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Abstract
Liver cancer ranks sixth in cancer incidence, and is the 
third leading cause of cancer-related deaths worldwide. 
Hepatocellular carcinoma (HCC) is the most common 
type of liver cancer, which arises from hepatocytes and 
accounts for approximately 70%-85% of cases. Hepa-
titis B virus (HBV) frequently causes liver inflammation, 
hepatic damage and subsequent cirrhosis. Integrated 
viral DNA is found in 85%-90% of HBV-related HCCs. 
Its presence in tumors from non-cirrhotic livers of chil-
dren or young adults further supports the role of viral 
DNA integration in hepatocarcinogenesis. Integration of 
subgenomic HBV DNA fragments into different locations 
within the host DNA is a significant feature of chronic 
HBV infection. Integration has two potential conse-
quences: (1) the host genome becomes altered (“cis ” 
effect); and (2) the HBV genome becomes altered 
(“trans” effect). The cis  effect includes insertional mu-
tagenesis, which can potentially disrupt host gene func-
tion or alter host gene regulation. Tumor progression 
is frequently associated with rearrangement and partial 
gain or loss of both viral and host sequences. However, 
the role of integrated HBV DNA in hepatocarcinogen-
esis remains controversial. Modern technology has pro-
vided a new paradigm to further our understanding of 

disease mechanisms. This review summarizes the role 
of HBV DNA integration in human carcinogenesis.
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Core tip: A high viral load is associated with an elevated 
risk of hepatocellular carcinoma (HCC), and the risk re-
mains increased in hepatitis B surface antigen-negative 
hepatitis B virus (HBV) and occult infections. The ability 
of HBV to integrate into the infected host’s hepatocyte 
genome is one of the most important direct pro-onco-
genic properties. The recent development of efficient 
tools for genome-wide analysis of gene expression and 
genetic defects has allowed a comprehensive overview 
of the changes occurring with HCC. Specific HBV fea-
tures, including the integration of viral DNA into host 
chromosomes, may trigger increased genetic instability.
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INTRODUCTION
Approximately two billion people worldwide have been 
infected with hepatitis B virus (HBV). With more than 
350 million chronic HBV carriers, this virus is one of  the 
most common human pathogens and is a significant pub-
lic health issue[1].

Liver cancer is the sixth most common cancer, and 
the third leading cause of  cancer-related deaths[2,3]. Hepa-
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tocellular carcinoma (HCC) is the most common type of  
liver cancer, accounting for approximately 70%-85% of  
cases[4]. In recent studies conducted in Asia and North-
ern America, the estimated risk of  developing HCC was 
observed to increase by 25-37-fold in hepatitis B surface 
antigen (HBsAg) carriers compared with non-infected 
patients[5,6]. HBV frequently causes liver inflammation, 
hepatic damage and subsequent cirrhosis. The develop-
ment of  liver cirrhosis is recognized as a major step in 
HCC pathogenesis because it occurs in 80%-90% of  
HCCs[7]. A high viral load is associated with an elevated 
risk of  HCC[8], and the risk remains higher in HBsAg-
negative HBV and occult infections[9-11]. HBV replica-
tion has unique characteristics[1]. HBV is classified as a 
pararetrovirus because of  its similarity to retroviruses. 
In fact, HBV replicates through reverse transcription of  
pregenomic RNA that is an intermediate replicative mol-
ecule[12]. The ability of  HBV to integrate into the infected 
host’s hepatocyte genome is one of  the most important 
aspects of  its direct pro-oncogenic properties[13-15]. Un-
like retroviruses, genomic integration has no role in HBV 
replication and does not produce integrase enzymatic 
activity protein, meaning that the integrative process is 
likely mediated by cellular topoisomerase Ⅰ activity[16].

Integrated viral DNA is found in 85%-90% of  HBV-
related HCCs and its presence in tumors from non-cir-
rhotic livers of  children or young adults further supports 
the role of  viral DNA integration in hepatocarcinogen-
esis[17,18]. A significant feature of  chronic HBV infection 
is that HBV DNA fragments are integrated into different 
locations within the host DNA[19-23]. Tumor progression 
is often associated with rearrangement and partial gain 
or loss of  both viral and cellular sequences[24-26]. Various 
small-scale isolated studies have suggested that HBV 
integration into the host genome is a random event[25]; 
however, integration has been observed at chromosomal 
fragile sites, scaffold/matrix attachment regions, and 
repeat/satellite sequence-rich regions[19]. Therefore, the 
role of  integrated HBV DNA in hepatocarcinogenesis 
remains controversial. This review summarizes the role 
of  HBV DNA integration in human carcinogenesis.

HCC MECHANISMS
The are three major molecular mechanisms of  hepato-
carcinogenesis caused by HBV infection[27]. First, the 
expression of  viral proteins, particularly hepatitis B virus 
X protein (HBx), promotes cell proliferation and viabil-
ity. Second, the integration of  HBV DNA into the host 
genome alters the expression and function of  endog-
enous genes and induces chromosomal instability. Finally, 
genetic damage accumulates as a result of  inflammation 
and ongoing hepatocyte division to replace cells killed by 
virus-specific T cells.

Genetic alteration plays a crucial role in cancer initia-
tion and progression. The recent development of  effi-
cient tools for genome-wide analysis of  gene expression 
and genetic defects has allowed a comprehensive over-

view of  the changes occurring with HCC[28,29]. Specific 
HBV features, including HBV DNA integration into host 
genome, may trigger increased genetic instability.

ROLE OF HBV DNA INTEGRATION IN 
HUMAN HEPATOCARCINOGENESIS
The association between HBV DNA integration into the 
host genome and HCCs was first reported in the early 
1980s[13,23,30]. Subsequently, many studies were performed 
to further investigate this association (Table 1).

The integration of  HBV DNA into host cellular 
DNA during HBV chronic infection disrupts or pro-
motes cellular gene expression that is important for cellu-
lar growth and differentiation. Furthermore, the expres-
sion of  HBV proteins may have a direct effect on cellular 
functions, and may promote malignant transformation. 
Integration events are thought to precede tumor develop-
ment because they are found in chronic hepatitis patients 
and during the acute infection stage[31].

Technological limitations of  PCR and Southern blot-
based methods restricted previous studies that attempted 
to characterize the most common HBV integrant(s) in a 
small number of  patients[15,32]. HBV has a large number 
of  mutations at both the nucleotide and structural levels, 
and the lack of  prior knowledge of  HBV sequences in 
each sample may lead to PCR failure and false-negative 
results. This occurs when the primers are designed for 
deleted or polymorphic sites on the HBV genome. Re-
cently, two studies reported “short-read” whole genome 
DNA paired-end sequencing of  four and eighty-eight 
HCC patients[33,34]. Integration sites could only be inferred 
from paired-end reads containing both human and viral 
sequences, because of  the limitations of  the short reads 
generated using these platforms. Indirect roles have been 
proposed because the lack of  identification of  a domi-
nant oncogene encoded by HBV, including insertional 
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Table 1 Main integration sites in human genome and in 
hepatitis B virus DNA

Integration sites in host genome HBV DNA

hTERT 3’ end of HBx
MLL Pre-S2/S
RAR-b
CCNE1
Cyclin A2
FN1
ROCK1
SENP5
ANGPT1
PDGF receptor
Calcium signaling-related genes
Ribosomal protein genes
Epidermal growth factor receptor
Mevalonate kinase
Carboxypeptidase
Platelet growth factor receptor

HBV: Hepatitis B virus; HBx: Hepatitis B virus X protein.



activation of  cancer-related genes from HBV integration, 
induction of  genetic instability by viral integration or 
HBx, and long-term effects of  viral proteins that enhance 
immune-mediated liver disease.

Integration has two potential consequences: (1) the 
host genome becomes altered (“cis” effect); and (2) the 
HBV genome becomes altered (“trans” effect). The cis 
effect includes insertional mutagenesis, which can poten-
tially disrupt host gene function or alter host gene regu-
lation [e.g., telomerase reverse transcriptase (TERT)][35]. 
Despite drastic rearrangements, the coding regions of  
PreS2 and HBx were generally conserved and could be 
transcribed[36]. Hence, these two HBV proteins may have 
a trans role in hepatocarcinogenesis[37-39]. 

CIS EFFECT
The main integration sites in the human genome and 
the preferred integrating region within the HBV genome 
have been researched extensively.

HBV DNA integration occurs randomly within hu-
man genomes, and may involve multiple sites in different 
chromosomes[25]. Thus, HBV behaves like an insertional, 
non-selective mutagenic agent. The important host ge-
nome rearrangements associated with viral integration 
suggest that the main oncogenic effect is from the induc-
tion of  higher genomic instability[40]. Most reported inte-
gration events occur near or within fragile sites or other 
repetitive regions, such as the Alu sequences and micro-
satellites that are prone to instability, tumor development, 
and progression[22]. Integration of  HBV DNA sequences 
begins in the early stages of  acute infections, and mul-
tiple integrations have been detected in chronic hepatitis 
tissues. Clonal integrated HBV sequences have been ob-
served in approximately 80% of  HBV-related HCCs[41]. 
Viral insertion sites have been mapped in multiple regions 
on virtually all chromosomes, suggesting a random distri-
bution throughout the host genome. HBV insertions are 
commonly associated with large genetic alterations that 
may lead to the abrogation of  control mechanisms that 
safeguard chromosomal integrity[42-45]. Similar to retroviral 
proviruses, HBV DNA targets actively transcribed chro-
mosomal regions within genes or in the immediate vicini-
ty. Sequence analysis of  multiple viral-host junctions have 
identified cellular coding regions within several kbps in 
90% of  cases, with frequent targeting of  gene families in-
volved in cell survival, proliferation and immortalization 
including: hTERT, the PDGF receptor, MLL, calcium 
signaling-related genes and ribosomal protein genes[15]. 
These findings favor the view that viral insertion induces 
the first genetic alteration in tumor development. Target 
genes may play a role in hepatocarcinogenesis, which was 
previously shown for HBV insertions into the retinoic 
acid receptor b (RAR-b) and the cyclin A2 genes[46,47]. 

Among the numerous viral integration sites described, 
some notable regions include the tyrosine-protein-kinase 
domain of  the epidermal growth factor receptor gene[48], 
the mevalonate kinase gene[49,50], the carboxypeptidase 
gene[51], platelet growth factor receptor genes[15] and 

hTERT. 
The HBx gene in the HBV genome tends to be the 

most common region, but the most common integra-
tion sites in the human genome are not fully identified. 
Several integration sites in the human genome such as 
TERT, MLL4, CCNE1, FN1, ROCK1 and SENP5 have 
been reported[33-52]. TERT encodes a telomerase reverse 
transcriptase, which plays an essential role in overrid-
ing cellular senescence. Its dysregulation in somatic cells 
is linked to carcinogenesis[53]. MLL4 encodes a histone 
methyltransferase that plays a critical role in gene expres-
sion and epigenetics in cancer cells. The translocation 
breakpoint of  the intron 3 region of  MLL4 is one of  the 
preferential targets for HBV DNA integration and may 
be involved in liver oncogenesis[54]. CCNE1 encodes cy-
clin E1, which is required for cell cycle G1/S transition. 
FN1 encodes fibronectin, a component of  the extracellu-
lar matrix that is involved in cell adhesion and migration 
processes. The protein encoded by ROCK1 can activate 
LIM kinase, and inhibits actin-depolymerizing activity by 
phosphorylating cofilin. SENP5 encodes a protease spe-
cific for SUMO proteins, and is required for numerous 
biological processes. All of  these genes are upregulated in 
malignant tissues[34]. Hence, HBV integration into these 
genes may cause HCC.

Whole genome sequencing (WGS) of  a large cohort 
has provided an opportunity to identify novel recurrent 
integrations. In addition to the confirmation of  recur-
rent HBV integration into the MLL4 (n = 9) and TERT 
(n = 18) loci accompanied by upregulation of  gene ex-
pression, recurrent integration events were observed at 
the CCNE1 (n = 4), SENP5 (n = 3), and ROCK1 (n = 
2) loci[34]. CCNE1 expression was, on average, 30-fold 
higher in tumors with HBV integration compared to the 
normal controls. Cyclins are mainly involved in regulating 
the cell cycle in eukaryotic cells, and are major targets for 
oncogenic signals. HBV integration at the CCNE1 locus 
has provided at least one molecular mechanism driving 
aberrant cell cycle control leading to HCC. Currently, 
three genome-sequencing studies have been published 
that analyzed HBV integration events. Genome sequenc-
ing of  four HCC patients identified 255 HBV integration 
sites in the three HBV-positive patients including the 
MLL4 locus in one sample and the ANGPT1 locus in 
another[33]. RNA sequencing revealed a distinct transcrip-
tional impact of  viral integration. HBV DNA integra-
tion into the third exon of  MLL4 resulted in a human-
viral fusion transcript, and a 20-fold increase in MLL4 
transcription in comparison to the adjacent normal liver 
tissue. For the ANGPT1 gene, HBV DNA was inserted 
into 10-kb upstream of  the promoter region, leading to a 
greater than eightfold elevation in ANGPT1 expression. 
In a genome sequencing study of  27 HCCs, including 
11 HBV-associated HCC, 14 HCV-associated HCC, and 
two cases that were unrelated to viral infection, the aver-
age proportion of  the TERT integration sites (41%) was 
higher than that of  other integration sites. These findings 
are consistent with previous reports of  recurrent HBV 
integration at the TERT locus[55].
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Evidence of  transcriptional activity at integrated X 
sequences has been demonstrated in tumors and chroni-
cally infected livers[66,67] and may be correlated with the 
detection of  the X protein in human HCCs[68]. It was 
suggested that downstream cellular sequences contribute 
to activated expression and/or enhanced transactivating 
capacities of  the integrated HBV sequences[58,69]. The X 
gene product transactivates homologous and heterolo-
gous transcriptional enhancers and promoter sequences. 
In the meantime, expression of  cellular genes is activated 
“in trans” from increased X gene products. Many clones 
preserved transactivation activity in spite of  the trunca-
tion at the 3’ end of  the X ORF[67]. The cDNA structure 
of  X mRNA from integrated HBV DNA suggested X-cell 
fusion mRNA.

The preferred region within the HBV genome in-
volved in integration and viral structural alteration is 
located at nucleotides 1600-1900 around the 3’-end of  
HBx and the 5’-end of  the Precore/Core genes, where 
viral replication and transcription is initiated. Upon in-
tegration, the 3’-end of  HBx is frequently deleted and 
HBx-human chimeric transcripts, which can be expressed 
as chimeric proteins, are commonly observed[56]. The 
3’-end of  the HBx gene is the preferred region for hu-
man genome integration[34,52,70], leading to the C-terminal 
truncated form of  HBx, and is an important mechanism 
in HBV-related hepatocarcinogenesis. 

Recently, WGS was performed on a large cohort of  
HCC patients with 81 HBV-positive, seven HBV-negative 
HCC samples and adjacent normal tissues to survey HBV 
integration in liver cancer genomes[34]. A systematic and 
in-depth bioinformatics analysis was performed to study 
HBV integration. The 399 detected HBV integration 
events occurred more frequently in tumors (344 events) 
than the normal controls (55 events), and represented a 
6.3-fold increase. The HBV genome break points were 
also examined, and 40% of  the break points were re-
stricted to an 1800-bp region of  the HBV genome where 
the viral enhancer, the X gene and the core gene are lo-
cated. This viral breakpoint may facilitate the formation 
of  human-viral fusion proteins and create cis-regulatory 
effects on expression of  downstream genes that disturb 
the host gene regulatory network. 

Some HCC patients do not have detectable hepatitis 
B surface antigen in their serum, but have low levels of  
serum HBV DNA and fragments of  HBV DNA in their 
genomic cellular DNA (occult HBV infections). The 
prevalence and molecular status of  occult HBV in HCC 
patients has been investigated in many studies in patients 
from different regions worldwide[10,71,72]. In HBsAg-nega-
tive HCC patients, HBV DNA was detected in neoplastic 
and/or adjacent non-neoplastic liver tissue in almost half  
of  patients, some of  which were anti-HCV positive[73]. In 
some patients, positivity for anti-HBc antibodies was the 
only marker of  HBV infection. Covalently closed circular 
HBV DNA may be detected in the liver of  some patients, 
indicating persistence of  the viral genome template for 
transcription and replication. An observational cohort 
study showed that HCC develops more commonly in oc-

Preferential HBV integration into gene promoters (P 
< 0.001), and significant enrichment of  integration into 
chromosome 10 (P < 0.01) was observed in the tumors. 
Integration into chromosome 10 was significantly as-
sociated with poorly differentiated tumors (P < 0.05). In 
particular, recurrent integration into the TERT promoter 
was correlated with increased TERT expression[56].

We found that HBV DNA integration enhanced host 
chromosomal instability leading to large inverted duplica-
tions, deletions and chromosomal translocations[32]. Many 
of  these chromosomal segments contain genes encoding 
key factors in liver carcinogenesis, such as p53, Rb, Wnt/
b-catenin, cyclins A and D1, TGFb, and Ras[57]. 

TRANS EFFECT
Integrated viral sequences may contribute “in trans” to 
tumorigenesis through the production of  truncated and 
mutated HBx or preS2/S proteins, though they cause de-
fective replication. These proteins may impact HCC de-
velopment by disrupting cellular gene expression control 
or by activating oncogenic signaling pathways.

The HBx protein is a multifunctional regulator of  vi-
ral and cellular genes that interferes with viral replication 
and proliferation. HBx and Pre-S2/S regulatory proteins 
that are generated from integrated viral sequences are 
involved in hepatocyte transformation. Moreover, HBx 
and truncated Pre-S2/S have been shown to be effective 
transactivators of  cellular and viral genes and are in-
volved in signal transduction pathways, cell cycle control 
and transcriptional regulation[36,58].

The C-terminal region of  HBx, produced by HBx 
truncation, contributes to HCC development. It has been 
suggested that the C-terminal region is required for reac-
tive oxygen species (ROS) production and 8-oxoguanine 
(8-oxoG) formation, which are biomarkers of  oxidative 
stress. Oxidative stress and mitochondrial DNA damage 
play an important role in the development of  HCC[59]. 
Other studies have found that HBx C-terminal trunca-
tion, particularly involving 24 amino acids, plays a role 
in enhancing cell invasiveness and metastasis in HCC by 
activating MMP10 through C-Jun signaling[60]. Also, HBx 
C-terminal truncation was closely related to the overex-
pression of  centromere protein A in HCC[61]. In addition, 
HBx C-terminal truncation directly regulates miRNA 
transcription and promotes hepatocellular proliferation[62].

Most HBV-related HCCs have integrated viral ge-
nomic sequences, including the HBx gene. Although the 
integrated forms of  HBx are frequently rearranged and 
show numerous point mutations, deletions or truncation, 
integrated HBx may encode functionally active proteins 
with transactivating ability[31,41]. Characterization of  HBx 
expression in malignant hepatocytes and infected liver 
tissues has been often hampered by the difficulty in ob-
taining valid high-affinity anti-HBX antibodies for im-
munodetection[63]. Despite this, the expression of  HBx 
is maintained through multistage hepatocarcinogenesis 
from pre-neoplastic nodules or foci of  transformed he-
patocytes to HCC[64,65]. 
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cult HBV patients among HBsAg-negative patients with 
chronic hepatitis C. 

In addition to genetic and genomic perturbations, 
HBV integration is also associated with various clinical 
parameters including disease occurrence at younger age, 
higher levels of  AFP and poor overall survival[34]. This 
suggests an association between viral DNA integration 
and a more aggressive pathogenesis of  HCC. 

Beside genomic alterations, epigenetic factors, such as 
methylation-associated gene silencing, have been shown 
to be involved in the deregulation of  cellular function in 
HCC. The HBV genome is almost completely unmethyl-
ated in the early stages of  carcinogenesis, from chronic 
active hepatitis to hepatic cirrhosis, while it becomes 
more methylated in the established liver tumors, both in 
patients and in cultured cancer cell lines[74].

CONCLUSION
The multistep development of  liver cancer is associated 
with the accumulation of  genetic and epigenetic changes. 
The long latency of  HCC development following prima-
ry HBV infection reflects an indirect oncogenic pathway. 
Evidence of  multiple cooperative mechanisms during 
neoplastic transformation is increasing. Genetic instabil-
ity, which is particularly high in HBV-related HCCs, may 
be related to HBV integration. 

The integration of  HBV has the primary cis effect of  
altering gene regulation. Sequence variations and struc-
tural alterations of  the HBV genome that modify viral 
protein structure, function and integration events gener-
ate novel HBx-human chimeric proteins that may exert a 
trans effect by facilitating host immune surveillance eva-
sion and/or that contribute to tumorigenesis. 

Next generation sequencing technology has provided 
a new paradigm for understanding disease mechanisms. 
WGS and whole exome sequencing efforts have led to 
the discovery of  previously unknown somatic variations 
in HCC, such as point mutations in chromatin remodel-
ing genes and recurrent HBV integrations. A large num-
ber of  data sets from genome wide association studies 
may need further investigation. Additional research into 
the development and treatment of  resistant HBV strains 
is warranted. 
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