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Abstract
Strong evidence supports the concept of immunosur-
veillance and immunoediting in colorectal cancer. In 
particular, the density of T CD8+ and CD45+ lympho-
cyte infiltration was recently shown to have a better 
prognostic value than the classic tumor node metas-
tasis classification factor. Other immune subsets, as 
macrophages, natural killer cells or unconventionnal 
lymphocytes, seem to play an important role. Induc-
tion of regulatory T cells (Tregs) or immunosuppressive 
molecules such as PD-1 or CTLA-4 and downregula-
tion of antigen-presenting molecules are major escape 
mechanisms to antitumor immune response. The de-
velopment of these mechanisms is a major obstacle to 
the establishment of an effective immune response, 
but also to the use of immunotherapy. Although im-

munotherapy is not yet routinely used in colorectal 
cancer, we now know that most treatments used (che-
motherapy and biotherapy) have immunomodulatory 
effects, such as induction of immunogenic cell death 
by chemotherapy, inhibition of immunosuppression by 
antiangiogenic agents, and antibody-dependent cyto-
toxicity induced by cetuximab. Finally, many immuno-
therapy strategies are being developed and tested in 
phase Ⅰ to Ⅲ clinical trials. The most promising strate-
gies are boosting the immune system with cytokines, 
inhibition of immunoregulatory checkpoints, vaccina-
tion with vectorized antigens, and adoptive cell thera-
py. Comprehension of antitumor immune response and 
combination of the different approaches of immuno-
therapy may allow the use of effective immunotherapy 
for treatment of colorectal cancer in the near future.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Immune system is now widely accepted as a 
key mechanism to prevent occurrence of cancer and 
intratumoral T CD8+ and CD45+ lymphocytes infiltrate 
has shown to be a major prognosis factor in colorectal 
cancer. However, immunity fail in controlling tumor 
growth, because of strong escape mechanisms to the 
immune system developed by the tumor. In recent 
years, several immunotherapy strategies have been 
tested in colorectal cancer. This review provides an un-
derstanding of the mechanisms involved and identifies 
innovating therapeutic strategies.
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INTRODUCTION
With around 1 million new cases every year, colorectal 
cancer (CRC) is the third most frequent cancer in the 
world. Despite recent therapeutic advances it causes 
more than 500000 deaths every year. So there is a real 
need for therapeutic progress to reduce the risk of  re-
currence after surgery or prolong survival of  patients 
with metastatic disease. Advances could be provided 
by understanding the role and mechanisms of  the im-
mune response in CRC and by the development of  im-
munotherapy. Indeed there is growing evidence that the 
immune system may play a role in preventing the occur-
rence, growth and metastatic diffusion of  tumors.

The aim of  this review is to provide a comprehensive 
analysis of  known mechanisms of  immune response 
against CRC and immune escape strategies developed by 
tumor cells, and to present current and future perspec-
tives in immunotherapy for CRC. In particular we will 
focus on the following questions: (1) What is the clini-
cal and prognostic impact of  natural immune response 
mechanisms? (2) What are the escape mechanisms de-
veloped by the tumor which limit the efficiency of  the 
immune system and/or immunotherapy? (3) What is the 
impact of  the immune system in the therapeutic effect 
of  current standard treatments? or (4) Can we in the fu-
ture develop effective immunotherapy for CRC manage-
ment?

BASIC CONCEPTS IN ANTITUMOR 
IMMUNITY
Immune surveillance
The role of  immunity in cancer was suspected in 1909 
by Ehrlich, who speculated that the immune system can 
repress the growth of  carcinomas. About 50 years later, 
Macfarlane Burnet and Lewis Thomas elaborated the 
concept of  immunosurveillance, as the capacity of  the 
immune system to promote an effective immunologic re-
action to tumor cell-specific neoantigens that eliminates 
developing cancer before clinical expression.

However, this concept of  immunosurveillance has 
long been questioned. When Hanahan established the 
six criteria necessary for the development of  a tumor in 
2000, immunity was not cited.

In humans, the role of  immune surveillance was first 
suspected with observation of  increased occurrence of  
cancer in patients with immunodeficiency. Cohorts of  
transplanted patients and HIV-infected subjects in par-
ticular showed a strong increase in the incidence of  can-
cers[1,2]. But in humans as in murine models the increase 
in occurrence of  neoplasias has long been explained as a 
consequence of  carcinogenesis related to certain infec-

tious pathogens (EBV, HPV, HIV...). However, mela-
noma, renal, lung, pancreatic and colon cancer are non-
pathogen-related and an increased incidence of  these 
tumors was reported in immunocompromised patients. 
Registries and meta-analyses of  solid organ transplant re-
cipients have shown an increased risk of  CRC[3,4] with a 
standardized incidence ratio of  1.2 to 1.8, this increased 
risk is more controversial in HIV-infected patients[5].

The anti-tumor immunosurveillance concept was 
finally demonstrated in animal models by Shankaran 
et al[6], who observed the occurrence of  spontaneous 
neoplasias in immunocompetent or immunodeficient 
mice. Mice were kept under aseptic conditions for 15 
to 21 mo. During this observation period immuno-
competent mice did not develop any malignant tumors, 
while RAG2-/- mice deficient in T and B lymphocytes 
developed malignant colon and lung tumors (not known 
to be associated with an infectious agent) in about 50% 
of  cases, and RAG2-/- STAT1-/- mice deficient in T 
and B lymphocytes and insensitive to IFNγ developed 
neoplasia in 80% of  cases. Since then, many studies have 
shown the involvement, depending on the model, of  the 
innate and/or adaptive immune response in the protec-
tion against the occurrence of  malignant neoplasms.

Immunoediting and immune escape
The immunosurveillance concept was then completed 
by that of  immunoediting[7], which describes the interac-
tions between the immune system and the tumor, allow-
ing cancer cells to escape immune surveillance. The se-
lection pressure exerted by the immune system on tumor 
cells allows the emergence of  resistant clones. According 
to the theory of  immunoediting, immune escape occurs 
in three phases: the immunosurveillance period with the 
elimination of  tumor cells by the immune system, the 
latency period, corresponding to a state of  equilibrium, 
and the phase of  escape, allowing tumor progression 
and clinical expression.

ANTITUMOR IMMUNITY IN COLORECTAL 
CANCER
Innate immunity
Natural killer (NK) cells play a crucial role in pre-
venting recurrence, and are a prognostic factor: NK 
cells play a major role in the immune response to cancer. 
They help to prevent tumors, and control tumor growth 
and dissemination, as shown in murine[8,9] and human 
models[10,11]. NK cells have 2 types of  receptors: activat-
ing receptors, including NKG2D, and killer inhibitory 
receptors (KIR). The NKG2D receptor can bind dif-
ferent activating ligands overexpressed on cancer cells. 
On the other hand, KIR recognize major histocompat-
ibility (MHC) class Ⅰ molecules and NK cells can thus 
also be activated by the decreased expression of  MHC 
class Ⅰ molecules reported on cancer cells. These two 
mechanisms can activate NK cells against tumor cells. In 
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addition, NK cells may exert a cytotoxic effect against 
cancer cells through other mechanisms such as antibody-
dependent cell-mediated cytotoxicity (ADCC), and se-
cretion of  cytokines including IFNγ[12].

In CRC, an extensive intratumoral infiltration of  NK 
cells has been reported to be associated with a better 
prognosis[13]. Moreover, a direct correlation between in-
creased outcome and NK cell infiltrates is suggested[14]. 
In particular, NK cells could be involved in protection 
against cancer-initiating cells (CICs)[15]. CICs are char-
acterized by slow growth and resistance to drugs and 
radiation, and play a crucial role in tumor recurrence. 
Recent data suggest that CICs are more sensitive to NK 
cells because they strongly express activating ligands as 
NKP30 and NKP44 and express low levels of  MHC 
class Ⅰ molecules.

Unconventional lymphocyte T cells: Natural Killer 
T (NKT) cells share characteristics of  both NK cells 
and T cells. They recognize glycolipid antigens like 
α-galactosylceramide presented by CD1d, an MHC class 
1-like molecule. When activated, NKT cells secrete abun-
dant pro-inflammatory cytokines and effector molecules 
involved in cell death (perforin, Fas-L, TRAIL). Increased 
tumor infiltration of  NKT cells is associated in CRC with 
a better prognosis[16].

Human γδ T cells (γδ T cells) express a receptor to 
antigens combining a γ chain and a δ chain. This recep-
tor can recognize different antigens usually in a non-
MHC-restricted way, such as heat shock proteins or 
phosphorylated metabolites generated by tumor cells. 
γδ T cells been demonstrated to have a strong cytotoxic 
activity against tumor cells in CRC[17].

Macrophages: Tumor infiltrating macrophages (TIM) 
can be divided into two different subtypes with different 
roles in cancer[18]. M1 TIMs are intimately involved in in-
nate immunity, as they target altered cells, produce pro-
inflammatory molecules (IL-6, IL-12, IL-23 and TNFα) 
and promote adaptive immunity through increased 
expression of  MHC and costimulatory molecules. They 
may also target tumor cells linked to antibodies because 
they express a receptor for immunoglobulin constant 
fragments (ADCC). Activated M2 TIMs are engaged 
in wound healing and can promote tumor progres-
sion through immunosuppressive cytokines (IL-10 and 
TGFβ). While infiltration by macrophages is generally 
a poor prognostic factor in different types of  cancer, in 
CRC it seems to be associated with a better prognosis[19], 
suggesting that antitumorigenic properties dominate in 
vivo.

Adaptive immunity
A specific antitumor response is generated by the adap-
tive immune system, and in particular by αβ T cells. 
Briefly, the antigen-presenting cells (APCs), mainly den-
dritic cells (DCs), capture, process and present tumor 
antigens to CD4 T cells through MHC class Ⅱ or to 

CD8 T cells through MHC class Ⅰ. Activation of  T cells 
requires 3 signals: (1) recognition of  antigenic peptide 
presented by the APCs; (2) activation of  costimulatory 
molecules (CD80/CD28, CD40/CD40L); and (3) re-
cruitment of  cytokines (IL-1, IL-2, IL-6, IL-12, IFNγ). 
Activated CD8 T cells can recognize and lyse tumor 
cells. Activated CD4 T cells modulate the antitumor im-
mune response. They differentiate into different cell sub-
groups: The Th1 response allows secretion of  cytokines 
that promote the antitumor response, as IL-2 or IFNγ, 
whereas the Th2 response favors tumor growth. The 
Th17 subset secretes large amounts of  IL-17. Its role 
in the immune response against cancer is controversial. 
Finally, a subset of  CD4+ T cells called regulatory T cells 
(Tregs) and characterized by the expression of  CD25 
and Foxp3, inhibit the immune response and represent 
a widely described mechanism whereby the tumor can 
escape the immune system.

Tumor-associated antigens allow recognition of  
tumor cells by the immune system: Many cells and 
molecules are involved in immunosurveillance, they may 
be linked to the host or the tumor. First, tumor-associated 
antigens (TAAs) allow an immune response mediated by 
the humoral and cellular immunity. Several types of  TAAs 
are expressed by the tumor. In CRC, the most frequent 
TAAs are normal self-antigens, expressed at low levels in 
normal cells and in embryonic tissues and at high levels 
in tumor cells. The most famous of  them is the carcino-
embryonic antigen (CEA), which is normally expressed 
in fetal tissue, and widely overexpressed in CRC[20]. If  it 
has been shown initially that CEA can lead to a specific 
cytotoxic response[21], more recent works have shown that 
CEA may have an immunosuppressive role and that T 
cells of  patients with CRC were not activated by the pre-
sentation of  this antigen in vitro[22]. Other self-antigens are 
thought to be immunogenic in CRC, as Ep-Cam HER-2/
neu[23], MUC-1 and p56. Immune responses against 
some neo-antigens, generated by mutations (tp53, Kras) 
or against antigen MAGE-3, belonging to the family of  
“cancer testis antigen” normally expressed by germ cells, 
have been less frequently identified[21].

TAAs, which likely play an important role in immu-
nosurveillance, are also potential targets for immuno-
therapy in vaccination strategies.

Microsatellite instability CRC is associated to immu-
nogenic TAAs: Microsatellite instability (MSI) is asso-
ciated with CRC in patients with Lynch syndrome, but 
also with sporadic cancer, in particular in elderly patients, 
and is observed in 5% to 25% of  CRC patients depend-
ing on tumor stage. MSI tumors are associated with a 
high density of  tumor infiltrating lymphocytes (TILs)[24,25], 
and have a better prognosis than CRC without a micro-
satellite instability phenotype[26].

MSI induces frameshift somatic mutations within 
target genes harboring repeated sequences in their coding 
frame, including TGFβR2, which is mutated in 90% of  
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cases. These mutations lead not only to the inactivation 
of  these target genes but also to the appearance of  po-
tentially immunogenic neoantigens. Indeed, disruption of  
the reading frame of  TGFβR2 results in a new epitope 
(RLSSCVPVA) and in specific T cells to this epitope in 
tumors and peripheral blood of  patients with MSI tu-
mors[27]. Other MSI-associated mutations, as mutations 
of  OGT[28], MSH3[29] caspase 5, ASTE1 and PTEN, have 
been shown to induce production of  new immunogenic 
TAAs. Tougeron et al[30] studied 19 frequently mutated 
genes in CRC with MSI. In samples of  stage Ⅱ or Ⅲ 
MSI tumors, an increased number of  mutated genes 
was correlated with a high density of  TILs. Mutations 
of  ASTE1 and PTEN were particularly associated with 
increased lymphocyte infiltrate. These results suggest 
an important role of  the immune response to specific 
neoantigens in CRC with MSI, and its potential involve-
ment in the better prognosis of  these tumors. Never-
theless, CRC associated with MSI may develop specific 
mechanisms to escape the immune system as for example 
particularly high levels of  intratumoral Treg described in 
these patients[31]. Frameshift mutations can also induce 
inactivation of  beta2-microglobulin leading to HLA class 
Ⅰ downregulation[32,33] though the association between 
HLA class Ⅰ downregulation and MSI is still controver-
sial. Altogether, CRC associated with MSI could lead to 
a more intense immune response, but also to specific 
immunoregulatory phenomena, making them good can-
didates for immunotherapy.

Tumor infiltrate of  memory CD8 T cells and CD45RO 
memory T cells may predict recurrence: The role of  
cytotoxic CD8 T cells has been widely studied in CRC. 
Tumor-infiltrating lymphocytes (TILs) are central to the 
antitumor immune response. The prognostic role of  the 
immune response has been analyzed in a large cohort of  
resected patients.

Pagès et al[34] showed that the absence of  pathological 
signs of  early metastatic invasion (venous, lymphatic and 
perineural invasion) was associated with increased infil-
trates of  immune cells and increased levels of  messenger 
RNA (mRNA) for products of  Th1 effector T cells.

The density of  TILs, characterized by CD3 immu-
nostaining, has been reported to be more predictive of  
overall survival than all the usual histopathologic prog-
nostic factors (i.e., UICC-TNM classification)[35]. Five-
year overall survivals in patients with high, intermediate 
or low CD3+ TILs density were of  72.6%, 49.5% and 
29.9%, respectively. In multivariate analysis, the density 
of  TILs was still an independent prognostic factor, while 
TNM classification was no longer an independent factor 
after adjustment for the density of  TILs.

Regarding phenotype, TILs were increased in tumors 
without signs of  early metastatic invasion, especially 
memory CD8 T cells (CD45RO+), ranging from early 
memory to effector memory T cells[34]. Finally, increased 
levels of  CD45RO+ correlated with increased overall 
survival and increased disease-free survival. In this large 

cohort, patients who had tumors with a high density of  
CD45RO+ cells or with a low density of  CD45RO+ cells 
had a median disease-free survival of  respectively 36.5 
mo and 11.1 mo, and a median overall survival of  respec-
tively 53.2 mo and 20.6 mo (P < 0.001 for all compari-
sons). In multivariate analysis, the density of  CD45RO+ 
cells was still an independent prognostic factor.

Based on these results, an immune score based on 
immunostaining has been elaborated, considering 4 den-
sities: density of  CD8+ T infiltrates in the center of  the 
tumor (CT), in the invasive margin (IM), and density of  
memory CD45RO+ cells in the CT and in the IM. This 
immune score was first studied in early-stage tumors 
(stages Ⅰ and Ⅱ)[36]. Patients with a high density of  both 
CD8+ and CD45RO+ cells in both the CT and IM had 
a disease-free survival of  95.2%, compared with 25% in 
patients with a low density of  both CD8+ and CD45RO+ 
cells in both regions. This immune score was validated 
in a cohort of  599 specimens of  stage Ⅰ to Ⅳ CRC[37]. 
In this study, assessment of  immune score was a better 
predictor of  tumor recurrence (HR = 0.64; P < 0.001) 
than TNM classification. However, the immune infiltrate 
is highly heterogeneous in a tumor, and quantification 
is observer-dependent. To simplify and harmonize the 
quantification of  immune infiltrate, automated quantifi-
cation of  CD3+ cells can be used. Linear quantification 
of  lymphocytes has been shown to be predictive of  dis-
ease-free-survival in multivariate analysis with very good 
inter-observer reproducibility[38]. However, other teams 
have not confirmed these results yet and major informa-
tion are lacking in this large retrospective series such as 
age, MSI status or the use of  adjuvant therapy. Despite 
these promising results, there is still no immune quanti-
fication test in routine practice to use immune infiltrate 
to guide our therapeutic strategies. This underlines the 
difficulty to find a standardized and reproducible test 
that complies with daily practice. Such tests should be of  
particular interest for clinicians, especially for stage Ⅱ 
patients for whom the indication for adjuvant treatment 
is more controversial.

MECHANISMS OF IMMUNE SYSTEM 
ESCAPE IN COLORECTAL CANCER
Human leukocyte antigen class Ⅰ downregulation is 
associated with a poor prognosis
Expression of  Human Leukocyte Antigen class Ⅰ (HLA-
Ⅰ), the human MHC, class Ⅰ molecules is downregu-
lated in more than 70% of  colorectal tumors[39]. In a few 
cases there is complete loss of  HLA-Ⅰ on tumor cells. 
Total loss of  HLA-Ⅰ mainly results from beta2-micro-
globulin inactivation in MSI tumors and LMP7/TAP2 
downregulation in MSI-negative tumors[33]. Downregu-
lation can result from loss of  HLA haplotypes due to 
chromosomal nondisjunction or mitotic recombination, 
loss of  HLA locus expression, or allelic loss due to point 
mutations or partial deletions of  HLA-Ⅰ genes. The 
prognostic significance of  HLA-Ⅰ downregulation has 
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been reported in a large cohort of  CRC cases[40]. Tumors 
with low expression of  HLA-Ⅰ were associated with a 
significantly shorter mean disease-specific survival (41 
mo, 95%CI: 26-56) compared with tumors with high 
expression of  HLA-Ⅰ (68 mo, 95%CI: 63-74). Surpris-
ingly, patients with a tumor with complete loss of  HLA-
Ⅰ expression had a similar prognosis to those with 
high expression (mean disease-specific survival 60 mo, 
95%CI: 50-69). This is possibly related to the high activ-
ity of  NK cells against HLA-Ⅰ-negative tumor cells. 
Killer inhibitory receptors, which are inhibitory recep-
tors on NK cells, are dependent on MHC class Ⅰ, then 
NK cells are activated in the absence of  MHC class Ⅰ. 
Tumor cells with downregulation but not complete loss 
of  HLA-Ⅰ expression could therefore avoid both T-cell- 
and NK-cell-mediated immune surveillance, and may be 
associated with a poor prognosis.

Induction of regulatory T cells
Induction of  immunosuppressive cells is a major mecha-
nism in escape from the host immune system. Tregs are 
characterized by expression of  CD4, CD25, and Foxp3. 
In healthy individuals, role of  Tregs is to prevent auto-
immune disorders. In patients with cancer, Tregs could 
block the immune response against tumors through 
cytokine-dependent or cell-cell contact mechanisms. 
Tregs secrete immunosuppressive cytokines as IL-10 and 
TGFβ and immunosuppressive metabolites such as ad-
enosine. The role of  Tregs in cancer was first suspected 
from the observation of  increased Tregs in peripheral 
blood and tumor tissue.

Strong Treg infiltration of  tumors is generally associ-
ated with poor clinical outcome[41]. Elevated blood and 
tumor Treg numbers have also been described in CRC[42]. 
In some studies increased density of  tumor-infiltrating 
Tregs is associated with a better prognosis[43], although 
in others elevated peritumoral numbers of  CD4 and 
CD8 Tregs are associated with advanced-stage tumors 
and poorer overall survival[44]. This difference may be 
related to the heterogeneity of  methods for characteriza-
tion and quantification of  Tregs and the use of  more 
reliable techniques such as flow cytometry have shown 
the deleterious role of  Tregs. In murine models of  CRC, 
systemic removal of  Tregs using anti-CD25 antibody re-
sults in tumor rejection and in improved vaccine-induced 
antitumor T-cell responses[45,46]. In human models, in vitro 
Treg depletion from peripheral blood of  patients with 
CRC induces CD4 and CD8 T-cell responses against 
tumor-associated antigens[47,48]. Altogether, there is con-
siderable evidence that Tregs are associated with a poor 
outcome in CRC.

Accumulation of  Treg in tumors could be explained 
by several mechanisms[49]. The first mechanism is the 
conversion of  conventional CD4+ T cells into Treg in re-
sponse to various signal, especially secreted or membrane 
TGFβ. Tumors can also induce a preferential recruitment 
of  Treg in tumors through the production of  chemo-
kines such as CCL17, CCL22 and CCL28[50,51]. VEGF-A 

secreted by tumor in response to hypoxia seems also 
to play a crucial role in tumor-induced Treg. VEGF-A 
inhibits maturation of  DC. Immature DC, which can 
express TGFβ, can favor the conversion of  conventional 
T cells into Treg[52,53]. VEGF-A can also directly promote 
expansion of  Treg through VEGFR-2 expressed on the 
cell membrane of  a Treg subgroup[54]. Recent data sug-
gest that the number of  intratumoral FOXP3+/VEGR-2+ 
Tregs is more predictive of  recurrence and survival than 
the number of  FOXP3+ alone in CRC[55].

Other escape mechanisms
Other escape mechanisms are suspected in CRC (Figure 
1). B7-H1, or PD-L1, is a costimulatory molecule known 
to regulate T cell function negatively by interaction with 
PD-1. B7-H1 is strongly expressed in CRC[56] and is as-
sociated with poor prognosis[57]. B7-H1 may thus play an 
important role in tumor cell proliferation, apoptosis, mi-
gration and invasion. Other molecules, such as CTLA-4, 
are involved T lymphocytes inhibition. CTLA-4 is ex-
pressed on the surface of  T lymphocytes, and its ligands, 
CD80 and CD86, are expressed on the surface of  APCs. 
Expression of  these molecules, called “immune check-
points”, are important mechanisms of  inhibition of  anti-
tumor immune response. Recently some monoclonal 
antibodies targeting these molecules (PD1, CTLA-4) 
have shown more than promising efficacy results in solid 
neoplasia such as melanoma and others[58-60].

Myeloid-derived suppressor cells (MDSC) are im-
munosuppressive cells. As Tregs, they contribute to the 
immune tolerance by inhibiting the function of  CD8+ T 
cells. The prognostic value of  MDSC is not well known, 
but they are thought to be deleterious, as elimination of  
MDSC in mouse tumor models was shown to enhance 
antitumor responses, resulting in tumor regression[61].

IMPACT OF ANTICANCER TREATMENTS 
ON IMMUNITY IN COLORECTAL CANCER
Chemotherapy induces immunogenic cell death
Some cytotoxic chemotherapy are known to induce im-
munogenic cell death. In CRC murine models and hu-
man tissues, oxaliplatin- but not cisplatin-based chemo-
therapy can trigger pre-apoptotic calreticulin exposure 
and the post-apoptotic release of  high-mobility group 
box 1 protein (HMGB1), two signals which are required 
for immunogenic cell death[62]. DCs have several recep-
tors for HMGB1, including Toll-like receptor 4 (TLR4). 
In a murine model with CT26 tumor cells, oxaliplatin-
treated dying cells failed to elicit an antitumor immune 
response in TLR4-deficient mice, while TLR4+/+ con-
trols were protected against rechallenge with the same 
cancer cells. Twelve to 14% of  Caucasian patients pres-
ent the loss-of-function allele of  TLR4. In patients from 
the FFCD 2000-05 randomized trial (Ducreux lancet 
Oncol) with stage Ⅳ CRC and treated with an oxalipla-
tin-based combination, the TLR4 loss-of-function allele 
was associated with reduced progression-free and overall 
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survival, as compared with patients carrying the normal 
TLR4 allele[63]. This allele, however, was not associated 
with disease-free survival in another cohort of  patients 
who underwent surgery for CRC stage Ⅱ and who did 
not receive chemotherapy, suggesting that TLR4 is pre-
dictive of  chemotherapy effectiveness, but is not a prog-
nostic factor.

Other check-points, such as the P2X7 receptor (P2RX7), 
which has a high affinity for ATP released by dying tu-
mor cells and carried by DCs, are required for the anti-
cancer immune response induced by chemotherapy and 
could modulate susceptibility to treatments[64].

Others immune mechanisms could be induced by cy-
totoxic chemotherapy. It has been shown in murine model 
that 5-fluorouracil could lead to a decrease of  MDSC 
in the spleen and tumors in vivo, combinate to a T cell-
dependent antitumor responses[61], but the therapeutic 
impact is not well established.

All these data suggest that the immune system may 
participate to the therapeutic effect of  chemotherapy in 
CRC but should be confirmed in future works prospec-
tively dedicated to this question.

Anti-VEGF therapy inhibits Treg expansion
As seen above, tumors can induce immunosuppressive 
cell populations such as Tregs. It is now well estab-
lished that antiangiogenic agents decrease Treg numbers 
in blood and tumors. In peripheral blood of  patients 
with renal carcinoma and different models of  tumor-
bearing mice, sunitinib reduces Treg numbers, and the 
decrease in Tregs is associated with overall survival in 
patients series[65,66]. In a recent study, we investigated the 

immunomodulatory effect of  antiangiogenic agents in 
a mouse model of  colon cancer[54]. Tregs decrease to 
their physiological level after treatment with sunitinib or 
VEGF-A antibody. However, after masitinib treatment, 
a multi-target tyrosine kinase inhibitor close to sunitinib 
but not targeting the VEGFR, Tregs were not reduced. 
VEGFR-2- but not VEGFR-1-specific blockade led 
to the same results. These results suggest that target-
ing the VEGF-A/VEGFR-2 pathway is sufficient to 
decrease Tregs in murine models of  CRC. Bevacizumab 
directly inhibits this pathway and has been widely used 
in CRC since 2004[67]. In patients with metastatic CRC, 
we found that bevacizumab inhibited Treg accumulation 
and proliferation in peripheral blood. Antiangiogenic 
agents could act on other immunosuppressive cells, 
such as myeloid-derived suppressor cells and exhausted 
T cells[68]. Once again it is difficult to argue that the im-
munomodulating effect of  bevacizumab in patients with 
CRC has an impact on its therapeutic efficacy. But in the 
future Tregs monitoring could help to predict response 
to bevacizumab. Furthermore this immunomodulatory 
effect of  anti-angiogenic agents could be used to poten-
tiate immunotherapeutic strategies.

Activity of cetuximab may depend in part on ADCC
Monoclonal antibodies used in therapeutics act on spe-
cific receptors to inhibit growth pathways. Some may 
also induce immune phenomena related to the charac-
teristics of  natural antibodies. In particular, cetuximab 
(chimeric IgG1 monoclonal antibody) binds epidermal 
growth factor (EGFR) and is used in RAS wild type met-
astatic CRC. It has been suggested that cetuximab, in ad-
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dition to direct inhibition of  EGFR, may act via ADCC. 
ADCC allows the antitumor innate immune response 
but can also trigger the adaptive immune response[69]. In 
vivo, addition of  CpG, a TLR9 agonist able to activate 
DCs, increases immune response to cetuximab and its 
therapeutic efficacy.

Single nucleotide polymorphisms (SNPs) in the cod-
ing region of  FCγR2A or FCγR3A have been reported 
to correlate with responses to cetuximab. The role of  
FCγR2A H/H or FCγR3A Ⅴ/Ⅴ genotypes is especially 
controversial[70]. Three studies in metastatic CRC showed 
a beneficial effect of  FCγR3A Ⅴ/Ⅴ polymorphisms, 
and two of  these studies also showed a beneficial role 
of  FCγR2A H/H polymorphism. These polymorphisms 
were associated with better progression-free survival or 
objective response rate in patients treated with cetuximab. 
However, three other studies reported that FCγR3A Ⅴ
/Ⅴ polymorphism was associated with shorter survivals 
in patients treated with cetuximab.

IMMUNOTHERAPY IN CRC
As in other cancers, immunotherapy could represent a 
step forward in the treatment of  CRC.

Several strategies are being investigated in the treat-
ment of  CRC. They are presented in Figure 2. Some 
have already been tested in clinical trials or are currently 
being tested in ongoing trials (Table 1).

Association of chemotherapy and nonspecific 
immunotherapy
Nonspecific immunotherapy consists of  stimulation of  
host immunity with cytokines such as interferon (IFN), 
interleukins or GM-CSF. A phase Ⅱ study tested the 
combination of  GM-CSF, gemcitabine and FOLFOX 
(GOLFIG regimen) in 46 patients in first- to third-
line treatment[71,72]. This regimen was safe and active 
in pretreated patients. Prolonged survival and time to 
progression were associated with signs of  autoimmunity 
and with an increase in memory T-cells and a decrease 
in Tregs in the peripheral blood of  patients. A phase 
Ⅲ study compared GOLFIG with FOLFOX[73]. The 
study was ended prematurely as an intermediate analysis 
showed significant superiority of  GOLFIG over FOLF-
OX chemotherapy in terms of  response rate (59.3% vs 
34.4%, P = 0.0001) and progression-free survival (12.4 
mo vs 7.9 mo, HR = 0.64, P = 0.0105). Autoimmunity 
signs, tumor infiltration by Tregs and central memory T 
cells were independent predictive markers of  efficacy in 
this work.

Vaccination trials
Vaccination against tumor antigens: Few phase Ⅱ tri-
als involving antigen vaccination have been reported in 
the setting of  CRC. Immunization with β-human cho-
rionic gonadotropin (βHCG) peptide vaccine in mostly 
pretreated patients with metastatic CRC induced anti-
hCG antibody in 56 of  the 77 patients. High levels of  

antibody were associated with significantly longer sur-
vival[74]. Other adjuvant vaccinations with antigen were 
studied. Immunization with CEA after curative resection 
of  hepatic metastases did not improve 2-year recurrence-
free survival[75]. A pilot study of  adjuvant vaccination 
with a mutant RAS peptide in KRAS mutated stage Ⅱ 
and Ⅲ CRC induced a specific immune response with 
increased IFN-γ mRNA expression in 4 out of  7 pa-
tients and was well tolerated[76]. Several ongoing phase Ⅰ
/Ⅱ studies are studying antigen vaccines using various 
peptides, as mucinous glycoprotein 1 (MUC, L-BLP25), 
MSI, or HER2neu.

Vaccination with autologous tumor cells: Since 1992 
active specific immunotherapy (ASI), consisting of  im-
munization with irradiated autologous tumor cells as 
adjuvant therapy, has led to a few phase Ⅲ trials. The 
first strategy of  ASI was to use Newcastle disease virus-
infected autologous tumor cell vaccine after resection of  
hepatic metastases with curative intent[77]. The second 
strategy used an autologous tumor cell BCG vaccine 
(OncoVax) in stage Ⅱ or Ⅲ CRC[78,79]. In the 3 studies 
no significant benefit was observed in the overall popu-
lation, but some subgroups appeared to benefit from 
vaccination more than others, especially colon cancer 
(vs rectal) and stage Ⅱ cancers (vs stage Ⅲ). Patients 
with stage Ⅱ CRC treated with OncoVax had a 5-year 
recurrence rate of  21.3% vs 37.7% in the control group, 
leading to a significantly better 5-year recurrence-free 
survival (P = 0.009), although there was no difference in 
stage Ⅲ patients[80]. These results have not yet been con-
firmed and should lead to a pivotal phase Ⅲ trial.

Dendritic cell-based vaccination: A significant im-
provement in antitumor vaccination is provided by vec-
torization of  antigens, in particular with DCs[81]. Pilot 
studies have also proposed DC-based vaccination in 
CRC, using DCs loaded with a single antigen[82-84], two 
antigens[85] or multiple antigens[86-88] with a good safety 
profile. In some cases autologous DCs or antigens are 
used, making the procedure labor-intensive and costly. 
This promising strategy is one of  the most used in on-
going immunotherapy clinical trials in CRC, but other 
vectorization strategies, such as synthetic vectors, could 
be used in the future[89] and could be more efficient and 
simpler than those with DCs.

Adoptive cell therapy: Adoptive cell therapy (ACT) is 
mostly used in melanoma. Briefly, T cells are collected 
from the tumor, draining lymph nodes or peripheral 
blood, and are activated and expanded in vitro. Autolo-
gous T cells are then administered intravenously to the 
patient. To optimize the activity of  ACT, some authors 
have tried lymphodepletion of  the host, optimized cyto-
kine cocktails and selection of  CD8+ T cell clones with 
higher affinity for tumor cells/antigens. ACT with T 
cells from patient lymph nodes has been tested in 16 pa-
tients with stage Ⅱ to Ⅳ CRC[90]. ACT was well tolerated 
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in all cases with no side effects, and allowed a complete 
response in 4 out 9 patients with metastatic disease.

Similarly, autologous genetically engineered T cells 
with high-avidity CEA-specific T cell receptor have 
been used in CRC[91]. In a phase Ⅰ study, 3 patients were 
treated and decreased serum CEA levels were observed, 
but all patients developed severe colitis. Genetically engi-
neered T cells expressing chimeric antigen receptors tar-
geting HER2 also led to severe toxicity in a patient with 
CRC[92]. Similar strategies, such as allogenic lymphocytes 
and autologous NK therapy, are currently being tested in 
phase Ⅰ and Ⅱ studies.

CONCLUSION
The immune system plays a major role in the eradication 
of  tumor cells, but is bypassed by the tumor at the clini-
cal expression phase. Various antitumor immune mecha-

nisms are inhibited by efficient escape mechanisms. The 
treatments currently used in CRC (cytotoxic chemother-
apy, anti-EGFR antibodies, antiangiogenic molecules) are 
associated with immunomodulating effects shown in vitro 
and in vivo. However, their clinical impact has not been 
well evaluated. In some cases the immune escape mecha-
nisms are associated with an aggressive phenotype. In 
these cases classic treatments clearly fail, and immuno-
therapeutic approaches is a seducing alternative to try to 
improve the prognosis of  these patients in the future. 
Several approaches can be considered. First, nonspecific 
immunotherapy that may use immunostimulatory mole-
cule (GM-CSF, IL-2, IL-7) or inhibit immunosuppressive 
mechanisms (Treg depletion, anti-PDL1, anti-CTLA4). 
Second, the purpose of  specific immunotherapy is the 
induction of  a specific antitumor immune response. Var-
ious vaccination strategies, with peptide, antigen, DNA 
combined with vectorization techniques, could lead to 
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Table 1  Ongoing clinical trials, according to National Cancer Institute registration, using immunotherapy, according to strategy

the development of  effective vaccines, particularly in 
the adjuvant setting. ACT with T cells or NK cells is a 
labor-intensive procedure, but advances in genetic en-
gineering raise hope for such treatments. Finally, nearly 
40 phase Ⅰ to Ⅲ clinical trials testing immunotherapy 
in CRC are ongoing. This will probably lead in the near 
future to consider one or a combination of  these differ-
ent strategies in our therapeutic armamentarium to fight 
CRC.
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