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Abstract
The enteric nervous system (ENS) consists of thousands of small ganglia arranged 
in the submucosal and myenteric plexuses, which can be negatively affected by 
Crohn’s disease and ulcerative colitis - inflammatory bowel diseases (IBDs). IBDs 
are complex and multifactorial disorders characterized by chronic and recurrent 
inflammation of the intestine, and the symptoms of IBDs may include abdominal 
pain, diarrhea, rectal bleeding, and weight loss. The P2X7 receptor has become a 
promising therapeutic target for IBDs, especially owing to its wide expression 
and, in the case of other purinergic receptors, in both human and model animal 
enteric cells. However, little is known about the actual involvement between the 
activation of the P2X7 receptor and the cascade of subsequent events and how all 
these activities associated with chemical signals interfere with the functionality of 
the affected or treated intestine. In this review, an integrated view is provided, 
correlating the structural organization of the ENS and the effects of IBDs, focusing 
on cellular constituents and how therapeutic approaches through the P2X7 
receptor can assist in both protection from damage and tissue preservation.
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bowel diseases; P2X7 receptor; Purinergic signaling
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on enteric nervous system cells and brings together the findings of the most recent 
literature on therapeutic approaches through the P2X7 receptor. Despite the great 
advancement of knowledge in the field, data on the mechanisms and effects of 
neuronal loss during colitis are still scarce. Furthermore, clinical trials that would make 
the use of P2X7 receptor antagonists in human patients feasible are lacking. In the 
laboratory, the results of animal models reinforce that the P2X7 receptor may be an 
important future target for the treatment of intestinal disorders.

Citation: Magalhães HIR, Castelucci P. Enteric nervous system and inflammatory bowel 
diseases: Correlated impacts and therapeutic approaches through the P2X7 receptor. World J 
Gastroenterol 2021; 27(46): 7909-7924
URL: https://www.wjgnet.com/1007-9327/full/v27/i46/7909.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i46.7909

INTRODUCTION
The gastrointestinal (GI) tract is a set of organs responsible for performing several 
complex functions that are essential for an individual’s survival, including mainly 
food transportation, the digestion and absorption of nutrients, and the secretion of 
water, electrolytes, and mucus[1]. In the GI tract, there is an extensive intrinsic nervous 
system responsible for the control and coordination of local motility, the movement of 
fluids through the mucous epithelium, changes in blood flow, and interactions with 
the immune system[2]. Sometimes, this influence continues even if there is complete 
separation of the GI tract from the central nervous system (CNS)[2,3].

The enteric nervous system (ENS) is composed of thousands of small ganglia 
interconnected by their neural fibers and is arranged in two plexuses. The myenteric 
plexus is located between the fibers of the muscular layer throughout the GI tract, and 
the submucosal plexus is located in the submucosal layer of the small and large 
intestines[2,4,5]. Thus, the ENS shares many synaptic and ultrastructural character-
istics of the neuronal interrelationship of the GI tract and the CNS[6], with many 
similarities demonstrated between them, which are reflected in neurological diseases
[7]. Enteric innervation has been widely studied, and when preserved and functionally 
active, enteric innervation is considered equally essential to life as CNS innervation[8].

The study of the ENS has progressed from a healthy context to several pathological 
models, identifying neuroplastic changes that possibly contribute to modifying 
intestinal and perception functions in GI disorders[9]. It has been found that 
purinergic neurotransmission also plays a fundamental role in preserving the internal 
balance of these organs[10], interacting directly with motor and secretory functions[11] 
by the expression of several of its receptors on neurons located in the ENS[12]. In 
addition, the purinergic signaling pathway has also been widely recognized as a 
fundamental component in the course of inflammation during intestinal diseases[10,
13,14].

In this context, the P2X7 receptor appeared to be one of the most correlated repres-
entatives in studies of infectious and inflammatory diseases[15]. The most striking 
differences in the P2X7 receptor in comparison to other purinergic receptors arise not 
only from its structural conformation but also from a sensitivity that is 10 to 100 times 
lower for its functional activation, suggesting it as a "danger" detector for tissue 
damage[16]. Therefore, a better understanding of the behavior of the P2X7 receptor 
and how it could be affected or modulated in some specific cases is sought, for 
example, in the treatment of Crohn's disease and ulcerative colitis - inflammatory 
bowel diseases (IBDs) that cause neuronal death in the ENS and compromise the 
functionality of the affected organs[17-19].

The great impact of Crohn's disease and ulcerative colitis is that both are capable of 
influencing all areas of patients’ lives, from school and work to social and family life, 
affecting patients’ productivity in each area[20]. In addition, when these conditions are 
poorly controlled, they can have negative effects on psychosocial well-being[21], 
increasing even the rates of anxiety and depression according to the severity of the 
conditions[22]. Worryingly, the occurrence of IBDs cases worldwide increased from 3.7 
million to over 6.8 million between 1990 and 2017[23], which makes an individual 
approach with strong multidisciplinary care increasingly important, as this type of 
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approach could offer a higher quality of life even for individuals of different ages[20].
Thus, this review aimed to provide an integrated view of the structural organization 

of the ENS and the deleterious effects arising from IBDs, focusing on the cellular 
constituents and how therapeutic approaches through the P2X7 receptor can assist in 
both protection from damage and tissue preservation.

THE ENTERIC NERVOUS SYSTEM
The ENS, also known as the "second brain"[6,24], acts in an essential way in the 
motility of the esophagus, stomach, and small and large intestines[4,6], modulating the 
different contraction types of each organ[25]. In addition, the functions of endocrine 
and exocrine secretion, control of local blood flow, and regulation of inflammatory and 
immune processes are also related to ENS function[26].

The enteric neural circuit is organized as an interconnected network of enteric 
neurons and glial cells[4] throughout the entire GI tract and bile and pancreatic ducts
[27]. The enteric neural circuit is arranged in two plexuses: the submucosal plexus, 
which in large mammals is present in two individualized levels (outer/inner) and is 
located in the outer connective tissue layer and the inner mucosal layer, and the 
myenteric plexus, located between the longitudinal and circular muscle layers[2,4,5,
28].

Within this complex innervation system, in humans, there are approximately 400 to 
600 million neurons[5] grouped into several ganglia that connect[2] through the 
primary interganglionic tracts, which characterize the primary plexus[4,5]. The 
secondary and tertiary plexuses are also present in the myenteric plexus, represented 
by thinner filaments that are arranged parallel to the fibers of the circular musculature
[29] and by even thinner filaments that branch among the constituents of the primary 
plexus[30]. This extensive neuronal network ends up projecting itself toward various 
effector structures, such as muscular and immune cells and blood vessels[27].

As proposed by Aleksandr S. Dogiel in 1899, the morphological classification of 
enteric neurons can be based on their conformation and dendritic distribution. Dogiel 
described type I cells as flattened, slightly elongated, with an angled or star-shaped 
contour, and, as remarkable characteristics, as having only one axon and four to 20 
Lamellar dendrites that frequently extend at a short distance from the cell body[31].

Type II neurons have large round or oval cell bodies and eccentric nuclei[31], and 
the surface is grooved by bundles of neural fibers[32]. The main characteristic of type 
II neurons is the presence of several axonal processes that are emitted either directly 
from the cell body (multipolar neuron) or from a single initial process that branches 
into short subsidiary axons (pseudounipolar neurons)[4,33]. Such structures run 
toward the mucosa[34] and sometimes also provide collateral innervation to the 
submucosal ganglia[35].

Additionally, enteric neurons can also be identified as intrinsic primary afferent 
neurons (IPANs), interneurons, and motor neurons[4], classified into at least 18 
subtypes and using more than 30 neurotransmitters in their synapses[28,30]. Of these 
neurotransmitters, acetylcholine (ACh) and nitric oxide (NO) stand out as the most 
abundant[27], as well as adenosine-5’-triphosphate (ATP)[26], vasoactive intestinal 
polypeptide (VIP), and substance P (SP)[36]. It is not rare that the same chemical 
compound stimulates neurons that perform distinct functions[26].

IPANs (classified as Dogiel type II) are recognized for responding to chemical 
stimuli, mucosal deformation and GI muscle tension, translating these signals into a 
neural impulse that will trigger a local motor reflex[37]. Altogether, IPANs represent 
approximately 14% and 30% of the neurons of the submucosal and myenteric plexuses, 
respectively. IPANs often project to form synapses with myenteric interneurons, motor 
neurons of the longitudinal and circular muscles[38], and with other IPANs[4].

The interneurons of the ENS (classified as Dogiel type I) are interposed with the 
IPANs and motor neurons[26], acting as mediators that are activated by the first 
neuron after a stimulus is received in the mucosa[27,39,40]. Thus, four neuronal types 
have been reported: one ascending (5%)[38], related to the pathways of the propulsive 
reflexes[41]; and three descending[38], related to local motility reflexes (5%), the 
conduction of the migratory myoelectric complex in the small intestine (4%), and 
secretomotor reflexes (2%)[4,30]. The interconnection of motor, secretory, and 
vasomotor pathways was suggested on the basis of the double projection of some of 
these neural fibers in both the submucosal and myenteric plexuses[38].

Motor neurons (classified as Dogiel type I) mark direct connections with muscle 
cells and, according to their neurotransmitter, can be classified as excitatory by 
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acetylcholine transferase (ChAT) labeling or as inhibitory by neuronal nitric oxide 
synthase (nNOS) labeling[4,5,36]. In addition, Furness et al[30] classified motor 
neurons as secretomotor/vasodilator neurons (60%), secretomotor neurons that are 
not vasodilators (29%), and neurons that innervate only enteroendocrine cells. On the 
basis of distribution analysis, it is already known that this neuronal class is also 
present in both enteric plexuses[2].

In summary, neurons of the submucosal plexus innervate the mucosal epithelium 
and submucosal arterioles to control and maintain water and electrolyte balance, 
luminal secretion and vascular tone, whereas the myenteric plexus promotes motor 
innervation of both layers of the muscle region[5], controlling the reflex pathways of 
the motor complex[42]. However, it is worth noting that the former is present only in 
the small and large intestines, whereas the latter is found continuously from the initial 
esophageal region to the internal anal sphincter[4].

The great difference in ENS innervation is that because the enteric ganglia possess 
all the necessary components to generate and complete a complex reflex circuit 
(IPANs, interneurons, and motor neurons)[28,43], the ENS has the capacity to regulate 
GI functions even in the absence of extrinsic neural connections[43]. Therefore, several 
authors have confirmed that ENS action can occur independently of the CNS[4,24,26,
36,44,45], even though the latter often initiates or modulates some of the actions of the 
ENS[18,24,26].

However, according to Furness[5] and Furness et al[2], this autonomy does not 
actually occur. There are dependencies through interactions between local enteric 
reflexes, reflexes that pass through sympathetic ganglia, and reflexes that pass in 
return to the CNS[2,5]. Conveniently, these connections can be classified as vagal and 
thoracolumbar spinal, being represented by pre-enteric neurons that terminate inside 
the enteric ganglia, controlling and modifying the activities of neurons present there, 
or even by direct innervation of effector regions, e.g., the striated skeletal muscles of 
the esophagus and the sphincters of the GI tract[2].

All this structural and functional complexity characterizes the ENS as the largest 
and most varied division of the peripheral nervous system[46], leading initially John 
N. Langley[47] to recognize the ENS no longer as a distribution of parasympathetic 
postganglia but rather as a distinct segment of the autonomic nervous system that, due 
to its prominence, should stand alongside the sympathetic and parasympathetic 
divisions.

INFLAMMATORY BOWEL DISEASES AND THEIR IMPACTS ON THE 
ENTERIC NERVOUS SYSTEM
IBDs, classically subdivided into Crohn's disease and ulcerative colitis[48,49], are 
complex and multifactorial disorders characterized by chronic and recurrent inflam-
mation of the intestine[50,51]. Usually, debilitating[48], these disorders reach their 
peak onset in patients between the ages of 15 and 30 years[52], who, on a purely 
individual basis, may alternate between periods of symptomatic flares and clinical 
remission[49].

Although the etiology of IBDs is not yet fully understood[53,54], a growing body of 
evidence has suggested that the occurrence of IBDs is related to genetic predispos-
itions[55,56] and aberrant immune responses in the face of various environmental 
triggers[56,57], including antigens from the gut microbiota[56,58,59], poor dietary 
habits, and high antibiotic consumption in childhood and adolescence[57,60]. 
Worryingly, an increase in both the incidence and prevalence of IBDs has been 
reported worldwide[23,52,61,62], but this increase is even more pronounced in newly 
industrialized countries with more westernized societies[63,64].

Commonly, the symptoms of IBDs may include abdominal pain, diarrhea, rectal 
bleeding, and weight loss. Ulcerative colitis primarily affects the rectum and is limited 
to the superficial part of the large intestine mucosa[48], and Crohn's disease is 
manifested by transmural lesions that may extend from the mouth to the anus, 
promoting possibly irreversible damage[65]. Sometimes the appearance of and 
gradual increase in intestinal ulcers associated with cumulative destructive effects can 
cause stenosis, fistulas, and colorectal cancer[66-68]. Therefore, it is clear that IBDs 
have an expressive influence on the quality of daily life in these patients[20,21].

In this sense, several efforts are being made to more closely mimic these diseases in 
the laboratory through the use of animal models, either to understand the relationship 
between their pathophysiological components or to identify the mechanisms and 
drugs that mitigate the symptomatology[69]. For this, two main substances have been 
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used quite satisfactorily for colitis induction: dextran sulfate sodium (DSS) and 2,4,6-
trinitrobenzene sulfonic acid (TNBS). DSS is a soluble polysaccharide supplied in 
drinking water and chemically interferes with gut mucosal barrier integrity, allowing 
the dissemination of luminal antigens into underlying tissue. TNBS is a reagent 
administered rectally in combination with ethanol that disrupts the mucosal barrier, 
allowing TNBS to induce colitis by haptenating colonic proteins, causing them to 
become preferential targets for immune cells. In both cases, the onset of acute or 
chronic lesions is dependent on the concentration and/or the frequency of the 
administration of each substance[69-73].

Specific to the ENS, reports have pointed out that intestinal inflammation can cause 
functional and structural changes in neurons[74-76] and necrosis, apoptosis and 
degeneration in enteric ganglia[17,18,77]. In fact, different authors have already 
demonstrated important variations in the cell number and neuronal profile of 
inflamed areas when compared to healthy tissues (Tables 1 and 2). In addition, 
damage to intestinal innervation during the inflammatory course may cause organ 
functional losses through modifications in motility patterns, increased excitability with 
changes in synaptic transmission in neural microcircuits, inadequate secretory 
responses of the epithelium to incoming stimuli[18,78], and enteric cell death from 
dependence on multiple caspases[19,79,80]. Despite this, little is still known about the 
mechanisms behind the loss of enteric innervation linked to IBDs[76].

In view of the therapeutic management of IBDs, the introduction of anti-TNF agents 
has positively marked this path[81-83], especially as they favor the healing of the 
mucosal layer with increases in its growth with stimulation[84], and as they 
demonstrate a greater safety of use when compared to conventional protocols[81,82]. 
In this same context, the P2X7 receptor is also emerging as a very important medical 
target for the prevention and treatment of these disorders[10], possibly in a similar 
way to the above, since its continuous activation may worsen the local inflammatory 
response[85,86]. However, little is known about the real involvement between the 
activation of this purinergic receptor and the subsequent cascade of events and how all 
these activities associated with chemical signaling interfere with the functionality of 
the affected or treated intestine.

THE PURINERGIC RECEPTORS
ATP is the central nucleotide of body metabolism[87], one of the most abundant 
molecules in living cells[88], and despite being recognized as an energy substrate[87], 
ATP also acts systemically in conjunction with adenosine and adenosine diphosphate 
(ADP). As an example, ATP presents actions in the control of vascular tone and 
remodeling[89,90] and in growth, differentiation[91], and cell communication[87,88,92,
93].

Initially recognized for its fundamental role in several intracellular biochemical 
processes, the function of ATP as a neurotransmitter was greatly questioned when 
proposed by Geoffrey Burnstock in 1972[94]. In any case, the discovery of purinergic 
neurons - as they were named in reference to their relation with purine nucleotides[95] 
- answered the questions generated about the existence of neurons that are neither 
cholinergic nor adrenergic[36], and a high level of evidence has been reached on 
purinergic neurons in the scope of physiological and pathophysiological scientific 
research[92].

According to Burnstock[96], the presence of purinergic receptors was implicit in the 
hypothesis of this class of neurotransmission, and these receptors were classified into 
two types: P1 by the use of adenosine and P2 by the use of ATP and ADP. However, 
only in 1985 was it proposed on pharmacological grounds that this second type could 
be further subdivided into two other larger families[97]: P2Y, coupled with G-protein; 
and P2X, coupled with ion channel-dependent ligands[98]. Four subforms are 
currently recognized for P1 receptors (A1, A2a, A2b, and A3)[99], eight for P2Y 
receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14)[100], and seven 
for P2X receptors (P2X1-7)[101,102], making it plausible that purinergic receptors are 
the most abundant in mammalian tissues[103], found even in cells of neural origin[13,
93,103-107].

In the ENS, the presence of purinergic receptors has been widely recognized in 
enteric neurons and glial cells of humans and other animal species[13,14,108]. In the 
guinea pig, the P2Y1 receptor has already been identified in the submucosal plexus of 
the ileum[109], and the P2Y2, P2Y6, P2Y12, P2X2, and P2X3 receptors have been 
identified in the submucosal and myenteric plexuses of the stomach, jejunum, ileum, 
and distal colon[110-114].
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Table 1 Specific variations in cell number and neuronal profile area according to the respective chemical code observed in the 
submucosal plexus of the enteric nervous system

Ref. Species Colitis Time Submucosal plexus

Cellular chemical code (change in density 
compared to healthy tissues, %)

Cellular chemical code 
(change in profile area 
compared to healthy 
tissues, %)

Schneider et al
[169]

Human Crohn’s disease 6.1±6,3 years ChAT, nNOS, SP, and NSE (similar to); VIP (> 
16%-CT)

N/A

Sigalet et al[170] Rat TNBS-50% 
ethanol

5 d PGP9.5 (<)1; VIP (<)1; S100 β (<)1 N/A

da Silva et al[130] Rat TNBS-30% 
ethanol

24 h P2X7 (< 21%-CT; < 13%-sham) ; Calret (< 11.7%-
CT; < 8%-sham); Calb (< 34%-CT; < 30%-sham); 
HuC/D (< 33.4%-CT; < 28%sham); S100β (< 
44.2%-CT; < 33%-sham)

Calbindin (< 25%-CT/sham)

1Count change without percentage information.
TNBS: 2,4,6-trinitrobenzenesulfonic acid; N/A: Not applicable; (<): Cell count/area decreased; (>): Cell count/area increased; ir: immunoreactive; CT: 
Control group; Sham: Sham group; P2X7: P2X7 receptor; ChAT: Acetylcholine transferase enzyme-ir; nNOS: Neuronal nitric oxide synthase enzyme-ir; 
Calret: Calretinin-ir; Calb: Calbindin-ir; SP: Substance P-ir; VIP: Vasoactive intestinal polypeptide-ir; HuC/D and PGP9. 5: Pan neuronal-ir; NSE: Neuron-
specific enolase-ir; S100β: Protein β for calcium S100-ir labeling.

In mouse studies, P2X2, P2X3, and P2X5 receptors were identified in the 
submucosal and myenteric plexuses of the stomach, jejunum, ileum, and colon[11,115-
117]. In rats, P2X2 and P2X3 receptors have been demonstrated in the submucosal and 
myenteric plexuses from the stomach to the large intestine and rectum[118-123], and 
P2X6 receptors have been demonstrated in the submucosal plexuses of the jejunum, 
ileum, and proximal and distal colon and in the myenteric plexuses of the stomach, 
ileum, and proximal and distal colon[124].

Specifically, the P2X7 receptor has also been visualized in the submucosal and 
myenteric plexuses of the colon of humans[19] and in the submucosal plexus of the 
ileum and the myenteric plexus of the stomach and small and large intestines of 
guinea pigs[125]. In mice, the presence of the P2X7 receptor was identified in the 
myenteric plexus of the colon[19] and in rats in the submucosal and myenteric 
plexuses of the esophagus, stomach, jejunum, ileum, large intestine, and distal colon
[121,126-133]. Similar to the other purinergic receptors, the P2X7 receptor also presents 
a wide range of distributions in relation to enteric neurons with different chemical 
codes that integrate the ENS (Table 3).

The P2X7 receptor
The P2X7 receptor is a trimeric complex that typically contains 595 amino acids (594 in 
guinea pigs)[134,135]. The P2X7 receptor consists of two transmembrane domains 
(TM1 and TM2) linked by a large extracellular loop and by two intracellular domains 
known as the N-terminus and C-terminus[134,136]. The loop acts as a site for 
transition metal binding and assists in the activation of this receptor via ATP[136], 
allowing the channel formed by TM1 and TM2[86,135,137] to regulate the passage of 
calcium, sodium, and potassium[13,93,138]. The domains inside the cell modulate the 
functions and determine the kinetics of the depolarization and expansion of this 
channel[139]. It is worth noting that in the P2X7 receptor, the intracellular C-terminus 
is significantly longer than that in the other P2X receptors[134,136].

As another striking feature, the P2X7 receptor also demands higher concentrations 
of extracellular ATP for its activation than other purinergic receptors do[101], and this 
is a possible tissue "danger" sensor[101,140]. In response to inflammation[14,128], 
trauma or injury[91,141], the elevation of ATP causes a prolonged stimulus that 
induces the transition of the ion channel to a nonselective membrane pore[101,142,
143], making the cell permeable to molecules up to 900 daltons[94,101,142,143]. In 
association, massive calcium influx[144] can contribute to cell death[85,137,145], with 
subsequent release of greater amounts of ATP[146-148].

Thus, in addition to its already recognized role in neurotransmission[141], the P2X7 
receptor is also closely related to most diseases of the body[140], acting in multiple 
inflammatory processes[85,99, 149,150], immune responses[10,85,86,99,149,151], 
metabolism and cell proliferation[149]. The P2X7 receptor may also be responsible for 
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Table 2 Specific variations in cell number and neuronal profile area according to the respective chemical code observed in the 
myenteric plexus of the enteric nervous system

Ref. Species Colitis Time Myenteric plexus

Cellular chemical code (change in density 
compared to healthy tissues, %)

Cellular chemical code 
(change in profile area 
compared to healthy 
tissues, %)

Boyer et al[79] Mice DNBS-50% 
ethanol

0.5 - 120 h HuC/D (< 42%-CT) N/A

Linden et al[17] Guinea pig TNBS-30% 
ethanol

2 - 12 h;1-56 
d

HuC/D 12 and 24 h (< 15%-CT); HuC/D 6 and 
56 d (< 20%-CT); ChAT, nNOS, calret and NeuN 
6 d (=); VIP 6 (>)1 and 56 d (No differences)

N/A

Sarnelli et al[171] Rat TNBS-50% 
ethanol

7 d HuC/D (< 20%-CT) N/A

Gulbransen et al
[19]

Mice DNBS-50% 
ethanol

48 h HuC/D (< 32%-CT) N/A

Linden[77] Guinea pig TNBS-30% 
ethanol

24 h HuC/D (< approximately 20%-25%-CT) N/A

Da Silva et al[129] Rat TNBS-30% 
ethanol

24 h P2X7 (< 11%-CT); ChAT (< 34.9%-CT); nNOS (< 
42.3%-CT; < 18%-sham); Calret (< 60.6%-CT; < 
15%-sham); Calbindin (< 22.9%-CT); HuC/D (< 
33.3%-CT; < 16%-sham); S100β (< 29.2%-CT; < 
23%-sham)

nNOS (< 6.6%-CT/sham); 
ChAT (< 21.2%-CT/sham); 
Calbindin (>19%-CT); 
Calretinin (< 2%-sham)

Souza et al[133],2 Rat TNBS-30% 
ethanol

24 h P2X7 (< 10.6%-sham; < 20.4%-BBG); ChAT (< 
34%-sham; < 13.9%-BBG); nNOS (< 22.9%-sham; 
< 22.2%-BBG); HuC/D (< 15.4%-sham; < 19.5%-
BBG); GFAP (< 14.4%-sham; < 17.7%-BBG)

nNOS (< 12%-sham; < 8%-
BBG); ChAT and HuC/D (No 
differences)

1Change in count without percentage information.
2Data from ileum after colitis. DNBS: Dinitrobenzene sulfonic acid; TNBS: 2,4,6-trinitrobenzenesulfonic acid; N/A: Not applicable; (=): Similarity of cell 
count; (<): Cell count/area decrease; (>): Cell count/area increase; ir: Immunoreactive; CT: Control group; Sham: Sham group; BBG: Brilliant Blue G-
treated animals group; P2X7: P2X7 receptor; ChAT: Acetylcholine transferase enzyme-ir; nNOS: Neuronal nitric oxide synthase enzyme-ir; Calret: 
Calretinin-ir; VIP: Vasoactive intestinal polypeptide-ir; HuC/D: Neuronal pan-ir; NeuN: Neuronal nuclear antigen-ir; GFAP: Glial fibrillary acid protein-ir; 
S100β: Protein β for calcium S100-ir labeling.

triggering the stimulation of necrosis and apoptosis after neurological injuries[85,152,
153].

Most of the studies involving the ENS have demonstrated a decrease in the number 
of cells that are immunoreactive to the P2X7 receptor in the submucosal and myenteric 
plexus following ischemia/reperfusion in the ilea of rats [127,131,132] and intestinal 
inflammation in rats[128-130,133], mice, and humans[19]. Moreover, the alteration of 
these same neurons was observed in the ENS of the large intestine of rats subjected to 
undernourishment protein and renutrition[121].

Antonioli et al[128] also observed a higher intensity of immunofluorescence labeling 
of these cells in the myenteric ganglia of the distal colon of rats with experimentally 
induced colitis. These findings may reflect higher activation of the P2X7 receptor in the 
epithelium and lamina propria of the colon in response to inflammation[154] and in 
human patients with Crohn's disease or ulcerative colitis[155]. Moreover, it has 
already been shown that the P2X7 receptor also acts in regulating the activation of NF-
ҡB[148,154] and in the release of proinflammatory cytokines (IL-1β, IL-6, IL-18, and 
TNF)[148,154,156]. In addition, higher colocalization rates between the P2X7 receptor 
and dendritic cells, T cells, and macrophages in the epithelium and lamina propria of 
the inflamed colon in humans have also been reported[155].

Thus, it is highlighted that the P2X7 receptor can promote the occurrence and 
progression of IBDs, altering the local biological behavior[10] and acting as a key 
factor in the pathogenesis of ulcerative colitis and Crohn’s disease[19,154,157], 
sometimes even being responsible for neuronal loss[19,158]. Soon, effective pharmaco-
logical blockade of this receptor will emerge as a new target in the treatment of inflam-
matory conditions[99].
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Table 3 Specific distribution of the P2X7 receptor in relation to cells with different chemical code that integrate the enteric nervous 
system

Ref. Species Tissue Chemical cellular code (p2x7 
receptor expression, %)

Submucosal plexus Myenteric plexus

Hu et al[125] Guinea pig Ileum ChAT, calret, NPY and SP nNos, calret, calb, NPY, SP, and HuC/D

Hu et al[125] Guinea pig Stomach and 
intestines

N/A nNos, calret, calb, NPY, SP, and HuC/D

Vanderwinden et al[126] Rat Stomach, jejunum, 
and colon

S100β S100β

Gulbransen et al[19] Human and mice Colon + +

Girotti et al[121] Rat Large intestine P2X7 in 100% of ChAT, calret, and 
calb; ChAT (22.5%), calret (35%) and 
calb (12.7%)

P2X7 in 100% of ChAT, nNOS, calret, and 
calb; ChAT (12.7%), nNOS (35.7%), calret 
(17.6%) and calb (8.3%)

Palombit et al[127] Rat Ileum N/A P2X7 in 100% of ChAT, nNOS, calret, and 
calb; ChAT (42.2%), nNOS (24.5%), calret 
(33.5%), and calb (10.7%)

Antonioli et al[128] Rat Distal colon N/A P2X7 in 100% of HuC/D

Da Silva et al[129] Rat Distal colon N/A P2X7 in 100% of ChAT, nNOS, calret, calb, 
and S100β

Da Silva et al[130] Rat Distal colon P2X7 in 100% of calret, calb, HuC/D, 
and S100β

N/A

(+): P2X7 receptor positivity without cellular chemical code information; N/A: Not applicable; ir: Immunoreactive; ChAT: Acetylcholine transferase 
enzyme-ir; nNOS: Neuronal nitric oxide synthase enzyme-ir; Calret: Calretinin-ir; Calb: Calbindin-ir; NPY: Neuropeptide Y-ir; SP: Substance P-ir; HuC/D: 
Neuronal pan-ir; NF200: Neurofilament 200-ir; GFAP: Glial fibrillary acid protein-ir; S100β: Protein β for calcium S100-ir labeling.

THERAPEUTIC APPROACHES TO THE TREATMENT OF INFLAMMATORY 
BOWEL DISEASES THROUGH THE P2X7 RECEPTOR
Positive results from the use of P2X7 receptor antagonists have already been dem-
onstrated in the treatment of ischiatic nerve lesions in mice[159], in brain infarction by 
middle cerebral artery occlusion in rats[160], and in ileal ischemia and reperfusion in 
rats[131]. During experimentally induced colitis, intraperitoneal application of Brilliant 
Blue G (BBG) significantly reduced weight loss in rats, the score of mucosal lesions 
observed through colonoscopy, the macro- and microscopic degrees of inflammation, 
the number of inflammatory cells, and the deposition of collagen fibers in this organ. 
Lower levels of P2X7 receptor expression in the epithelium and lamina propria and 
lower levels of cell apoptosis in the distal colon epithelium were also demonstrated by 
terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. In 
addition, there was a stabilization of low concentrations of TNF-α, IL-1β and NF-ҡB, 
elementary members of this inflammatory process[154]. BBG was also effective in 
protecting intestinal regions distant from the inflammatory focus, as in the case of 
ileum in relation to distal colitis[56].

Moreover, in the context of colitis, various P2X7 receptor antagonists also slowed 
disease progression and reduced NF-ҡB activation, Caspase-1 expression, and concen-
trations of TNF and IL-1β in the mouse intestine[148]. Microscopic changes[148,154], 
changes in colonoscopy examination findings[154] and the loss of tight junctions due 
to inflammatory-cytokine-induced damage were also ameliorated[161]. In knockout 
(KO) mice, there was also an increase in specimen weight and reductions in 
histological lesions[155], with a greater preservation of the epithelial barrier, compared 
to wild-type (WT) animals[162]. Basically, there was no development of this disease in 
P2X7 receptor KO animals after the induction of inflammation[155,162].

Although all these therapeutic advances are exceptionally remarkable, only Eser et 
al[163] evaluated the use of some P2X7 receptor antagonists in humans with IBDs - a 
phase IIa study conducted specifically with patients in moderate to severe stages of 
Crohn's disease. According to the authors, the drug AZD9056 was well tolerated, and 
although it did not alter the concentrations of C-reactive protein or fecal calprotectin 
when compared to placebo, it caused a significant improvement in the Crohn's Disease 
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Activity Index (CDAI) and showing favorable effects on the remission of the disease 
and marked reduction in abdominal pain during the treatment period[163].

Taken together, this information reinforces the characterization of the P2X7 receptor 
as a promising target for the treatment of intestinal inflammatory conditions[14,127-
133,148,154,155], especially in view of not only its wide expression in macrophages[10,
164,165], mast cells[166] and T cells[10,162] but also its their strong involvement in the 
activation of caspases[167] and the release and regulation of transcription factors and 
pro-inflammatory cytokines[168,165].

CONCLUSION
It is concluded that IBDs are capable of aggressively and negatively affecting the 
cellular constituents of the ENS, and further studies are required in this area since 
knowledge in this area can still be considered, in a certain way, scarce. Studies of 
structural losses and/or structural deregulations in the enteric plexus may answer 
numerous questions about intestinal functionality, and therefore, the performance of 
these studies is of fundamental importance. Thus, it is also clear that the therapeutic 
approaches carried out through the P2X7 receptor have contributed to the 
advancement of this knowledge, but unfortunately: (1) We cannot fail to highlight that 
clinical trials with human patients are still lacking; (2) A better elucidation of the 
chemical signaling and functional regulation of immune cells upon the activation of 
this receptor is required; and (3) More quantitative studies on the structural 
components of the ENS involved in colitis and in its treatment are also required.
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