efforts have been focused on identifying proliferative 
intestinal stem cells (ISCs) and reconstituting an in vitro model of the intestine[4]. Due 
to the complexity of the intestinal microenvironment and deep-seated residence of 
stem cell, the most available research tools are genetically variable cell lines derived 
from colorectal cancers, such as Caco-2 and HT-29[5,6]. However, Caco-2 cell-based 
culture lacks precise 3D architecture, interactions among different cell types and 
biochemical gradients, which are essential for the ISC niche[5,7]. Hence, stable culture 
and long-term expansion of ISCs in vitro was thought to be unattainable until 2005, 
when Wnt signaling was found to play a key role in maintaining the stemness and 
proliferative status of ISCs for the first time[8,9]. Subsequently, leucine-rich repeat-
containing G-protein coupled receptor 5 (Lgr5) was recognized as the marker gene of 
ISCs[4]. In addition, Sato et al[10] creatively applied Matrigel, which was extracted 
from Engelbreth-Holm-Swarm (EHS) sarcoma and resembles basal membrane in terms 
of its components, to provide biochemical support and construct a 3D niche 
environment, thus establishing the first generation of organoids. Conventional 
organoids cultured within Matrigel exhibit micron-sized 3D aggregates with 
projecting crypt-like buds and sealed-off lumen lined by epithelium[10-12]. ISCs 
interspersed in the crypt-like region are surrounded by Paneth cells, transit-amplifying 
cells (TA cells) and adhesion sites of matrices, which constitute the stem cell niche 
along with biochemical signaling gradients and mechanical cues[1,13].

In recent years, organoids have represented a biomimic platform for human 
development and physiological research and disease modeling including infectious, 
malignant, inherited and nutritional diseases, serving as an alternative to conventional 
animal models[14-16]. Even though stem cell research and organoid techniques have 
made remarkable breakthroughs, limitations have now surfaced such as low 
operability, uncertain biosecurity, poor plasticity and immunity deficiency[17,18]. 
Efforts have been made to develop alternative materials to Matrigel and enrich 
conventional organoid culture systems via 3D printing or microengineering[19,20].

This review focuses on integrant keys to reconstitute the stem cell niche microenvir-
onment in organoid, the numerous candidate materials for culturing matrices and 
bioengineered models of the intestinal organoids.

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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NICHE CUES WITHIN THE MICROENVIRONMENT OF ISCS
Long term establishment of the novel intestinal organoid culture system depends on 
the preservation of self-renewal and self-organizing properties of the ISCs, which are 
regulated by various external environmental cues. So far, stemness-relevant 
biochemical signaling, niche cells, mechanical cues etc. have been identified as optimal 
niche cues for the reconstitution of ISCs in vitro.

Biochemical signaling within the ISC niche
Wnt/R-spondin signaling is the dominant regulator in the proliferation of ISCs[8]. 
Secreted mainly by Paneth cells and subepithelial fibroblasts, Wnt ligands bind to 
Frizzled and Lrp5/6 receptor complexes on ISCs and TA cells[21,22]. After binding, 
the complexes induce translocation of β-catenin into the nucleus to stimulate the 
expression of target genes that preserve the proliferating and undifferentiated status of 
stem cells, such as Axin2, Lgr5, Rnf43 and Znrf3[23]. Moreover, such activation is 
sustained and enhanced by the binding between R-spondin, a subepithelial fibroblast 
secreted protein, and its ligand Lgr5, which blocks negative feedback from the Rnf43 
gene[23]. In human derived small enteroids or colonoids and mouse derived 
colonoids, exogenous Wnt and R-spondin are both entailed (Table 1). R-spondin alone 
is sufficient for mouse small ISC propagation[24-26].

Constituting the largest subdivision of the transforming growth factor-β (TGF-β) 
family, mesenchymal-derived bone morphogenetic proteins (BMPs) induce epithelial 
stem cell differentiation towards enterocytes and goblet cells by activating down-
stream phosphorylated SMAD1/5/8[24,27]. As BMP antagonists, Noggin, Gremlin1/2 
and DMH-1 are involved in the maintenance of ISC numbers and proliferation status 
in long-term organoid culture, which play determinant roles on the avoidance of ISC 
exhaustion[28,29]. Therefore, exogenous Noggin is added as an essential cue to 
regulate ISCs in most organoid cultures[10].

Notch ligands such as Delta-like 1 (Dll1) and Dll4 are mainly expressed on Paneth 
cells interspersed among ISCs[30]. Once bound to Notch receptors at the surface of 
neighboring ISCs, the Notch intracellular domain (NICD) will be released and 
transported into the nucleus, where NICD undergoes enzymatic shedding by 
ADAM10 and γ-secretase to activate the transcription of Hes1/3/5. Hes1 in turn 
blocks Atoh-1 mediated differentiation toward the secretory lineage[31]. Knockout of 
Dll1 and Dll4 in intestinal epithelium could lead to complete exhaustion of ISCs and 
TA cells[32]. Dll1/Dll4-mediated Notch signaling is required for long-term 
homeostasis of intestinal epithelium. In the prometaphase of organoid culture, 
constant binding between Dll1/4+ Paneth cells and Notch+ ISCs contributes to the 
commencement of symmetry breaking and formation of proliferating buds, 
highlighting the pivotal role of Paneth cells in the ISC niche and organoid 
development[33,34].

Epidermal growth factor (EGF) is a canonical determinant that facilitates intestinal 
epithelial cells’ self-renewal including ISCs and TA cells, and is mostly secreted by 
Paneth cells[35]. Activated EGF receptor (EGFR) initiates downstream RAS kinase and 
PI3K pathways, resulting in the translocation of ERK1/2 and boosting the mitotic 
signal[36]. As a significant factor in the organoid culture medium, EGF can be replaced 
by mesenchymal cell-derived insulin-like growth factor 1, which indicates the comple-
mentary effect of Paneth cells and the mesenchyme in constituting the ISC niche[37] 
(Figure 1).

Niche cells around ISCs
After being encapsulated into matrices, single Lgr5+ ISCs experience mitosis and end 
up with a cystiform sphere around day 3[24]. During the 4-cell stage and 16-cell stage, 
asynchronous cell division and alterations in extracellular matrix (ECM) density drives 
the variability in mechanosensor Yes-associated protein 1 (YAP1) subcellular 
localization, which is a cellular proliferating signaling activated by biophysical cues 
within the ISC niche and leads to variability in Dll1 expression in primitive Paneth 
cells[33,38]. It was also observed that ISCs cluster which failed to produce Paneth cells 
turned into ISC-absent enterocysts with a limited life-span, which contain only 
enterocytes[33]. In addition to Dll1-induced inhibition against secretory differen-
tiation, Paneth cells generate endogenous growth factors including Wnt-3, EGF and 
TGF-α, facilitating niche environment reconstitution and budding organoid 
maturation[30,39]. Accordingly, Paneth cells are regarded as essential niche cells for 
the ISC niche.
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Table 1 Organoid culture conditions for multiform reconstitution of the intestinal stem cell niche

Media for canonical organoid culture Media for organoids on 2D monolayer or 3D 
scaffold

Human small intestinal organoids Wnt, R-spondin, EGF, IGF-1, FGF, Noggin, TGF-βi, p38i, 
gastrin[43]

Noggin, EGF, R-spondin, GSK-3i, ROCKi[44]

Human colon intestinal organoids Wnt, R-spondin, EGF, Noggin, TGF-βi, p38i, gastrin[43] Wnt, R-spondin, EGF, Noggin, EGF, TGF-βi, p38i, 
gastrin[45]

Mouse small intestinal organoid R-spondin, EGF, Noggin[24] Noggin, EGF, R-spondin, ROCKi[46]

Mouse colon intestinal organoid Wnt, R-spondin, EGF, Noggin[24] Wnt, R-spondin, EGF, Noggin, TGF-βi[47]

TGF-βi: Transforming growth factor-β inhibitor; p38i: p38 inhibitor; GSK-3: Downstream of Lrp5 receptor, transduce nuclear translocation when 
suppressed; EGF: Epidermal growth factor; IGF-1: insulin-like growth factor 1; FGF: Fibroblast growth factor.

Figure 1 Niche microenvironment of intestinal stem cells at the crypt bottom. Bidirectional gradients of biochemical signals established by 
neighboring cells including Paneth cells, subepithelial cells and enterocytes regulate the self-renewal and differentiation of intestinal stem cells synergistically. TGF-β: 
Transforming growth factor-β; TGF-α: transforming growth factor-α; EGF: Epidermal growth factor; EGFR: Epidermal growth factor receptor; IGF: insulin-like growth 
factor; BMPR: Bone morphogenetic protein receptor; BMP: Bone morphogenetic protein; DKK1: Dickkkopf-1; Dll1/4: Delta-like 1/4.

Stromal production of Wnts in the submucosa is necessary for maintaining murine 
and human intestinal epithelium homeostasis[17,40]. Fibroblasts and myofibroblasts 
are known to be a source of Wnt ligands, R-spondin and TGF-β around the ISC niche 
in vivo. In experiments in vitro, organoid formation was rescued by the co-culture with 
embryo fibroblasts in the absence of supplemental Wnts and R-spondin, which 
indicates the fundamental role of stroma cells in intestinal homeostasis and crypts 
proliferation[22]. In addition, a recent publication also revealed endothelial cells and 
macrophages as Wnt ligand sources[22]. Although stroma cells especially fibroblasts 
and myofibroblasts can synergistically generate niche factor gradients and support the 
ISC microenvironment, single cell or crypt-based organoid culture lack submucosal 
components. In induced pluripotent stem cells (iPSCs) oriented induced human 
intestinal organoid, iPSCs can partially differentiate into mesodermal cells under 
activin A stimulation[41,42]. These mesodermal cells can further generate a fibroblast-
enriched mesenchymal layer surrounding the epithelium[24,43-47] (Table 1).

Mechanical cues
Substantial research has proved that the mechanical properties of ECM or the stiffness 
and elasticity of biomaterials are key parameters impacting cell behaviors[48]. 
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Organoid formation and ISCs growth, proliferation, differentiation and migration are 
impacted by such mechanical cues in organoid-ECM or cell-ECM interactions[49]. The 
incorporation of physiological relevant mechanical cues can contribute to ISCs prolif-
eration and maturation. Stiffness refers to the degree of flexibility of the tissue 
microenvironment. Plastic dishes used in traditional cell culture provide a hard 
surface which is much stiffer than native tissues. However, Matrigel (approximately 
100 Pa) provides organoids and ISCs with a softer microenvironment than intestinal 
tissue (approximately 800 Pa). High stiffness (approximately 1 kPa) of the matrix was 
demonstrated to facilitate ISC expansion via the YAP1 molecule[33,50]. In contrast, a 
soft matrix promoted cell differentiation and organoid maturation. By inserting 
compressed nitinol springs in transplanted human organoids to introduce strain 
forces, Poling et al[51] observed enlarged tissue size, complexity and more similarities 
to native intestine. In addition, native ECM and synthesized matrix biomaterial also 
exhibit complex viscoelasticity, which describes a time-dependent response to loading 
or deformation[52]. Studies carried out using 2D and 3D culture systems indicated that 
matrix viscoelasticity might influence gene expression and differentiation pattern.

Epithelium of the intestinal tract especially the small intestine is constantly 
immersed in digestive juice in vivo. Dynamic fluid cues are often ignored in intestinal 
tissue models at the early stages. It was unrealistic to investigate such luminal 
mechanical force in structure-lacking cell line culture and canonical sealed-off 
organoids. Using the organoid culture system on monolayer or chips, luminal stream 
added through constant shaking was found to be an inductive cue for villus formation
[53]. However, colon-derived organoids failed to exhibit similar sensitivity to dynamic 
fluid cues. This fluid cue stimulation is related to activation of an inherent villus-
forming program within the small intestine, which markedly improves villus 
formation and increases villus density[54].

CULTURE MATRICES
The novel organoid culture systems rely on hydrogels as matrix to provide soft 
mechanical support to facilitate the proliferation and differentiation of ISCs. However, 
in consideration of the appearing limitations, tissue-mimicking hydrogels with tunable 
properties based on well-defined natural biomaterials or customized synthetic 
polymers are needed. Among different kinds of biomaterials, hyaluronic acid (HA), 
silk protein, collagen gels, and various polyethylene glycol (PEG)-based hydrogels are 
found to have potential in organoid cultures.

Matrigel
As a basement membrane extract from mouse EHS tumor and a natural ECM 
analogue, Matrigel (also named Cultrex or EHS matrix) has been applied in the 
majority of cellular experiments for nearly half a century, such as cell culture, tumor 
invasion, lineage differentiation and gene expression[9]. Matrigel also serves as a vital 
and seemingly exclusive matrix that has been used in organoid culture since the early 
2010s[55].

Canonical Matrigel consists of 4 major ECM proteins, which include approximately 
60% laminin, approximately 30% collagen Ⅳ, approximately 8% nidogen and approx-
imately 2% heparin sulfate proteoglycan perlecan (Figure 2A)[56]. Moreover, Matrigel 
contains several tumor-derived growth factors, such as TGF-β and fibroblast growth 
factor as well as enzymes such as matrix metalloproteinases (MMPs), which synergist-
ically lead to its first-class bioactivity. In the temperature range of 25-37 ℃, Matrigel 
undergoes rapid gelation driven by entactin-mediated strong crosslinking between 
laminin and collagen Ⅳ as well as relatively weak hydrogen bonds within collagen 
molecules. Gelated hydrogel in the form of a dome or coating provides concise and 
optimal 3D or 2D platforms, which are suitable for multi-type cell culture. Although 
they vary from batch to batch, the poor mechanical properties of Matrigel (approx-
imately 100 Pa) facilitate stem cell differentiation and organoid maturation rather than 
stem cell proliferation[20,57].

When ISCs or other epithelial cells in vitro lose intimate integrin attachment to the 
basal membrane, cells easily cease propagation and undergo anoikis. Different laminin 
subtypes within Matrigel offer a great number of adhesion sites for integrins in the ISC 
niche, which is mostly made up by α2β1, α7β1, and α5β1 subtypes[50]. Upon binding to 
laminin binding peptides, anoikis of ISCs in vitro induced by Rho-ROCK kinase 
activation is markedly inhibited. The uniqueness and ubiquitousness of bioactive 
Matrigel make it the most preferred culture matrix for organoid, based on which 
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Figure 2 Comparison of Matrigel, decellularized extracellular matrix and a synthetic matrix. A: Ill-defined Matrigel is variable in composition. 
Although certain bioactive factors exist, Matrigel still contains undefined contamination from the tumor microenvironment, which leads to low reproducibility and 
biosecurity; B: Submucosa-derived decellularized extracellular matrix (dECM) provides intestinal stem cells (ISCs) with a natural microenvironment closest to native 
tissue and the crypt niche. Tissue-specific bioactive substances could help maintain the physical phenotype of cultured ISCs. However, the composition of dECM may 
vary from batch to batch and be affected by the age, gender and health status of source animals; C: Polyethylene glycol is one of the most frequently used synthetic 
material for cell culture as it is bioinert and tunable. Following modification with diverse functional groups or active ligands, researchers can manipulate the physical 
and chemical parameters to further support organoid formation. PEG: Polyethylene glycol.

canonical intestinal organoids culturing pattern is fully established. After being 
encapsulated in Matrigel, disassociated intestinal crypts or ISCs form cyst structures in 
the first 3 d. During days 4-5, the first batch of Paneth cells develop, thus forming 
heterogeneous Wnt activation among cysts and proliferating buds[41].
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Although commonly used, Matrigel has limitations in the application of organoid 
techniques. Firstly, variations exist in component contents and biochemical properties 
from batch to batch or even within a single batch of Matrigel, which have caused a lack 
of homogeneity and reproducibility in cell culture results. Proteomic analyses of 
Matrigel are consistent between each other along with the growing number of 
identified different proteins (> 2000) and peptides (> 14000)[58]. Secondly, the 
mechanical properties of Matrigel also vary from batch to batch even between regions 
within a single dome. Heterogenicity among cross-linked materials such as multitype 
laminin and collagen peptides in part leads to uneven distribution of material density, 
causing variations in the stiffness of median and marginal areas. Thirdly, the tumor 
origin and natural resource of Matrigel restrict the promising potential of the organoid 
technique in tissue repair and regeneration. Although transplanted intestinal 
organoids carried by designed scaffolds show robust viability and origin-specific 
functions in animal experiments, concerns have arisen about Matrigel’s uncertain 
tumorigenicity when it comes to clinical use[59]. Finally, Matrigel is not amenable to 
chemical modification or manipulation to adjust mechanical properties, which is 
attributed to the inconsistencies in the concentrations of its contents. As an ill-defined 
complex, the infinite variety of cues within Matrigel cannot be split to elaborate their 
specific function in different stem cell niches. These undesirable characteristics of 
Matrigel require further research on synthetic or natural alternatives with highly 
tunable biochemical and biophysical properties to reconstitute the ISC niche[60].

Decellularized ECM 
The ideal matrix for cell culture should mimic the native microenvironment and 
provide original tissue-specific ECM contents, sites for adhesion, stiffness etc.[61]. This 
concept initiated research into decellularized ECM (dECM), which has emerged as a 
promising material for regenerative medicine and tissue engineering. Recent studies 
have also highlighted dECM as a promising natural hydrogel material for organoid 
culture[62].

dECM is a biological scaffold derived from native tissues in which cellular 
components, preserved structural components, functional enzymes and partial factors 
have been removed[63]. Three decellularizing strategies are commonly used to 
produce dECM based on different natural tissues such as cartilage, liver, kidney, 
breast, intestine, prostate and heart. (1) Physical strategies include freeze-thaw, 
agitation and rinsing to break up the cell membrane and strip off cells; (2) By using 
chemical agents such as acid (acetic acid), base (sodium hydroxide), chelating agent 
(EDTA), hypotonic detergents (Tris-HCL), ionic detergents (sodium dodecyl sulfate) or 
non-ionic detergents (Triton-X-100), cytoarchitecture is easily disrupted and undergoes 
disaggregation; and (3) Biological strategies utilize enzymes to break up ribonuc-
leotide and deoxyribonucleotide chains specifically[64,65]. After multistep decellular-
ization, dECM eliminates most xenogenic antigens and acquires minor immuno-
genicity and assured biosecurity. As an FDA approved biosafe material and medicinal 
product in use, different types of dECM vary greatly in major constituent concen-
trations such as collagens, fibronectin, elastin, laminin, proteoglycan and glycoprotein 
according to the tissue source and decellularization strategy. Despite these differences, 
the dECM material provides a truly biomimetic environment which retains native 
structural, signaling components and specific cell-ECM interactions (Figure 2B). 
Digested dECM powder can undergo collagen-based gelation in response to external 
conditions such as temperature, ionic concentration and pH with tunable contents and 
stiffness, which shows more intelligence and maneuverability over Matrigel[66].

A study by Giobbe et al[67] identified that dECM gel from porcine small intestine 
mucosa/submucosa enables the formation and growth of multiple types of endoderm-
derived human organoids with equivalent efficiency. In dECM gel, gastric, hepatic, 
pancreatic and small intestinal organoids showed regular proliferation and differen-
tiation capacities. However, transcriptomic analysis of small intestinal organoids in 
dECM gel revealed a higher expression of ISC and Paneth cell markers, such as 
OLFM4, SMOC2 and LYZ, and a reduction in the expression of differentiation 
markers, such as EZR, VIL1 and MUC12, compared to Matrigel. This discrepancy was 
caused by culture matrices possessing a differential biochemical signature and 
environmental niche, which lead to varied effects on cellular behavior and experi-
mental results[68]. Interestingly, the dECM scaffold carrying small intestinal organoids 
survived two months after transplantation, which was superior to Matrigel[67]. In 
addition, application of dECM in organoid culture promotes physiological function. 
Saheli et al[69] seeded human hepatocarcinoma (Huh7) cells, human umbilical cord 
vein endothelial cells (HUVEC) and human bone marrow-derived mesenchymal stem 
cells (MSCs) in sheep live-derived dECM to produce liver organoids. Mixed cells not 
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only formed self-organized liver organoids, but also exhibited enhanced hepatic 
functions with significant upregulation of transcripts of albumin, CYP3A4 and 
CYP3A7 compared to Matrigel and collagen Ⅰ. A recent study also used dECM as a 
tool to determine the exact interactions between environmental cues and stem cell 
behavior. By applying rat pancreatic ECM gel, the study identified collagen Ⅴ as the 
key cue within the dECM that boosted the formation of cultured human pluripotent 
stem cells (iPSCs) towards islet-like organoids and functional α, β, δ type pancreatic 
endocrine cells[70]. Similarly, dECM may act as the bridge between poorly-defined 
Matrigel material and pinpoint biochemical contents that are adequate for the 
propagation of ISC. In addition, chemically defined dECM gel can be tailored to have 
tunable mechanical properties and viscoelasticity by chemical modification or 
appending a compound hydrogel system[71]. By slightly enhancing viscosity or 
utilizing multi-step crosslinking, organoid-laden dECM ink may be used directly to 
fabricate biomimetic crypt-villus structures or a sophisticated bioreactor via 3D 
printing[72].

PEG
The great potential of organoids in research and therapy remains restricted due to ill-
defined matrices derived from animals. Therefore, efforts have been made to design 
and synthetize chemically defined hydrogel networks that enable ISC propagation and 
organoid formation by recapitulating key cues from the ECM[73]. To fully recognize 
the key cues that dominate ISC expansion, Gjorevski et al[74] created a well-defined 3D 
matrix based on PEG and peptides from fibronectin, laminin and collagen IV, which 
were enriched within the ISC microenvironment. As a biocompatible and enzymat-
ically biodegradable polymeric substance, after reaction with diverse nucleophiles, 
PEG can bond to reactive groups such as vinyl sulfone (VS) or acrylate, to form 
multiarmed-PEG macromers. A subsequent Michael-type addition with thiol-reactive 
peptides allows the formation of PEG-based hydrogel networks (Figure 2C)[75].

Synthetic inert and soft PEG scaffolds were not sufficient to maintain ISC expansion 
and organoid formation, similar to sodium alginate or gelatin methacrylate (GelMA) 
hydrogel. Interestingly, by replacing VS reactive groups on 8-arm PEG monomers 
with fibronectin-derived RGD (Arg-Gly-Asp) peptides to target integrins on ISCs, 
intestinal crypts embedded in such modified RGD-functionalized PEG gels (PEG 
RGD) exhibited long-term propagation and colony formation abilities, suggesting that 
both physical support and biochemical signals from the matrix are involved in ISC 
survival[50,74]. Thus, PEG RGD is regarded as a synthetic hydrogel with tunable 
mechanical, biochemical properties that promotes intestinal organoids growth in vitro.

In intestinal organoid culture, stiffness of the matrix has been depicted to play a 
critical role in ISC fate and organoid formation as described previously[76]. For PEG 
hydrogel formation, by blending 8-arm PEG macromers of 20- or 40-kDa at various 
ratios and modulating final PEG content, the storage modulus of PEG gel ranged 
between 110-1034 Pa[77]. Adjusting the network’s crosslink level also enabled tunable 
biophysical properties. By incorporating peptide sequences, which are sensitive to cell-
secreted MMP, the PEG gel could acquire degradability and increase stiffness, which 
stimulates cell proliferation in the early phase of culture[78]. Following partially 
enzymatic gel degradation over time, softened PEG gel (approximately 300 Pa) 
promoted ISC and TA cell differentiation which is needed for organoid maturation. 
Compared to stable PEG gel, degradable PEG gel showed abundant expression of 
differential markers and higher organoid formation efficiency.

In addition, the 8-arm PEG monomer can be modified with customized peptides 
according to different integrin subunits[79]. The most frequently used fibronectin-
derived peptide Arg-Gly-Asp binds to αvβ3 and αvβ5 integrins. It was also reported 
that the presence of a collagen-derived peptide (GFOGER) targeting α2β1 integrin 
exhibited outstanding culture efficiency of human duodenal and colon enteroids[50]. 
Also, collagen-like peptide grafted PEG gel promoted the spontaneous organization of 
other primary stem cells into clusters.

Although PEG-RGD gel has shortcomings such as inferior organoid culture 
efficiency (50%) compared with Matrigel, PEG materials fill the vacancies in the 
synthetic microenvironment by mimicking ECM composition which are devoid of 
unknown factors and enable standardized ISC culture[80]. Modification of 8-arm/4-
arm PEG macromers with multiple chemical groups or peptides, which are sensitive to 
MMPs, pH, temperature or chemical irritation may endow the synthetic matrix with 
more interesting characteristics for organoid culture and achieve a fully-designed stem 
cell niche.
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BIOENGINEERED MODELS OF THE INTESTINE 
As described earlier, the first generation of organoid culture is characterized by 
encapsulated single ISCs, fresh crypts or disassociated organoids within a dome-like 
matrix. After days of proliferation and self-assembly, cell clusters grow into sealed-off 
difform spheroids hosting 7 intestinal epithelial cell types. Although encapsulated 
organoids exhibit a crypt-villus structure and mesenchyme-free ISC niche, they still 
have a number of dissimilarities compared to intestinal tissue. To fully enhance the 
maneuverability and adaptability to high-throughput screening and microfabrication, 
many technical approaches have been established to reproduce the stem cell niche and 
intestine model in vitro.

Two-dimensional monolayers
The monolayer system on a dish or porous transwell insert provides an intestinal 
tissue model that offers access to both luminal and basal sides, which enables the 
establishment of biochemical gradients of growth factors and observation of host-
pathogen interactions (Figure 3A). By introducing extrinsic Wnt and BMP to the 
monolayer system, Thorne et al[19] was able to evaluate the contribution of epithelial-
intrinsic and extrinsic Wnt to epithelial homeostasis. In a colonoid monolayer, the lack 
of Paneth cells in crypt-like zones explained why extrinsic Wnt is an essential factor for 
colonoid culture. For diarrheal pathogen study, enteroaggregative Escherichia coli 
revealed aggregative adherence to enteroids from the duodenum and ileum, which 
revealed unique patterns of intestinal segment-specific adherence of various 
pathogens. It is also worth noting that the self-organized monolayer showed 
integrated and effective barrier function with a physiological transepithelial electrical 
resistance (55 ohms.cm2) and dextran permeability[46].

Although the monolayer system offers a culture platform that mimics in vivo-like 
cell distribution and is compatible with high-throughput drug absorption or host-
pathogen interactions, these simple systems lack crypt-villus architecture and 
mesenchymal components. In addition, static culture cannot provide ISCs with the 
dynamic mechanical forces of peristalsis in the native microenvironment which is 
believed to affect cellular behavior and organoids self-assembly[44,81].

Three-dimensional scaffolds
The intestinal epithelium is a highly polarized tissue containing crypt-villus 
topography, while canonical organoids within Matrigel are much more like hetero-
geneous and difform spheroids. Thus, 3D scaffolds mimicking physiologic 
morphology have been fabricated to study stem cell behavior influenced by complex 
architecture, in which organoids showed robust proliferation and differentiation 
(Figure 3B).

In the first study, photolithography (5 μm resolution) was introduced into the 
microfabrication of 3D scaffold for enteroids, Costello et al[82] used laser ablation to 
create an array of 500 μm deep holes in polymethyl methacrylate (PMMA). Through 
multistep casting, a porous villous poly-lactic-glycolic acid (PLGA) scaffold (villi 
height = 500 μm) was fabricated, which supported the propagation of primary 
intestinal crypts and Caco-2 cells. Wang et al[83] generated a polydimethylsiloxane 
(PDMS) stamp with both crypt and villi architectures via two times of ultraviolet (UV) 
irradiation. Cross-linked collagen-Ⅰ hydrogel was used as the culture matrix[84]. After 
applying the PDMS stamp, micromolded collagen in a transwell insert resembled 
physical intestinal lamina propria structure and a crypt-villus micropattern (crypt 
depth = 132 μm, villi height = 477 μm). In addition, biochemical gradients of factors 
were established along with crypt-villus axis which promoted the formation of a stem 
cell-abundant zone at the crypt bottom and differentiated an enterocyte-abundant 
zone around the villi. ISCs also revealed tunable migration and differentiation 
capacities in response to changes in extrinsic biochemical gradients.

As a cutting-edge technique wide-spread in biomedicine, 3D printing can provide 
ISCs and organoids with a designed niche microenvironment and delicate architecture 
that restores intestinal epithelium. By horizontally slicing the digital objective with a 
computer aided-design and solidifying materials layer by layer, 3D printing can create 
intestinal models or culture scaffolds with arranged parameters, which include a 
degradable ink-based soluble microenvironment, an insoluble microenvironment, 
shape, external force and additive components[85]. In 3D printed tubular scaffolds 
composed of collagen or silk fibroin, multiple cell types such as like fibroblasts, 
myofibroblasts, macrophages and neurocytes were appended in the organoid system 
to build mesenchymal, immune and nerve components, respectively. Notably, adapted 
biomaterials such as described collagen, PEG-DA, dECM and silk have made possible 
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Figure 3 Multiform reconstitution of the intestinal stem cell niche. A: On matrix coating with relatively high substrate stiffness, intestinal stem cells (ISCs) 
generate an epithelial monolayer that recapitulates polarized cell distribution and barrier function; B: Micropatterned scaffold with suitable extracellular matrix coating 
enables ISC self-renewal, differentiation and epithelial cell migration and resembles distinct crypt-villus or multilayer architecture; C: Gut-on-a-chip allows 
incorporation of vasculature and lymph-vessels into the organoid technique and provides an effective platform for high-throughput drug screening.

the fabrication of 3D architecture directly from bioinks containing living ISCs, which is 
also called 3D bioprinting (200 μm resolution). In 2020, Brassard[86] and colleagues 
embedded human ISCs into a viscous Matrigel/collagen precursor solution and 
applied it to bioprinting. By controlling printing geometry and spatial deposition of 
cells, bioprinted ISCs within the Matrigel demonstrated spontaneous self-organization 
into centimeter-scale tubular tissue incorporating intestinal features such as 
continuous lumen, branched vasculature and crypt-villus domains. Bright-field images 
confirmed obvious growth and expansion over time. On day 6, printed tubes showed 
multiple differential markers like Lyz (Paneth cells) and L-FABP (enterocytes). In 
addition, Sox9+ ISCs were well enriched in the self-organized crypt-like region, which 
was not found in other areas[87].

Taken together, these studies indicate that 3D morphology obviously contributes to 
ISC differentiation and tissue function. Also, macro-scale organoid systems on 
scaffolds have huge therapeutic potential for short bowel syndrome and genetic 
intestinal diseases such as multiple familial polyposis coli or cystic fibrosis via 
transplantation. On the other hand, 3D organoid scaffolds have emerged as promising 
bioengineering tools to construct multicellular systems comprising epithelium, 
mesenchyme, vasculature, lymph-vessels, nerves and smooth muscles, which may 
reproducibly direct the fate of ISC into a coordinated and collective behavior in vitro
[88]. For instance, small-diameter vascular grafts produced by non-degradable 
materials or decellularized vessels may assist in the construction and functionalization 
of large-scale organoid systems[89].

Gut-on-a-chip
The term organ-on-a-chip was first proposed in 2010, describing microfluidic devices 
containing designed micrometer sized chambers for cell culture[90]. Organ-on-a-chip 
uses channels tens to hundreds of micrometers wide, in which fluid flow generates 
gradients by passive diffusion. At the junctions of channels, chambers perfused 
continuously are seeded with cells (Figure 3C). This type of culture system has been 
used to create a continuous digestive epithelial tube composed of stem cells from 
different segments of the digestive tract and mimic dynamic fluid mechanical 
stimulation and peristaltic motions[91].

“Gut-on-a-chip” was first presented as a microdevice composed of two microfluidic 
channels which were separated by a 30 μm ECM-coated PDMS porous membrane and 
lined by the Caco-2 cancer cell line. When exposed to a low flow rate (30 μL/h) and 
low shear stress (0.02 dyne/cm2), Caco-2 cells not only commenced with villus 
morphogenesis and the expression of differentiation markers expression such as 
mucin and villin, but also formed a proliferative cell-enriched zone. By replacing 
seeded Caco-2 cells with primary ISCs, this dynamic condition induced self-
organization and villus formation was amplified. In this field, Brandenberg et al[92] 
and Nikolaev et al[93] and colleague have made outstanding contributions in attention 
to achieve full control of ISCs behaviors on designed chips. Shin et al[53] elaborated 
the mechanism behind villi morphogenesis induced by dynamic fluid flow by means 
of assisted computational simulation. They identified Dickkkopf-1 (Dkk1) as a 
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regulator of ISC Wnt signaling activation. As an epithelial cell-secreted Wnt antagonist 
toward the basolateral direction, Dkk1 accumulates around basal cells and thus 
inhibits villi morphogenesis under static conditions. However, the cell chamber within 
chips allows constant removal of Dkk1 which established a transepithelial gradient of 
Dkk1 and corresponding spatially heterogeneous proliferation activation.

As the forefront of organoid research, gut-on-a-chip has emerged as a multicellular 
system to mimic organ-like features. Kim et al[94] isolated human peripheral blood 
mononuclear cells to seed the lower capillary channel and cocultured commensal 
microbes contacting epithelial cells. Analysis of epithelial inflammation indicated 
secretion of proinflammatory cytokines (IL-8, IL-6, IL-1β and TNF-α) induced by 
mixed immune cells and lipopolysaccharide. This human gut-on-a-chip microdevice 
resembled impaired villi and compromised intestinal barrier function, mimicking the 
pathophysiology observed in patients with inflammatory bowel disease and ileus. 
Thus, gut-on-a-chip can be used to investigate the interaction between intestinal 
epithelial cells, immune cells, microbe etc. in a tunable microdevice, which has major 
implications for intestinal disease research.

CONCLUSION
Identification of intestinal ISCs by exquisite and specific Lgr5 expression enables 
access to these stem cells through a minimal isolation process. As non-classical rapid-
cycling stem cells, ISCs undergo heterogeneous differentiation towards Paneth cells 
upon asymmetrical YAP1 activation. It seems that ISCs are inclined to build their own 
niche environment rather than depend on an exogenous one to guarantee lifelong 
proliferation, which has resulted in a revolutionary advance in basic science and 
translational therapy. In addition, it is now known that the biochemical signals 
especially Wnt ligands secreted by mesenchymal cells are crucial to transepithelial 
gradient establishment[2]. The influence of mesenchyme cell such as fibroblasts, 
myofibroblasts, smooth muscle cells, innate macrophages and nerve cells upon ISC 
and other epithelial cells fate and behavior is not yet fully elaborated, which highlights 
the development of an intestinal model containing mesenchyme, immune components, 
microbiome as well as epithelium. The advent of tissue engineering and microfab-
rication based on HA or PLGA hydrogels has enabled the development of multilayer 
or tubular co-culture systems[95]. 3D engineered scaffolds or chips composed of 
patient-derived ISCs and immune cells offer powerful models to study fundamental 
biochemical mechanisms or disease pathophysiology. Newly developed bioprinting 
approaches such as bioprinting-assisted tissue emergence contribute to macroscale 
organoid tissue that could be applied in regenerative therapy to treat short bowel 
disease[86]. However, the lack of standardization in culture conditions and 
interventions restricts its clinical application. The production of reproducible and 
easily manageable platforms that recapitulate the key features of native tissue is of 
great significance[96]. In addition, the organ-on-a-chip technique offers a new 
approach that can reproduce dynamic fluid cues and peristaltic forces and allows 
multicellular culture at the same time. Simultaneous control over cell distribution, 
biochemical gradients and mechanical cues can be achieved in such microfluidic 
systems, which have set a trend to reproduce the complexity of the digestive tract.

ISC proliferation and organoid generation entail appropriate mechanical support 
and adhesion sites. The conventional widely-used culture matrix Matrigel, extracted 
from native ECM, has gradually revealed its drawbacks. Matrigel cannot fully 
resemble intestinal ECM components or provide microenvironmental cues within the 
ISC niche, which may alter cellular behavior and limit the reliability of organoids as 
platforms for disease modeling and transplantation therapy. Well-defined or 
engineered materials have been established to replenish or replace conventional 
matrices. For instance, several natural polymer materials such as dECM, collagen and 
laminin also offer ISCs with a porous, fibrillar environment and structural properties 
of ECM proteins. Synthetized multiarmed-PEG macromers produce a structure with 
tunable adhesion sites and degradability to mimic ECM characteristics in vivo. The 
user-defined tunability of engineered biomaterials allows intervention during 
organoid culture by changing their physicochemical properties to determine the 
interaction between organoid morphogenesis and adhesive ligand or physicochemical 
cues. Equipping the matrix with light sensitivity by incorporating light-sensitive 
moieties could enable external control over cell differentiation level or investigate 
matrix-stiffness relevant disease, such as fibrosis.
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In conclusion, to dispel concerns regarding biosecurity and enable further drug-
screening or transplantation therapy, the conventional Matrigel-based organoid 
system requires optimization. Reliability, reproducibility, culture effectiveness and 
biosecurity of the natural or synthetized hydrogel for ISC culture and organoid 
generation need to be tested and verified. The development of biomaterial-based 
bioink for ISCs is also significant, which requires specific viscosity and bioactivity. 
However, technique challenges need to be overcomed to reach the designed cell 
deposition and fabricate refined tissue models via 3D printing. Gut-on-a-chip 
incorporating blood and lymph vasculature and nerves may further advance organoid 
in future pathophysiological studies or functional intestine tissue reconstitution in vitro
.
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