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Abstract
BACKGROUND 
Stomach adenocarcinoma (STAD) is a leading cause of cancer deaths, but its 
molecular and prognostic characteristics has never been fully illustrated.

AIM 
To describe a molecular evaluation of primary STAD and develop new therapies 
and identify promising prognostic signatures.

METHODS 
We describe a comprehensive molecular evaluation of primary STAD based on 
comprehensive analysis of energy-metabolism-related gene (EMRG) expression 
profiles.

RESULTS 
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On the basis of 86 EMRGs that were significantly associated to patients’ 
progression-free survival (PFS), we propose a molecular classification dividing 
gastric cancer into two subtypes: Cluster 1, most of which are young patients and 
display more immune and stromal cell components in tumor microenvironment 
and lower tumor priority; and Cluster 2, which show early stages and better PFS. 
Moreover, we construct a 6-gene signature that can classify the prognostic risk of 
patients after a three-phase training test and validation process. Compared with 
patients with low-risk score, patients with high-risk score had shorter overall 
survival. Furthermore, calibration and DCA analysis plots indicate the excellent 
predictive performance of the 6-gene signature, and which present higher 
robustness and clinical usability compared with three previous reported 
prognostic gene signatures. According to gene set enrichment analysis, gene sets 
related to the high-risk group were participated in the ECM receptor interaction 
and hedgehog signaling pathway.

CONCLUSION 
Identification of the EMRG-based molecular subtypes and prognostic gene model 
provides a roadmap for patient stratification and trials of targeted therapies.

Key Words: Gastric cancer; Molecular subtype; Energy-metabolism-related genes; 
Prognosis factor; Roadmap

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: On the basis of 86 energy-metabolism-related gene that were significantly 
associated to patients’ progression-free survival (PFS), we propose a molecular classi-
fication dividing stomach adenocarcinoma into two subtypes: Cluster 1, most of which 
are young patients and display more immune and stromal cell components in tumor 
microenvironment and lower tumor priority; and Cluster 2, which show early stages 
and better PFS. Moreover, by using a three-phase training, test and validation process, 
we construct a 6-gene signature that can classify the prognostic risk of patients, and 
which present higher robustness and clinical usability compared with three previous 
reported prognostic gene signatures.

Citation: Chang JJ, Wang XY, Zhang W, Tan C, Sheng WQ, Xu MD. Comprehensive 
molecular characterization and identification of prognostic signature in stomach 
adenocarcinoma on the basis of energy-metabolism-related genes. World J Gastrointest Oncol 
2022; 14(2): 478-497
URL: https://www.wjgnet.com/1948-5204/full/v14/i2/478.htm
DOI: https://dx.doi.org/10.4251/wjgo.v14.i2.478

INTRODUCTION
Gastric cancer (GC) is one of the most common malignancies in the digestive system. 
Within the last decades, the incidence rate of GC has gradually declined in some 
regions due to effective preventive measures and early diagnosis strategies[1]. 
However, inoperable GC cases that are diagnosed at an advanced stage still have a 
poor prognosis[2]. According to the data of GLOBOCAN 2018, GC ranked third in 
global cancer mortality rate, only behind lung cancer and colorectal cancer in both 
genders combined[3]. Therefore, there is still urgent need to accurately predict the 
clinical outcomes of GC patients for the sake of more individualized management.

Reprogrammed metabolic pattern has long been recognized as a hallmark of 
cancers. Tumor cells can have different manners of nutrient acquisition and 
consumption compared to normal cells to obtain and maintain malignant features[4]. 
The most well-known feature of cancer metabolism is the increased glycolysis and 
lactate production even in an oxygen-rich microenvironment, which is termed as 
“Warburg effect”[5]. Until now, it was generally believed that glucose is the major 
source of energy for cancer cells[6]. However, there is a growing awareness that the 
metabolic phenotype of cancer cells is largely heterogeneous. Some tumor cells 
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primarily utilize glycolysis, while some other tumors have a metabolic property of 
oxidative phosphorylation (OXPHOS)[7]. Accumulating evidences show that there is a 
metabolic symbiosis between glycolysis and OXPHOS pathways in tumor cells[8]. For 
example, the lactate and pyruvate produced by glycolysis can act as the substrates of 
intermediates in the tricarboxylic acid cycle (TCA) to help generate adenosine 
triphosphate (ATP) in neighboring cells[9]. Similarly, some other non-glucose 
nutrients (i.e. free fatty acids, amino acids) may serve as the alternative fuels to fulfill 
the energy burden of tumor cells[10]. Since the complex metabolic characteristics of 
tumor cells can greatly influence the clinical fate of malignancies, a deeper 
understanding of the cancer metabolic fingerprint may be crucial to develop new 
therapies and identify promising prognostic signatures.

In the present study, we aimed to select key prognostic factors of GC among the 587 
energy metabolism genes, and construct a potential metabolism-related model for the 
survival prediction of GC patients. The model was trained and verified among a total 
of 339 GC samples from The Cancer Genome Atlas (TCGA) Stomach Adenocarcinoma 
STAD) dataset and 300 tumor samples from the GSE62254 dataset of the Gene 
Expression Omnibus (GEO). Moreover, molecular classification of GC based on the 
expression of energy-metabolism-related genes was also conducted to decipher the 
underlying role of metabolism in GC.

MATERIALS AND METHODS
Data source and processing methods
The TCGA-STAD dataset and GSE62254 dataset were analyzed for signature identi-
fication. The “Level 3” RNA sequencing (RNA-seq) data and clinical characteristic 
information of STAD tumor samples were collected from the TCGA-STAD dataset 
using the gdc-client tool (https://portal.gdc.cancer.gov/). Gene IDs were converted 
into official gene symbols according to the Genome Reference Consortium Human 
Build 38 (GRCh38) assembly. Only genes with average Fragments Per Kilobase per 
Million (FPKM) value greater than zero in more than 70% samples were included for 
the analysis. The microarray gene expression profiles and patients’ clinical information 
of GSE62254 dataset was downloaded from Gene Expression Omnibus database (GEO, 
https://www.ncbi.nlm.nih.gov/geo/). Probes were mapped to gene symbols 
according to the corresponding platform file GPL570. The progression-free survival 
(PFS) period of each STAD patient from the two datasets was calculated, and samples 
with PFS less than 30 d were excluded from the analysis. A total of 639 STAD subjects 
were thus analyzed with 339 from TCGA-STAD dataset and 300 from GSE62254 
dataset (Table 1).

The metabolic-related pathways were downloaded from Reactome (https://
reactome.org/) and a total of 587 energy metabolism-related genes from 11 pathways 
were screened out for variate selection (Supplementary Table 1). Among the 587 genes, 
one gene was not offered in TCGA-STAD dataset, and the FPKM counts of 2 genes 
were zero. Eventually, two comprehensive matrixes combining the expression levels of 
the 584 genes and the clinical information of STAD patients from the two independent 
datasets were generated separately for further analysis.

Identification of molecular subtypes using non-negative matrix factorization 
algorithm
The non-negative matrix factorization (NMF) approach was applied for clustering 
analysis based on the gene expression data of TCGA dataset[11]. Firstly, univariate 
Cox regression analysis was conducted to identify survival-associated genes among 
the 584 energy metabolism-related genes. Then, the NMF algorithm and 50 runs were 
performed with the standard “brunet” pattern using the R package NMF[12]. The 
range of cluster number (k value) was set as 2 to 10, and the minimum number of 
members per subtype was set to 10. The optimal number of k value was determined by 
several parameters including the cophenetic correlation coefficient[11], dispersion and 
silhouette[13] and residual sum of squares (RSS)[14] to ensure a robust clustering.

Evaluation of immune characteristics between molecular subtypes
The enumeration of six tumor-infiltration immune cells (B cell, CD4+ T cell, CD8+ T cell, 
neutrophil, macrophage, neutrophils and dendritic cell) was estimated using the 
“Tumor Immune Estimation Resource” (TIMER, https://cistrome.shinyapps.io/
timer/) tool[15]. The “Estimation of STromal and Immune cells in MAlignant Tumors 
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Table 1 Clinical and pathologic characteristics of patients in the pre-processed The Cancer Genome Atlas and Gene Expression 
Omnibus stomach adenocarcinoma datasets

Characteristic Training set (n = 
170)

Validation set (n = 
169) P value Entire TCGA dataset (n = 

339)
GSE62254 dataset (n = 
300)

Age (yr) 0.701

≤ 60 54 58 112 117

> 60 116 111 227 183

Progression-free survival 0.326

Absent 105 114 219 148

Present 65 55 120 152

Gender 0.238

Female 54 65 119 101

Male 116 104 220 199

Grade 0.278

G1 6 3 9 -

G2 63 60 123 -

G3 99 99 198 -

Gx 2 7 9 -

pT stage 0.614

T1 10 7 17 -

T2 38 35 73 -

T3 75 83 158 -

T4 50 41 91 -

pN stage 0.175

N0 52 46 98 -

N1 54 40 94 -

N2 30 38 68 -

N3/Nx 33 44 77 -

pM stage 0.707

M0 154 150 304 -

M1/Mx 16 19 35 -

Tumor Stage 0.11

Stage I 24 22 46 30

Stage II 57 49 106 96

Stage III 58 80 138 95

Stage IV 21 13 34 77

MSI status 0.793

MSI-H 21 19 40 68

MSI-L 18 16 34

MSS 65 71 136 186

EMT - - - 46

Lauren classification 0.083

Diffuse 18 29 47 142
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Intestinal 77 63 140 150

Mixed 6 10 16 8

WHO classification 0.057

Mucinous 6 8 14 -

Papillary 9 7 16 -

Poorly Cohesive 18 29 47 -

Tubular 59 37 96 -

Mixed 6 10 16 -

WHO: World Health Organization.

using Expression data (ESTIMATE)” algorithm was applied to calculated the 
ImmuneScore and StromalScore which represent the relative proportion of immune 
cells and stromal cells in tumor tissues[16]. The ESTIMATEScore is the sum of 
ImmuneScore and StromalScore and refers to the purity of tumor tissues.

Network construction, hierarchical clustering analysis was performed firstly to 
remove the outlier samples. As previously described[17], the connection strength 
between each pair of genes (nodes in the network) was calculated by Pearson 
correlation analysis. The soft-threshold power β was set to 8 in order to satisfy a scale-
free topology with R2 > 0.8. The topology overlapping matrix (TOM) was then 
constructed from the adjacency matrix to avoid the influence of noise and spurious 
associations. On the basis of TOM, average linkage clustering using the dynamic tree 
cut method was subsequently conducted to define co-expression modules. The size of 
genes in a module should be more than 30. Module eigengenes were further calculated 
to explore the relationship among modules. Modules with highly correlated 
eigengenes were merged together and eventually formed a new module network. The 
cut-off values of module integration parameters were set as height = 0.25, deepSplit = 
2, minModuleSize = 30. In order to identify the modules of interest, the correlation 
between each co-expression module and patients’ clinical features as well as cluster 
subtypes was further evaluated. Modules with a significant correlation to the energy-
metabolism subtypes of STAD patients were defined as key modules for the 
subsequent selection of hub genes (Spearman correlation coefficient >0.4, P < 0.05). 
Functional enrichment analysis of genes in the key modules was further conducted 
using R package clusterProfiler[18].

Identification of hub genes by protein-protein interaction analysis 
Since protein-protein interaction (PPI) analysis can help identify hub genes with core 
functions, PPI among genes in the identified key modules was further explored. The 
Search Tool for the Retrieval of Interacting Genes (STRING) is a well-known database 
containing comprehensive PPI information (version 11.0, https://string-db.org/). The 
PPI network among these genes was thus mapped to the STRING assembly and then 
visualized by the Cytoscape software. Important nodes in the network were identified 
by the Cytoscape plugin cytoHubba[19]. The topological analysis method Degree and 
the centrality analysis methods Closeness and Betweenness were used separately to 
identify the hub nodes in the PPI network. Among the top 15 hub nodes identified by 
each method, only genes with consistent high Degree, Closeness, and Betweenness 
values (larger than the median value) were selected as hub genes.

Construction and evaluation of identified prognostic signature
The factors in the potential prognostic model were selected from the hub genes 
identified by WGCNA and PPI analyses. Particularly, the 339 STAD samples in the 
TCGA-STAD dataset were randomly divided into two sets for the training (n = 170) 
and testing (n = 169) of the model (Table 1). In order to avoid selection bias, 100 times 
repetition sampling were conducted to the ensure the even distribution of patients’ 
clinical characteristics between the training and testing sets. The Chi-squared test was 
performed and two-sided P values > 0.05 for all the parameters were considered to be 
efficient.

In the training set, univariate Cox regression analysis was firstly performed to 
identify prognosis-associated genes from the hub genes (P < 0.05). To minimize 
overfitting, least absolute shrinkage and selection operator (Lasso) regression analysis 

https://string-db.org/
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was further conducted using the R package glmnet for model construction[20,21]. The 
optimal lambda value was determined through 10-fold cross-validation. The coeffi-
cients of the variates included in the constructed model were estimated by the analysis 
and used to calculate the risk score of each STAD patient. Z-score normalization of risk 
score was further performed and zero was set as the cut-off value to determine the 
high-risk and low-risk patients.

The nomogram integrating the identified signature and clinical information was 
built to improve the predictive capability[22]. The performance of the nomogram was 
assessed by calibration plot analysis. To assess the superiority of the identified energy 
metabolism-related prognostic signature, the predictive performance of the present 
model was further compared with the three other models proposed by previous 
studies using K-M survival analysis, ROC curve analysis, Harrell's concordance index 
(C-index), and decision curve analysis (DCA)[23].

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was performed to identify the functional 
difference between the high-risk and low-risk STAD patients in the TCGA dataset. 
Briefly, expression levels of all the protein-coding genes were input for analysis using 
the GSEA software (version 4.0.3). The classical gene sets of Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways (c2.cp.kegg.v7.0.symbols) were considered to 
decipher the phenotype. For each analytical pathway, the enrichment score (ES) and 
the significance of ES were calculated, and the normalized enrichment score (NES) and 
false discovery rate (FDR) were further calculated to examine functional enrichment 
results. An FDR cutoff value of 0.05 was considered in this test.

Statistical analysis
The survival status of the high-risk and low-risk subgroups was compared by Kaplan-
Meier (K-M) survival analysis. Time-dependent Receiver operating characteristic 
(ROC) curve analysis was conducted to assess the prognostic value of the identified 
model using the R package timeROC[24]. The independence of the prognostic 
signature in the survival prediction of STAD patients was evaluated using univariate 
and multivariate Cox regression analyses. The prognostic performance of the signature 
was similarly evaluated in the TCGA testing and GEO external validation set. The 
immune status of tumor samples such as immune cells infiltration and tumor purity 
was compared between different subtypes in the TCGA-STAD dataset using Wilcoxon 
test. All statistical analyses were using R 3.6.0 (https://mirrors.tuna.tsinghua.edu.cn/
CRAN/) with default software parameters. P value < 0.05 was considered significant 
statistically.

RESULTS
Identification of molecular subtypes related to energy metabolism and cancer 
prognosis
Among the 584 EMRGs, a total of 86 genes were significantly associated with the 
prognosis of STAD patients according to the results of univariate Cox regression 
analysis with P < 0.05 (Supplementary Table 2). The NMF analysis based on the 
expression of the 86 genes eventually identified two distinct subtypes (Cluster1 [n = 
123], Cluster2 [n = 216]) among the 336 STAD patients in the TCGA dataset, which 
might have close association with cancer energy metabolism processes and prognosis 
in STAD (Figure 1A). Kaplan-Meier survival analysis revealed that the PFS of STAD 
patients of the two clusters was significantly different (P = 0.025, HR = 0.66, 95%CI 
0.46-0.95; Figure 1B). As shown in the heatmap of gene expression across the two 
clusters (Figure 1C), the great majority of EMRGs presented higher expression levels in 
Cluster 2 compared with Cluster 1.

Further comparison with World Health Organization classification suggested that 
Cluster 1 and Cluster 2 were inclined to the poorly cohesive and tubular subtypes, 
respectively (Figure 1D). Supported by the TCGA project, Adam et al[25] once divided 
STAD patients into four TCGA subtypes: Epstein–Barr virus positive (C1), micro-
satellite unstable (C2), genomically stable (C3) and chromosomally unstable tumors 
(C4). By comparing the present results of molecular classification with the classical 
TCGA four subtypes-classification, we discovered that the identified Cluster 1 was 
inclined to the Epstein–Barr virus positive (C1) subtype which had a poorer prognosis, 
while Cluster 2 showed more relevance with the genomically stable (C3) subtype 

https://mirrors.tuna.tsinghua.edu.cn/CRAN/
https://mirrors.tuna.tsinghua.edu.cn/CRAN/
https://f6publishing.blob.core.windows.net/b68247a2-bca2-4ec7-8787-a4f514aca048/WJGO-14-478-supplementary-material.pdf
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Figure 1 Identification of molecular subtypes in stomach adenocarcinoma. A: Consensus map of non-negative matrix factorization clustering; B: 
Kaplan-Meier curves showed the PFS curve of the three subtypes; C: Heat map of the expression profile of 584 energy-metabolism-related genes and the distribution 
of clinicopathological parameters in all three subtypes; D: The alluvial diagram showed the comparison of molecular subtype with World Health Organization 
classification; E: The alluvial diagram showed the comparison of molecular subtype with The Cancer Genome Atlas four subtypes-classification.

whose prognosis was much better (Figure 1E). Comparison analysis with other well-
established clustering methods demonstrated the reliability of the classification results.

The distribution of the two clusters in STAD patients with different clinical charac-
teristics was further analyzed. It was observed that most of patients with T1 or T2 
stage and TNM Stage I were divided into Cluster 2 which had better survival. The 
Cluster 1 with poor outcomes inversely showed a trend of younger ages 
(Supplementary Figure 1). The proportions of tumor-infiltration immune cells and the 
fractions of immune and stromal cell components in tumor microenvironment (TME) 
were further compared between the two subgroups to explore the association between 
energy metabolism phenotype and immune status in STAD (Figure 2). The 
proportions of CD4+ T cells, CD8+ T cells, macrophage, neutrophils and dendritic cell 
were all significantly higher in Cluster 1 than in Cluster2 (Figure 2A-F). The calculated 
ImmuneScore, StromalScore, and ESTIMATEScore were also remarkably higher in 

https://f6publishing.blob.core.windows.net/b68247a2-bca2-4ec7-8787-a4f514aca048/WJGO-14-478-supplementary-material.pdf
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Figure 2 The proportions of tumor-infiltration immune cells and the fractions of immune and stromal cell components in TME between 
the two subgroups. A-F: The proportions of B cell (A), CD4+T cell (B), CD8+T cell (C), Neutrophil (D), Macrophage (E) and Dendritic cell (F) between the two 
subtypes; G-I: Distribution of the ImmuneScore (G), StromalScore (H), ESTIMATEScore (I) between the two subtypes.

Cluster 1, which represented more immune and stromal cell components in TME and 
lower tumor priority for the samples in Cluster 1 (Figure 2G-I). The results further 
suggested the close association between cancer cell energy metabolism, immune 
regulation, and clinical outcomes in STAD.

Selection of hub genes by WGCNA and PPI analyses
One outlier sample was identified by the hierarchical clustering analysis and removed 
from WGCNA co-expression analysis (Supplementary Figure 2A-C). Based on the 
expression of EMRGs in the TCGA dataset, a total of 29 co-expression modules were 
obtained after module fusion (Figure 3A, grey modules represent gene sets couldn’t be 
merged). The relationship between the identified modules and clinical characteristics 
as well as molecular classifications was shown in Figure 3B. It was concluded that 
Cluster 1 and Cluster 2 were significantly correlated with the yellow and brown 
module, respectively (r > 0.4, P < 0.05). The correlation between clinical phenotypes 
and the obtained modules as well as the genes of the modules was listed in 
Supplementary Table 3. As shown in Figure 3C, members in the yellow module were 
largely correlated with the Cluster 1 subtype, while members in the brown module 
were remarkably associated with the Cluster 2 phenotype. Therefore, the two modules 
having close relationship with energy metabolism-based subtypes of STAD were 
considered as the key modules, and the genes involved in these key modules were 
regarded as candidate genes for hub genes identification.

Functional enrichment analysis demonstrated that 23 KEGG pathways (i.e. MAPK 
signaling pathway, ECM−receptor interaction) were significantly involved in the 

https://f6publishing.blob.core.windows.net/b68247a2-bca2-4ec7-8787-a4f514aca048/WJGO-14-478-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/b68247a2-bca2-4ec7-8787-a4f514aca048/WJGO-14-478-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/b68247a2-bca2-4ec7-8787-a4f514aca048/WJGO-14-478-supplementary-material.pdf
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Figure 3 WGCNA co-expression analysis. A: Gene dendrogram and module colors; B: Relationship between the 29 modules and the clinical phenotypes and 
molecular subtypes; C: The correlation of yellow module with Cluster 1, and brown module with Cluster 2 in The Cancer Genome Atlas dataset; D and E: Gene Kyoto 
Encyclopedia of Genes and Genomes enrichment functional integration network of the yellow module (D) and brown module (E); F: Network relationship between the 
enrichment results of the two modules. The color of the dot stands for the different P value and the size of the dot reflects the number of genes enriched in the 
corresponding pathway.

yellow module (FDR < 0.01; Figure 3D, Supplementary Table 4) and 35 pathways (i.e. 
cGMP−PKG signaling pathway, Rap1 signaling pathway) significantly involved in the 
brown module (FDR < 0.01; Figure 3E, Supplementary Table 5). Most of these 
pathways were classical cancer-related biological processes. Moreover, the crosstalk of 
pathways was quite limited (Figure 3F), which further demonstrated the functional 

https://f6publishing.blob.core.windows.net/b68247a2-bca2-4ec7-8787-a4f514aca048/WJGO-14-478-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/b68247a2-bca2-4ec7-8787-a4f514aca048/WJGO-14-478-supplementary-material.pdf
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heterogeneity of the two key modules.
Subsequently, the expression of the candidate genes in key modules was mapped to 

STRING database to construct PPI network. A total of 3585 PPI pairs with a score 
higher than 0.9 were matched among the 1713 co-expression genes (Figure 4A, 
Supplementary Table 5). The top hub genes identified by the Degree (Figure 4B), 
Closeness (Figure 4C), and Betweenness (Figure 4D) methods were largely consistent 
(Supplementary Table 6). The topological properties of the PPI network were also 
evaluated and the distributions of degree, closeness, and betweenness were shown in 
Figure 4E-G. A total of 220 genes that satisfied high degree, closeness, and betwe-
enness scores were selected out as hub genes for further analysis (Supplemen
tary Table 7). These hub genes were assumed to be strongly correlated with the 
development of STAD, and were enrolled for subsequently identification of prognostic 
gene.

Identification of energy metabolism-related prognostic model
The clinical information of STAD patients in the training (n = 170), testing (n = 169) 
and external validation (n = 300) sets used for model construction and evaluation was 
listed in Table 1. In the training set, after the selection of univariate Cox regression and 
Lasso regression analysis (Supplementary Figure 2D and E), six genes (DYNC1I1, 
GPER1, MFAP2, ARRB1, C3 and GLI1) out of the 220 hub genes were included in the 
prognostic model (Table 2). And a gene-based prognostic model was established to 
evaluate the survival risk of each patient as follows: Risk score = 0.38585 × expDYNC1I1 + 
0.10411 × expGPER1 + 0.04476 × expMFAP2 - 0.70386 × expARRB1 + 0.09187 × expC3 + 0.21797 × 
expGLI1.

According to the cut-off value of normalized risk score (Z-score = 0), STAD patients 
were divided into high- and low-risk groups. The distribution of risk scores in the 
training set was shown in Figure 5A, which showed that expression levels of DYNC1I1
, GPER1, MFAP2, C3, and GLI1 were positively correlated with risk scores, while 
ARRB1 levels was negatively correlated with risk scores. It was concluded that higher 
ARRB1 expression was associated with a worse prognosis and was a favorable 
prognostic, while the other 5 genes were identified as unfavorable prognostic factors 
for STAD patients. The AUCs of 1-year, 3-year and 5-year ROC curves for the 6-gene 
signature to predict STAD survival were 0.70, 0.71 and 0.73, respectively (Figure 5B). 
Kaplan-Meier survival analysis confirmed that the high-risk group had significantly 
worse PFS than the low-risk group (Figure 5C).

The risk scores of STAD patients in the testing and internal validation sets were 
further calculated using the same coefficients. Patients were sub-grouped using the 
same cutoff value as the training set. The corresponding ROC curve and Kaplan-Meier 
survival curves for the TCGA testing set and the entire TCGA dataset showed that the 
AUCs of the signature remained high and the high-risk groups had consistently 
shorter PFS periods than the low-risk groups (Figure 6).

A total of 300 STAD samples in GSE62254 were analyzed for the external validation 
of the signature. In this dataset, ARRB1 was a consistent protective factor while the 
other five genes were still risk factors for STAD survival (Figure 7A). The robustness of 
the signature was further verified (Figure 7B and C).

Association between the identified signature and clinical characteristics 
The predictive performance of the prognostic model was evaluated among the 339 
STAD patients with varied clinical features in the TCGA dataset. The results of 
subgroup survival analyses revealed that the 6-gene signature could effectively 
discriminate high-risk and low-risk patients among the elder, both sexes, all stage, 
Lauren intestinal type and microsatellite instability-high (MSI-H) subgroups, which 
expanded its potential application (Supplementary Figure 3A). Univariate and 
multivariate Cox regression analyses were further performed to evaluate the clinical 
independence of the identified signature. It was proved that the calculated risk score 
could independently predict the PFS of STAD patients without the interference of 
other clinical parameters in the TCGA dataset (Supplementary Figure 3B).

Comparison with previous prognostic models 
Previous studies had identified several prognostic models for survival prediction of 
STAD patients. The predictive performance of the present 6-gene signature was 
further compared with three previous models (a 5-gene signature proposed by Wang 
et al[26], a 6-gene signature proposed by Lee et al[27], and a 10 immune-related gene 
signature proposed by Yang et al[28]. For normalization, gene expression levels in each 
model were uniformly extracted from the original matrix of the TCGA-STAD dataset. 

https://f6publishing.blob.core.windows.net/b68247a2-bca2-4ec7-8787-a4f514aca048/WJGO-14-478-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/b68247a2-bca2-4ec7-8787-a4f514aca048/WJGO-14-478-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/b68247a2-bca2-4ec7-8787-a4f514aca048/WJGO-14-478-supplementary-material.pdf
http://
https://f6publishing.blob.core.windows.net/b68247a2-bca2-4ec7-8787-a4f514aca048/WJGO-14-478-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/b68247a2-bca2-4ec7-8787-a4f514aca048/WJGO-14-478-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/b68247a2-bca2-4ec7-8787-a4f514aca048/WJGO-14-478-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/b68247a2-bca2-4ec7-8787-a4f514aca048/WJGO-14-478-supplementary-material.pdf
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Table 2 Univariate Cox regression analysis result of six genes in the training set

Symbol Coefficient Hazard ratio Z-score P value Low 95%CI High 95%CI

DYNC1I1 0.38585 1.4709 2.307 0.021 1.060 2.041

GPER1 0.10411 1.1097 0.648 0.517 0.810 1.520

MFAP2 0.04476 1.0458 0.399 0.690 0.839 1.303

ARRB1 -0.70386 0.4947 -3.499 ≤ 0.001 0.334 0.734

C3 0.09187 1.0962 1.081 0.280 0.928 1.295

GLI1 0.21797 1.2435 1.245 0.213 0.882 1.752

CI: Confidence interval; DYNC1I1: Dynein Cytoplasmic 1 Intermediate Chain 1); GPER1: G Protein-Coupled Estrogen Receptor 1; MFAP2: Microfibril 
Associated Protein 2; ARRB1: Arrestin Beta 1, C3: Complement C3; GLI1: GLI Family Zinc Finger 1.

The risk score of each STAD patient was calculated accordingly based on the corres-
ponding coefficients provided by each model. Patients were divided into high-and 
low-risk groups separately according to the median value of normalized risk score for 
each signature. The comparative plots of Kaplan-Meier survival curve and ROC curves 
were shown in Figure 8A-C. Restricted mean survival time (RMST) was applied to 
calculated and compared the C-index of all signatures. The AUCs of the present 6-
EMRG models were relatively higher and more stable than the other signatures, and 
the C-index was the highest among the four models (Figure 8D). DCA curves further 
demonstrated that the 6-gene signature had better clinical utility than the other models 
in the survival prediction of STAD patients (Figure 8E).

GSEA analysis of enriched pathway based on risk score 
ssGSEA was performed to determine the potential related pathways according to 
patients’ prognostic risk in the entire TCGA dataset, and pathways with FDR < 0.05 
were derived. By dividing samples into high-risk group and low-risk group based on 
whether the Riskscore is greater than 0, and analyzed the enriched pathway in both 
groups by using GSEA, we found that 10 pathways were significantly enriched in the 
high-risk group, such as ECM receptor interaction, hedgehog signaling pathway and 
etc.; while only citrate cycle TCA cycle was significantly enriched in the low-risk group 
(P < 0.05; Supplementary Figure 4). Thus, the 6-gene signature may be involved in the 
development and progression of STAD by participating in these pathways.

DISCUSSION
Cumulative evidence has revealed that metabolic reprogramming in cancer has 
extensive ties with oncogenesis and immune disorder[29,30]. In GC, previous studies 
suggested that the metabolic alteration in GC was typically characterized by increased 
glycolysis and repressed aerobic respiration for glucose metabolism, elevated 
consumption of some amino acids (especially glutamine) for amino acid metabolism, 
and upregulated fatty acid β-oxidation and oxidative degradation for lipid metabolism 
and others[31-33]. Moreover, there is a complex interplay among these reprogrammed 
metabolic pathways which forms the unique metabolic contexture in GC[34].

The detection of aberrant metabolomics also contributes to the identification of 
novel biomarkers for GC diagnosis or prognostic prediction, and the discovery of 
potential targets for GC treatment. For example, there are significant differences in 
metabolic profiles not only between GC patients and normal controls but also among 
different pathological GC subtypes, and the metabolic alterations have helped identify 
several promising biomarkers such as 3-hydroxypropionic acid and pyruvic acid in 
serum, phenylalanine in gastric juice, and alanine in urine[35-37]. Chen et al[38] once 
discovered proline and serine metabolites that could significantly discriminate 
metastatic animal models with GC from the non-metastatic samples. GC patients with 
higher levels of proline, p-cresol and 4-hydroxybenzoic acid in urine might have a 
worse prognosis according to a population-based study[39]. Taken together, the 
distinct features of energy metabolism in GC are worth investigating and may indicate 
novel biomarkers related to metabolism. However, the accurate detection of 
metabolites in biological samples is still hampered by some technical defects such as 

https://f6publishing.blob.core.windows.net/b68247a2-bca2-4ec7-8787-a4f514aca048/WJGO-14-478-supplementary-material.pdf
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Figure 4 Screening of hub genes involved in the development of stomach adenocarcinoma. A: The network showed co-expression gene in protein-
protein interaction (PPI) pairs with a score higher than 0.9; B-D: Top hub genes identified by the Degree (B), Closeness (C) and Betweenness (D); E-G: The 
topological properties of the PPI network and the distributions of degree (E), closeness (F), and betweenness (G).
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Figure 5 Evaluation of the performance of the 6-gene signature in the training dataset. A: Risk score, survival time, survival status and expression of 
the 6-gene signature in the training set; B: Receiver operating characteristic (ROC) curve of the 6-gene signature for 1-year, 3-year and 5-year survival in the training 
set; C: Kaplan-Meier survival analysis of PFS for high-risk or low-risk group patients in the training set. AUC: Area under the curve; HR: Hazard ratio; CI: Confidence 
interval.

lack of optimized study methods, limited coverage in metabolomics fingerprints and 
interference caused by unwanted sources[40]. Moreover, the abundance of some 
metabolites can be quite low even less then the detection limit[41]. Gene expression 
profiling, with the advantage of being convenient and precise, can give a whole 
picture of tumor properties based on quantitative data[42]. By analyzing the 
expression levels of energy metabolism-related genes in GC tumor tissue, the 
metabolic characteristics of GC can be comprehensively interpreted from another 
dimension.

In the present study, a total of 587 energy metabolism-related genes were selected 
from the Reactome database. These genes are main participants in the key pathways of 
carbohydrate, protein, and lipid metabolism. Based on the expression data of the 
TCGA-STAD dataset, GC patients were divided into two metabolic subtypes using the 
NMF algorithm. Significant difference was observed in patients’ clinical characteristics 
and survival state between the two subtypes. This phenomenon further demonstrated 
the important role of energy metabolism in the development and long-term survival of 
GC. In addition, previous evidence has proved that metabolic interventions have 
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Figure 6 Internal validation of the 6-gene signature’s robustness in the internal validation set and entire The Cancer Genome Atlas 
cohort. A and B: Risk score, survival time, survival status and expression of the 6-gene signature in the internal validation set (A) and the entire The Cancer 
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Genome Atlas (TCGA) cohort (B); C and D: Receiver operating characteristic (ROC) curve of the 6-gene signature for 1-year, 3-year and 5-year survival in the 
internal validation set (C) and the entire TCGA cohort (D); E and F: Kaplan-Meier survival analysis of PFS for high-risk or low-risk group patients in the internal 
validation set (E) and the entire TCGA cohort (F). AUC: Area under the curve; HR: Hazard ratio; CI: Confidence interval.

Figure 7 External validation of the 6-gene signature’s robustness in the GSE62254 cohorts. A: Risk score, survival time, survival status and 
expression of the 6-gene signature in the GSE62254 cohort; B: Receiver operating characteristic (ROC) curve of the 6-gene signature for 1-year, 3-year and 5-year 
survival in the GSE62254 cohort; C: Kaplan-Meier survival curve based on the 6-gene signature in the GSE62254 cohort. AUC: Area under the curve; HR: Hazard 
ratio; CI: Confidence interval.

crucial function in the modulation of cancer immunology[43]. In this study, when the 
tumor-infiltration immune cells and non-tumor components in TME were compared 
between the two groups, it could be observed that the proportion of almost all the 
immune cells and the fraction of immune components were significantly different 
between the two subtypes with varied metabolic features, which strongly indicated the 
close relationship between tumor metabolism and immunology in GC. Combined with 
findings from previous research, the results of this study confirmed the significance of 
identifying potential prognostic biomarkers from metabolism-related genes.

In order to select the hub genes that may significantly modulate cancer metabolism 
in GC, WGCNA co-expression analysis was firstly conducted and the PPI network was 
constructed. A total of 20 genes that strongly correlated with the two metabolic 



Chang JJ et al. Comprehensive molecular characterization of stomach adenocarcinoma

WJGO https://www.wjgnet.com 493 February 15, 2022 Volume 14 Issue 2

Figure 8 The performance of the 6-gene signature in comparison to previous signatures in The Cancer Genome Atlas stomach 
adenocarcinoma dataset. A-C: Receiver operating characteristic (ROC) and Kaplan-Meier curves of the Wang’s (A), Lee’s (B) and Yang’s (C) gene signature for 
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survival in The Cancer Genome Atlas stomach adenocarcinoma dataset cohort; D: Restricted mean survival time curve developed by integrating the indicated 4 
signatures; E: DCA plots developed by integrating the indicated 4 signatures. AUC: Area under the curve; HR: Hazard ratio; CI: Confidence interval.

subtypes and had the most connections within the PPI network were screened out and 
considered as candidates for the construction of the prognostic model. Using the Lasso 
regression analysis, a six-gene (DYNC1I1, GPER1, MFAP2, ARRB1, C3 and GLI1) 
signature was identified after the verification of the training, testing, and external 
validation sets which included a total of 639 GC patients from the TCGA-STAD and 
GSE62254 dataset. The model interpreted the information of gene expression into risk 
score for the accurate estimation of prognosis in GC. The results of survival analyses 
and time-dependent ROC analyses in each set revealed that the signature had stable 
performance in discriminating high-risk and low-risk GC patients. Notably, the 5-year 
AUCs for the signature in the whole TCGA-STAD dataset and GSE62254 dataset were 
0.72 and 0.70, respectively. Furthermore, subgroup analysis confirmed that the 
signature performed well in risk prediction among GC patients with different clinical 
and pathological features. When clinicopathologic parameters were taken into consid-
eration, the constructed risk-score system could still independently predict the 
prognosis of GC patients. A nomogram integrating the calculated risk score and 
clinical information was ultimately constructed for the accurate prediction of survival 
probability of GC patients. The nomogram showed confident clinical utility and 
outperformed the individual predictor in GC.

Among the six-energy metabolism-related genes, DYNC1I1, GPER1, MFAP2, C3 
and GLI1 were risk factors while ARRB1 was a protective factor for clinical outcomes 
in GC. The prognostic value of the five risk genes have been sporadically reported in 
previous studies, while the protective value of ARRB1 in GC was rarely identified[44-
49]. Functional enrichment analysis revealed that this metabolism-related signature 
was significantly involved in some classical cancer-related pathways. The interaction 
between the six genes and tumor metabolism and progression in GC deserves further 
investigation.

Several previous studies have also identified specific prognostic models for the risk 
prediction of GC. For example, Lv et al[50] proposed a seven-gene signature which 
contained TGFB1, EGF, MKI67, ILF3, INCENP, TNPO2 and CHAF1A. Jiang et al[51] 
identified a biomarker consisting of 16 immune-related genes such as HSPA1A, 
HSPA1B, HSPA5 et al. Yang et al[28] discovered another immune-related signature 
containing 10 genes such as NRP1 and TNFRSF18 that was totally different from that 
of Jiang et al[51]. The prognostic performance of the present model was further 
compared with that of the three previous models. Among the four different signatures, 
this six-gene biomarker had the highest C-index and AUC values. It could be 
concluded that this energy metabolism-related signature outperforms some previous 
biomarkers in the survival prediction of GC patients, and has great potential to be 
used for clinical application in the future.

However, there are still some limitations of this study. For example, the analysis 
was based on just retrospective data and needs to be verified in a prospective cohort 
containing samples from multi-centers before clinical application. Deeper mechanism 
research was also needed to elucidate the exact functions of the identified signature in 
GC.

CONCLUSION
In summary, by analyzing the expression levels of energy metabolism-related genes in 
GC tumor tissues, two different clusters with varied clinical characteristics, clinical 
outcomes, and immune status were identified in the TCGA-STAD dataset. A 
prognostic signature containing six metabolism-related genes and a novel nomogram 
was identified for the accurate risk prediction of GC patients.

ARTICLE HIGHLIGHTS
Research background
Energy metabolism has always been a hallmark of cancer cells and the complex 
metabolic characteristics of tumor cells can greatly influence the clinical fate of 
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malignancies.

Research motivation
A deep understanding of the cancer metabolic fingerprint may be crucial to the 
development of new therapies and in identifying promising prognostic signatures.

Research objectives
To select key prognostic factors of gastric cancer (GC) among the 587 energy 
metabolism genes, and construct a potential metabolism-related model for the survival 
prediction of GC patients.

Research methods
We trained and verified the energy metabolism-related gene signature among a total 
of 339 GC samples from The Cancer Genome Atlas (TCGA) Stomach Adenocarcinoma 
STAD) dataset and 300 tumor samples from the GSE62254 dataset of the Gene 
Expression Omnibus.

Research results
We successfully created a prognostic model based on energy-metabolism-related gene 
expression profiles in primary stomach adenocarcinoma based on an analysis of the 
TCGA-STAD and GSE62254 datasets. We were able to divide and identify different 
subtypes for prognosis and develop a risk score based on 6 gene signatures to 
potentially stratify the prognosis of individuals which was validated in a second 
cohort.

Research conclusions
In summary, by analyzing the expression levels of energy metabolism-related genes in 
GC tumor tissues, two different clusters with varied clinical characteristics, clinical 
outcomes, and immune status were identified in the TCGA-STAD dataset. A 
prognostic signature containing six metabolism-related genes and a novel nomogram 
was identified for the accurate risk prediction of GC patients.

Research perspectives
This study demonstrates the possibility of the risk score calculated with combination 
of gene expression in energy metabolism-related prognostic models.
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