
cancer cells (colon, prostate, breast, lung tumor cells). 
This function is mediated by the negative regulation 
of cell cycle progression and the transduction of some 
apoptotic stimuli. However, despite its anti-proliferative 
and tumor suppressor activity in some tissues, the p38α 
pathway may also acquire an oncogenic role involving 
cancer related-processes such as cell metabolism, inva-
sion, inflammation and angiogenesis. In this review, we 
summarize current knowledge about the predominant 
role of the p38α MAPK pathway in CRC development 
and chemoresistance. In our view, this might help es-
tablish the therapeutic potential of the targeted manipu-
lation of this pathway in clinical settings.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: The pro-apoptotic effects of p38α activation 
are long recognized; however, a significant number of 
reports describes the involvement of p38α in cancer-
specific metabolism, survival, proliferation, and chemo-
resistance of colorectal cancer cells and tissues. p38α 
blockade exerts its chemosensitizing effects through 
nuclear accumulation of FoxO3A and activation of its 
pro-apoptotic gene expression program, thereby im-
proving the efficacy of anti-cancer treatments. Apopto-
sis induction upon p38α inhibition requires Bax, which 
may thus serve as a predictive bio-marker for p38α-
targeted therapy response. The novel role described for 
the p38-FoxO3A axis in chemoresistance might offer 
new options for combined therapies and personalized 
medicine approaches.
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Abstract
Colorectal cancer (CRC) remains one of the most com-
mon malignancies in the world. Although surgical resec-
tion combined with adjuvant therapy is effective at the 
early stages of the disease, resistance to conventional 
therapies is frequently observed in advanced stages, 
where treatments become ineffective. Resistance to cis-
platin, irinotecan and 5-fluorouracil chemotherapy has 
been shown to involve mitogen-activated protein kinase 
(MAPK) signaling and recent studies identified p38α 
MAPK as a mediator of resistance to various agents 
in CRC patients. Studies published in the last decade 
showed a dual role for the p38α pathway in mammals. 
Its role as a negative regulator of proliferation has been 
reported in both normal (including cardiomyocytes, he-
patocytes, fibroblasts, hematopoietic and lung cells) and 

WJG 20th Anniversary Special Issues (5): Colorectal cancer

TOPIC HIGHLIGHT

9744 August 7, 2014|Volume 20|Issue 29|WJG|www.wjgnet.com



DOI: http://dx.doi.org/10.3748/wjg.v20.i29.9744

INTRODUCTION
Colorectal cancer (CRC) is the third most frequent can-
cer in males and the second in females. The majority of  
CRC patients have sporadic disease with no apparent 
evidence of  inheritance, while the remaining 25% have a 
family history of  CRC suggesting a hereditary contribu-
tion, exposure to common high risk factors among family 
members, or a combination of  both. Genetic mutations 
have been identified as the cause of  inherited cancer 
risk in some tumor-prone families; these mutations are 
estimated to account for only 5% to 6% of  CRC cases 
overall[1]. The knowledge derived from the study of  syn-
dromes with Mendelian dominant inheritance, which are 
characterized by a primary predisposition to benign or 
malignant tumors of  the large bowel, has provided im-
portant clues regarding the molecular events driving CRC 
progression from normal epithelium to adenoma (muta-
tions of  APC/β-catenin, KRAS/BRAF and then DCC/
SMAD2/SMAD4/TGFβRII) to carcinoma [PI3KCA, 
PTEN, p53, BAX, with the involvement of  the DNA 
mismatch repair (MMR) genes MLH1, MSH2, PMS2 and 
MSH6].

Current treatment for CRC is based on combina-
tion therapies, which in most cases include surgery, local 
radiotherapy and chemotherapy. The type and timing of  
treatment depend on stage classification. Besides, pre-
operative therapy for colorectal cancer has been used 
before surgery, resulting in improved quality of  surgery, 
reduced toxic effects and increased radiosensitivity. The 
main disadvantage of  pre-operative chemoradiotherapy is 
related to possible over-treatment of  patients with early 
stage or undetected metastatic disease before surgery. 

Current clinical trials keep on investigating the incor-
poration of  more effective combination chemotherapies 
into the multimodality treatment of  this disease. Cur-
rently, 5-FU combined with leucovorin and irinotecan 
(FOLFIRI) is the recommended first-line chemotherapy 
for CRC. Other frequently used compounds include 
capecitabine, a more convenient alternative to intrave-
nous infusions of  5-FU for patients who are able to 
tolerate oral chemotherapy, and platinum-based drugs, 
such as oxaliplatin and cisplatin[2-4]. Oxaliplatin is used in 
combination with leucovorin and 5-FU in the FOLFOX 
regimen. In addition, targeted therapies with monoclonal 
antibodies designed to inhibit EGF (such as cetuximab 
or panitumumab) or VEGF (bevacizumab) signaling have 
been proven of  potential benefit in addition to standard 
chemoradiotherapy[5]. 

Clinical trials are now directed to evaluate new drug 
combinations, treatment schedules, and radiotherapy ap-
proaches, and to set up new methods of  diagnostic imag-
ing with the aim of  enhancing tumor regression, increas-
ing overall survival, and improving the quality of  life for 
CRC patients. 

There is still much to be learned about the treatment 
of  colorectal cancers and increasing efforts are needed to 
complement traditional chemotherapy with targeted mo-
lecular approaches.

MAPKs and p38 MAPK signaling
MAPKs are expressed in all cell types and regulate a vari-
ety of  physiological processes such as cell growth, metab-
olism, differentiation and cell death. To date, six distinct 
groups of  MAPKs have been characterized in mammals: 
the extracellular signal-regulated kinases ERK 1/2, ERK 
3/4, ERK5, ERK 7/8, the Jun N-terminal kinases JNK 
1/2/3 and the p38 MAPKs p38α/β/γ/δ[6,7].

MAPK signaling shows a cascade organization, in 
which activation of  upstream kinases by receptors leads 
to sequential activation of  a MAPK module (MAPKKK, 
MAPKK, MAPK). In this context, specific interactions 
between MAPKs and their substrates are crucial for 
mediating signaling input and output[8,9]. Indeed, mecha-
nisms are described that limit protein interactions to 
preserve signaling specificity. In particular, MAPKs only 
phosphorylate the consensus motif  S/TP in their target 
proteins and a second level of  specificity is warranted by 
a conserved docking domain that binds kinases allowing 
substrate phosphorylation[10]. In these complexes, struc-
tural scaffold proteins link together the components of  
the signaling pathway to assure effective signaling trans-
mission between kinases. 

p38 MAPKs are a family of  serine/threonine-directed 
kinases classified as “stress-activated” kinases. Activa-
tion of  p38 MAPKs has been observed in response to a 
variety of  extracellular stimuli in different organisms, and 
p38 homologues have been identified in yeast (hog1 and 
Spc/Sty1), fruit fly (p38a/b/c), worm (pmk-2) and frog 
(p38)[11-13]. In yeast, the p38 pathway is involved in the re-
sponse to extracellular stress stimuli and cell cycle-related 
events[14,15]. Mammalian p38 MAPKs play similar roles 
and their activation allows cells to interpret a wide range 
of  external signals and respond appropriately by generat-
ing a plethora of  different biological effects such as in-
flammation, differentiation, cell proliferation and survival 
in a tissue-specific and signal-dependent manner[16,17].

In mammals, four genes have been identified that en-
code p38 MAPKs: MAPK14 (p38α), MAPK11 (p38β), 
MAPK12 (p38γ) and MAPK13 (p38δ). p38α and p38β 
are closely related proteins that might have overlapping 
functions. While p38α and p38β expression is abundant 
in most tissues, p38γ and δ seem to be expressed in a 
tissue-specific manner, e.g., p38γ is detected in muscle 
and p38δ is predominant in skin, small intestine and 
kidney[18,19]. Besides being tissue-specific, the expression 
profile of  p38 isoforms also seems to be influenced by 
the differentiation status of  the cell. For example, undif-
ferentiated intestinal epithelial cells express the α, β and 
γ isoforms, while differentiated cells express the α, γ and 
δ isoforms[20,21]. Additionally, three alternative splicing 
isoforms of  the MAPK14 gene have been reported. The 
Mxi2 variant is identical to p38α in amino acids 1-280 
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and showed reduced binding of  p38 MAPK substrates; 
however, it can bind to ERK1/2 MAPKs, modulating 
their nuclear import[22-24]. The Exip variant has a unique 
53-amino acid C-terminus and is insensitive to usual ac-
tivating treatments; nevertheless, it is able to regulate the 
NFkB pathway[25]. The CSB1 variant shows a 25 amino 
acids difference in its internal sequence, but its contribu-
tion is unknown[22].

Various combinations of  upstream kinases regulate 
the activation of  p38 isoforms. There are two major 
MAPKKs known to activate p38: MAPKK3 and MAP-
KK6, which are activated by their upstream kinases, such 
as MTK1 (also known as MEKK4) and the apoptosis 
signal-regulating kinase 1 (ASK1)[19], but other MAPKK-
independent mechanisms involving the growth arrest and 
DNA-damage-inducible protein alpha (GADD45α) and 
the ataxia telangiectasia and Rad3-related protein (ATR) 
have also been described[26,27]. p38 MAPK is relatively 
inactive in its non-phosphorylated form and becomes 
rapidly activated by phosphorylation of  two Thr-Gly-
Tyr motifs[28,29]. Phosphorylated p38 proteins can activate 
several transcription factors, such as ATF-2, CHOP-1, 
MEF-2, p53, and Elk-1, but also a variety of  kinases, 
including MNK1, MNK2, MSK1, PRAK, MAPKAPK2 
and MAPKAPK3, that are involved in controlling cyto-
plasmic and/or nuclear signaling networks and response 
to cytokines, growth factors, toxins and pharmacological 
drugs.

P38 MAPK PATHWAYS IN HUMAN 
CANCER
Uncontrolled proliferation is a result of  altered signal-
ing mechanisms and a hallmark of  cancer[30]. The genetic 
basis of  signaling cascade deregulation relies on somatic 
mutations in components of  these pathways, as reported 
in a large-scale screening study on the status of  protein 
kinases in tumors. However, the functional meaning of  
these mutations remains still unclear and genetic altera-
tions cannot explain, per se, the loss of  intracellular equi-
librium in cancer[31].

The p38 MAPK pathway, together with various 
signaling cascades such as JNK, ERK, AMPK and 
PI3K[30,32,33], regulates the balance between cell survival 
and cell death with direct effects on the development of  
various cancers. The tight regulation of  survival/death 
signals by p38 MAPKs can result in opposite molecular 
functions in tumor development. Indeed, p38 MAPKs 
can play a dual role: they can either mediate cell survival 
or promote cell death through different mechanisms.

Most reports support the pro-apoptotic role of  p38 
MAPKs; for example, p38α and/or p38β are mediators 
of  apoptosis in several cell types such as neurons[34-37] or 
cardiac cells[38-40]. In other cell types, p38 MAPKs activate 
apoptosis through transcriptional and post-transcriptional 
mechanisms, upon stimulation with TNF-α[41], TGF-β[42] 
or oxidative stress[43]. Moreover, p38α sensitizes car-
diomyocytes and MEF-derived cell lines to apoptosis 

induced by different stimuli through up-regulation of  
the pro-apoptotic proteins Fas and Bax and down-
regulation of  the activity of  the ERK and Akt survival 
pathways[44,45]. In accordance with these observations, 
overexpression of  p38α enhances apoptosis induced by 
the constitutive active mutant MKK3bE in cardiomyo-
cytes; however, overexpression of  p38β promotes cell 
survival[46].

The role of  p38 as a tumor suppressor has also been 
highlighted by using genetically modified mouse models. 
Several studies taking advantage of  mouse models defi-
cient for p38 or its upstream activators (such as MAP-
KKs, GADD45α, MAPK5) demonstrated higher sus-
ceptibility to tumor development[47-50]. Concordant with 
the anti-tumorigenic function of  p38, in some types of  
cancer inactivation of  tumor suppressor pathways is pro-
moted by the up-regulation of  negative regulators of  p38 
MAPK, such as the phosphatases DUSP26 and PPM1D, 
and inhibitors of  MAPKKKs upstream activators (e.g., 
ASK1 and GST-proteins)[51-53].

p38α negatively regulates malignant transformation 
induced by oncogenic H-Ras, and several mechanisms 
have been proposed to explain this putative tumor-sup-
pressor role, including inhibition of  the ERK pathway[54], 
induction of  premature senescence[55], stimulation of  
p53-dependent cell cycle arrest[51] and upregulation of  cell 
cycle inhibitors, such as p16INK4a[49] and p21Cip1[56]. Other 
reports indicate that p38α may antagonize malignant 
transformation induced by N-Ras in fibroblasts[57] and by 
K-Ras in colon cancer cells[58], although the mechanisms 
involved are poorly understood.

While p38 signaling has been shown to act as a tumor 
suppressor, this function seems to be effective mainly at 
the onset of  cellular transformation[59-61], since in vari-
ous cell lines p38 has been shown to enhance tumor cell 
growth after acquisition of  the malignant phenotype. En-
hanced p38 MAPK phosphorylation has been correlated 
with poor overall survival in patients with HER-2 nega-
tive breast cancer[62] or with hepatocellular carcinoma[63]. 
Moreover p38 MAPK is involved in sustaining tumor 
growth in other types of  cancer including follicular lym-
phoma, lung, thyroid, colorectal, ovarian[64,65] and breast 
carcinomas, as well as gliomas and head and neck squa-
mous cell carcinomas[66-69]. In these cases, depending on 
the type and stage of  the tumor, cancer cells with pro-
tumorigenic activation of  the p38 MAPK pathway may 
have a selective advantage.

The potential pro-tumorigenic role of  p38α signal-
ing is based on correlations with bad prognosis in cancer, 
and there is evidence that this pathway may contribute 
to the survival or proliferation of  cancer cell lines from 
different origins, including breast[70], colorectal[71], pros-
tate[72] or skin[73]. In addition, p38α is involved in cancer 
cell metabolism by driving HIF1α stabilization[74], in 
chondrosarcoma cell proliferation[75] and in tumor dor-
mancy[76]. Typical features of  cancer aggressiveness, such 
as migration and invasion, are also positively regulated by 
p38 MAPK activation in breast, head and neck squamous 
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a dramatic increase in cell death by inducing a molecular 
switch from autophagic to apoptotic cell death in CRC 
cells[21]. Moreover, p38α blockade interfered with the 
signal-dependent transcription of  a subset of  genes in-
volved in cell cycle control, autophagy and cell death[21,71]. 
Our results indicate that the autophagy response to p38α 
blockade initially represents a survival pathway, while 
prolonged inactivation of  the kinase leads to cell death. 
Indeed, reactivation of  p38α induces a significant reduc-
tion of  autophagic markers together with a slow reentry 
into the cell cycle[21,88].

Further evidence supporting the role of  p38α as a 
negative regulator of  autophagy comes from studies 
showing that manipulation of  p38-interacting protein 
and p38α alters the localization of  mATG9, a protein 
required for autophagosome formation. p38α mediates 
starvation-induced mATG9 trafficking to form autopha-
gosomes, suggesting that p38α could provide the link to 
nutrient-dependent signaling cascades activated during 
autophagy[89]. The role of  p38 signaling in the negative 
control of  autophagy has also been described in hepa-
tocytes under hypo-osmotic stress or upon addition of  
amino acids or insulin[90], and in cultured Sertoli cells 
treated with SB203580, a p38 specific inhibitor, which 
show accumulation of  large autophagolysosomes[91]. 
Moreover, Keil et al[92] demonstrated that Atg5, an E3 
ubiquitin ligase required for autophagosome elongation 
and LC3 lipidation, is phosphorylated by p38α and that 
regulation of  p38α by GADD45/MEKK4 negatively 
modulates the autophagic process.

Despite the profound differences in the metabolism 
of  normal and cancer cells, in both the activity of  the 
autophagic machinery strongly depends on cell metabolic 
status[93]. An altered cellular metabolism is a common 
feature of  cancer cells. Indeed, cancer cells predominantly 
produce energy by high rates of  glycolysis, even in the 
presence of  high oxygen tension, rather than by com-
paratively low rates of  glycolysis followed by oxidation 
of  pyruvate in mitochondria, as in most normal cells[94]. 
Cancer cells predominantly produce ATP through consti-
tutive activation of  aerobic glycolysis (50% of  their ATP 
is obtained through the glycolytic flux, vs 10% observed in 
normal cells), a process that generally relies on the stabi-
lization and activation of  the transcription factor HIF1α, 
which regulates the expression of  the glucose transporter 
GLUT1, the rate-limiting enzymes HK1/2 and PKM2, 
and LDHA, the enzyme responsible for the conversion of  
pyruvate into lactate. As such, HIF1α links aerobic glycol-
ysis to carcinogenesis, representing one of  the crossroads 
for tumor suppressor and oncogenic pathways[95,96].

p38α is required to sustain HIF1α protein levels 
and the expression of  its target genes; thus, its inhibi-
tion causes a rapid drop in ATP levels in CRC cells. This 
acute energy need triggers AMPK-dependent nuclear 
accumulation of  FoxO3A and subsequent activation of  
its transcriptional program, leading to sequential induc-
tion of  autophagy, cell cycle arrest and cell death. In vivo, 
pharmacological blockade of  p38α has both a cytostatic 

and hepatocellular carcinomas[66-69]. Importantly, we also 
detected aberrant activation of  p38 in high grade CRC 
biopsies[77] and inflammatory bowel disease-associated 
human CRC specimens (Simone C, unpublished results).

P38α AND COLORECTAL CANCER: ROLE 
IN THE AUTOPHAGIC RESPONSE
Signaling networks are important to maintain genome 
stability during cell cycle to protect cells from tumorigen-
esis. Besides, additional control mechanisms include cell 
death and autophagy. 

Autophagy is an evolutionarily conserved catabolic 
process regulating turn over and elimination of  proteins, 
cellular organelles, such as peroxisomes, ribosomes and 
mitochondria, and the endoplasmic reticulum. The result-
ing metabolites are recycled for biosynthesis and energy 
metabolism. This process includes the formation of  
double-membrane cytosolic vesicles, termed autophago-
somes, which then fuse with endosomes and lysosomes 
to form autolysosomes, wherein degradation finally oc-
curs. Like apoptosis, autophagy has emerged as a key 
process in physiologic cell response. It is constitutively 
active at low levels, but can be robustly activated under 
metabolic stress[78,79]. 

Complex connections exist between autophagy, apop-
tosis and cellular homeostasis; indeed, autophagy can act 
both as a protector and an executioner. The general view 
is that autophagy is a survival pathway; however, autoph-
agy induction by prolonged starvation and other stresses 
can result in cell death[78,79]. The ability of  autophagy to 
regulate cell death makes it a target in several diseases, 
such as cancer and neurodegenerative disorders[80].

Beclin-1/Atg6 has a central role in autophagy by in-
teracting with the ‘‘nucleation step’’ kinase class Ⅲ PI3K 
(Vps34) and with the anti-apoptotic proteins Bcl-2/Bcl-
xL. Beclin-1 can be released from Bcl-2/Bcl-xL complex-
es by pro-apoptotic BH3 proteins to trigger autophagy; 
however, Bax and Bak (pro-apoptotic proteins) can also 
be released from these complexes to trigger apoptosis[81]. 
Mice lacking beclin-1 or genes that play an important role 
in the autophagy machinery show increased tumorigen-
esis[80,82]. Autophagy appears deregulated during carcino-
genesis and it is an important barrier for cellular trans-
formation. However, autophagy has a two-faced role, 
which depends on the balance between cytoprotective 
and potentially oncogenic effects vs cell-death-promoting 
and tumor-suppressive effects[83]. Noticeably, autophagy 
can support tumor progression by contributing to tumor 
dormancy[84]. In mouse hepatocellular carcinoma cells, 
dormancy is regulated by the activity ratio between ERK 
and p38 MAPK[85].

Our group has previously reported that p38α is re-
quired for CRC cell proliferation and survival and that its 
genetic depletion or the pharmacological blockade of  its 
kinase activity induces growth arrest, autophagy and cell 
death in a cell type-specific manner[21,86,87]. Interestingly, in 
these cells inhibition of  the autophagic activity promoted 
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and cytotoxic effect on colorectal neoplasms, and is asso-
ciated with nuclear enrichment of  FoxO3A and expres-
sion of  its target genes p21 and PTEN[88].

The signaling perturbation imposed by p38α inhibi-
tion in CRC involves a reduction of  S473 Akt phospho-
activation together with the enrichment of  the PTEN 
phosphatase, a pattern that correlates with the decreased 
Akt-dependent phospho-inhibition of  FoxO3A on the 
T32 and S253 residues. Conversely, JNK, a potent activa-
tor of  FoxO3A, was significantly phospho-activated in 
SB202190-treated CRC cell lines[88]. Importantly, PI3K 
class Ⅰ enzymes negatively regulate autophagy in several 
cellular systems including CRC cells, and the JNK path-
way has also been reported to be required for starvation-
induced autophagy in cancer cells and for autophagic cell 
death[97,98]. Of  note, PI3K/Akt and JNK can also cross-
talk with p38α by cooperating at the chromatin level, and 
Akt can be activated by p38α/β through MAPK/APK2-
dependent phosphorylation of  serine 473[99]. Conversely, 
the antagonism between JNK and p38α signaling has 
been shown in different ways, including direct repres-
sion of  the JNK upstream kinases Grap2/HPK1 and 
MKK7[47,100] (Figure 1).

CROSSTALK BETWEEN THE P38 AND 
THE MEK/ERK PATHWAYS IN CRC 
It is now widely accepted that the MEK/ERK pathway 

plays a significant role in CRC formation and progression 
and that the kinase pathway including RAS, RAF, MEK 
1/2, and ERK 1/2 is activated in most human tumors. 
Mutations in BRAF and KRAS oncogenes occur in 
36% of  all human cancers, including 15% of  colorectal 
cancers and 40% of  melanomas[101]. Haigis et al[102] dem-
onstrated that KRAS affects proliferation and differen-
tiation, whereas activated NRAS (a protein of  the RAS 
family) suppresses apoptosis. However, although initial 
results demonstrated that inhibition of  RAF or MEK1 
exerts a cytostatic and cytotoxic effect in CRC cells in 
vitro and in xenograft models[103,104], the MEK1 inhibitor 
CI-1040 showed poor antitumor activity in phase Ⅱ clini-
cal trials[105].

Interestingly, it has been recently reported that ATP-
competitive kinase inhibitors have potent antitumor 
effects on mutant BRAF tumors, with evidence of  de-
creased tumor growth; in contrast, KRAS mutant tumors 
showed an opposite mechanism, with enhanced tumor 
growth in xenograft models[106]. Additionally, Corco-
ran et al[107] demonstrated that BRAF-mutant CRC cells 
were less sensitive to vemurafenib (RAF inhibitor) and 
displayed incomplete pospho-ERK suppression. They 
observed a rapid ERK reactivation occurring through 
EGFR-mediated activation of  RAS and CRAS. Taken 
together, these findings support the idea that RAF and 
MEK inhibitors might be used depending on the cellular 
context and in combination with other therapeutic drugs.
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Figure 1  Schematic representation of the p38α involvement in colorectal cancer. A: p38α is involved in the regulation of key metabolic cascades in colorectal 
cancer (CRC), sustaining HIF1α protein expression and the transcription of HIF1α target genes, such as GLUT1, HK2, PKM2 and LDHA; B: p38α blockade causes a 
significant decrease in the intracellular levels of ATP, which correlates with a time-dependent reduction of HIF1α protein levels and the consequent decrease in HIF1α 
target gene expression and phospho-activation of AMPK. AMPK activity is required for the nuclear accumulation of FoxO3A and the subsequent activation of FoxO3A 
target genes involved in autophagy, metabolism, cell cycle arrest and cell death, leading to autophagic cell death in CRC in vitro and in vivo. PI3K/Akt and JNK ki-
nases regulate the nuclear/cytoplasmic shuttling of FoxO3A protein by phosphorylation. 
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Recently, we showed that the crosstalk between the 
p38α and ERK pathway is crucial for CRC therapy 
response. Indeed, p38α inhibition by SB202190 up-
regulates HER3, one of  the receptor tyrosine kinases 
(RTK) of  the EGF pathway, in CRC and this effect is 
dependent upon the activity of  FoxO3A and its cofactor 
Sirt1[108]. This observation was also confirmed by using 
a structurally and functionally different p38α inhibitor, 
BIRB796, which is in phase Ⅲ clinical trials for the treat-
ment of  inflammation[109]. In turn, HER3 up-regulation 
leads to overactivation of  the MEK/ERK pathway, even 
in the presence of  mutated RAF or RAS which are still 
able to over-activate ERK signaling in response to extra-
cellular ligands (i.e., EGF)[110]. Of  note, in breast cancer 
cells FoxO3A is able to increase expression of  RTKs, 
including HER3, in response to AKT inhibition[111], and 
the phosphatase PP2A mediates the interplay between 
the p38α and the MEK/ERK pathways in primary fibro-
blasts and breast epithelial cells[112,113].

Activation of  the MEK/ERK pathway in CRC cells 
upon p38α inhibition leads to the rescue of  a pro-apop-
totic program driven by the extrinsic pathway through 
transcriptional up-regulation of  TRAIL and activation 
of  caspase-8. Concomitant MEK inhibition triggers Bax-
dependent apoptosis by enabling signaling propagation 
through t-Bid and caspase 3. Of  note, recent research 
showed that the MEK/ERK pathway might affect Bid 
processing by caspase-8, thus resembling the activity of  
casein kinases Ⅰ/Ⅱ, which regulate caspase 8-dependent 
Bid cleavage by phosphorylation[114]. Bid phosphorylation 
at MAPK phosphorylation sites was induced by p38α 
inhibition and abrogated by concomitant inhibition of  
MEK1. Interestingly, the therapeutic efficacy of  p38α/
MEK1 inhibition in CRC is independent from mutations 
in p53, KRAS and BRAF genes, and from the CIN or 
MIN phenotype; conversely, Bax-/- cells showed almost 
50% apoptosis reduction with respect to wild type cells. 
Combined inhibition of  p38α and MEK1 efficiently 
reduces the volume of  xenografted tumors and AOM/
DSS-induced tumors in vivo[77].

Intriguingly, we observed p38α activation in HT-29, 
HCT-116 and Caco2 CRC cells treated with MEK1 in-
hibitors, a phenomenon that does not occur in human 
primary non-tumorigenic colon cells (Grossi V, Peserico 
A and Simone C, unpublished results), suggesting that a 
reciprocal compensatory role of  these two pathways may 
exist in cancer cells. Indeed, inhibition of  ERK activity 
triggers p38 activation also in cervical carcinoma HeLa 
cells[115].

Sorafenib, an experimental antitumor agent, potently 
inhibits nine protein kinases, including BRAF. It has also 
been shown to target the DFG-out conformational state 
of  p38α and to affect p38α kinase activity in vitro[116,117]. 
Sorafenib induces apoptosis by down-regulating Mcl-1 
in several cell lines and xenografted tumors, including 
HT-29 and HCT-116 CRC cells[116,118,119]. It has been ap-
proved for clinical use by the FDA in hepatocellular car-
cinoma (HCC) and renal cell carcinoma (RCC), but failed 

to prove efficacy in CRC clinical trials[116,120]. Sorafenib, 
which is a type-Ⅱ kinase inhibitor, has been tested in our 
lab in association with the type-Ⅰ inhibitor SB202190 in 
CRC cell lines and animal models to investigate whether 
combination of  these compounds may entail enhanced 
effects allowing to control more efficiently cancer cell 
growth[121]. Simultaneous inhibition of  p38α DFG-in 
and -out conformations and BRAF leads to a syner-
gistic increase of  the apoptotic response in CRC cells, 
the most suitable type of  cell death in tumor treatment. 
These observations are consistent with structural data 
and other studies showing that the DFG-in and DFG-
out conformations of  p38α can be targeted by type-
Ⅰ and type-Ⅱ kinase inhibitors, respectively[117,122,123]. In 
fact, since sorafenib is able to bind to p38α, the residual 
kinase activity exerted by the remaining pool of  p38α in 
the DFG-in conformation may constitute the basis of  
sorafenib clinical failure in CRC. Therefore, concomitant 
inhibition with a type-Ⅰ inhibitor such as SB202190 is 
expected to abrogate the residual activity of  p38α with 
consequent synergistic effects[121]. For these reasons, it 
is important to create the basis for a novel drug design 
paradigm of  kinase inhibition, in which both the DFG-in 
and DFG-out conformations are simultaneously targeted, 
either with a combination of  inhibitors (type-Ⅰ and type-
Ⅱ inhibitors) or with one single agent acting against both 
conformations[124].

A recent report presented the latest clinical results 
about the multikinase inhibitor Regorafenib (Fluoro-
Sorafenib), that targets, among others, RAF, wild type 
BRAF and mutated BRAF, and showed a particularly 
high inhibitory activity on p38 MAPK[125]. When ad-
ministrated sequentially with standard chemotherapy, 
it displayed a good tolerance and a promising activity 
in patients with CRC. Currently, Regorafenib is being 
evaluated in phase Ⅱ clinical trials in combination with 
FOLFOX6 and FOLFIRI in patients with mutant KRAS 
or BRAF CRC[125,126] and is now proposed for an interna-
tional phase Ⅲ clinical trial for the treatment of  patients 
with metastatic CRC who have progressed after standard 
therapies (Figure 2). 

P38α AND CHEMORESISTANCE: 
P38 INHIBITORS AS TARGETED 
THERAPEUTICS
Cancer cells can develop chemoresistance in the course 
of  chemotherapy due to signaling pathways that have 
been altered during tumorigenesis. Following drug ex-
posure, some clones within the cancer tissue can repro-
gram the expression of  a specific set of  genes leading to 
overactive and/or suppressed signaling networks. These 
adaptive changes may ultimately favor survival by desen-
sitizing cells to drug-induced death signals. Due to this 
mechanism, patients might suffer from recurrent tumors 
originated from resistant clones[127-130].

The occurrence of  chemoresistance is responsible for 
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the limited success of  various drugs in many cancers. For 
example, cisplatin, a chemotherapeutic agent frequently 
used against colorectal tumors, has been shown to induce 
cell death rates of  up to 70% in the first phase of  ther-
apy; however, over time this rate gradually decreases to 
15% due to the existence of  unresponsive (chemoresis-
tant) cells during chronic chemotherapy exposure[4,131,132]. 

Thus, studies focusing on specific resistance mecha-
nisms with the aim of  finding new therapeutic strategies 
directed against specific targets have become increasingly 
desirable to improve patient survival. p38α might well 
be one of  these targets. Indeed, response to cisplatin 
treatment is potentiated upon p38α inhibition, resulting 
in ROS-dependent upregulation of  the JNK pathway in 
cancer cells, including CRC. In vivo, p38α inhibition co-
operates with cisplatin treatment to reduce the size and 
malignancy of  xenografted breast tumors in mice[133]. 
Additionally, we recently showed that p38α signaling is 
activated in cisplatin-treated CRC cells, and that p38α 
genetic ablation or pharmacological blockade sensitizes 
chemoresistant CRC cells to cisplatin. Furthermore, 
p38α inhibitors showed an additive effect with cisplatin 
in chemosensitive CRC cells, and co-treatment induced 

Bax-dependent apoptosis in both sensitive and resistant 
cells in vitro and in xenografted mouse models[134].

Chemoresistant cells may either show specific re-
sistance to a particular drug or display multidrug resis-
tance. P-glycoprotein (P-gp) is a well-established plasma 
membrane transporter which is involved in the efflux of  
chemotherapeutic agents by pumping drugs like cisplatin, 
vincristine and doxorubicin outside of  cancer cells. When 
high p38 activity is observed in chemoresistant cells, P-gp 
expression is often upregulated and chemoresistance can 
be reversed by SB203580 treatment[135,136]. Using p38 in-
hibitors together with common chemotherapeutics has 
also given promising results in different experimental set-
ups. Co-treatment with SB202190 and the chemotherapy 
drug irinotecan appears to sensitize chemoresistant CRC 
cells to chemotherapy thus supporting an important role 
for p38 in controlling chemoresistance[137,138]. SCIO-469 
has been shown to reduce tumor growth in multiple 
myeloma xenograft tumors and to enhance the effect of  
bortezomib by inhibiting p38α. Additionally, VWCS, a 
peptide inhibitor, has been recently proposed both as a 
specific p38α inhibitor and a therapeutic agent[139-142]. In 
non-cancerous cells, p38 is involved in the inhibition of  
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Figure 2  Schematic representation of the p38α/ERK cross-talk in colorectal cancer. A: Inhibition of MEK1 triggers phospho-activation of the p38 MAPK path-
way, indicating the existence of a p38α/ERK crosstalk in CRC cells; B: p38α inhibition induces increased expression of HER3, one of the receptor tyrosine kinases 
(RTK) of the EGF pathway, and this effect is dependent upon the activity of FoxO3A and its cofactor SIRT1. In turn, HER3 up-regulation leads to over-activation of the 
MEK/ERK pathway. Moreover, p38α inhibition leads to the rescue of a pro-apoptotic program driven by the extrinsic pathway through transcriptional up-regulation of 
TRAIL and activation of caspase-8; C: Concomitant MEK inhibition triggers Bax-dependent apoptosis by enabling signaling propagation through t-Bid and caspase 3. 
Bid phosphorylation at MAPK phosphorylation sites is induced by p38α inhibition and abrogated by concomitant inhibition of MEK1.
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caspase 3, 8 and 9 activity in different conditions[143,144]. 
Similarly, CRC cells treated with SB202190 or SB203580 
together with 5-fluorouracil showed increased caspase 
activity and sensitivity to chemotherapy due to increased 
Bax expression[145]. 

At the molecular level, chemoresistant cells within a 
CRC tissue may show different characteristics compared to 
their drug-sensitive parental cells; namely, increased expres-
sion of  specific anti-apoptotic genes (e.g., BCL2, BCL2L1 
and MCL1) has been often detected in chemoresistant 
clones[146,147]. Expression of  these anti-apoptotic genes is 
regulated by various upstream molecules; still, Bcl-2 and 
Bcl-xL upregulation upon DNA damage has been found 
to take place in a p38-dependent way in human cervical 
cancer cells[148]. The requirement of  p38 in Bcl-2-depen-
dent apoptosis inhibition after DNA damage has also been 
reported in E1A/Ras-transformed fibroblasts[149]. Further-
more, inhibition of  p38 by SB203580 appears to block 
hypoxia-induced Bcl-2 upregulation in endothelial cells, 
whereas inhibition of  related pathways (PKC, ERK1/2 or 
PI3K) does not affect Bcl-2 expression[150].

Cyclooxygenase-2 (Cox-2), a downstream protein of  
p38α, is frequently found upregulated in response to sev-
eral chemotherapeutics and its inhibition by non-steroidal 
anti-inflammatory drugs (NSAIDs) is thought to reduce 
the risk of  CRC development by inducing cell death in 
adenomas[151,152]. Since Cox-2 activity is also associated 
with p38 activation, its upregulation has been shown to 
be reduced in SB203580-treated CRC cells, resulting in 
increased apoptosis in response to ursolic acid[153]. These 
studies show that chemoresistant CRC cells may induce a 
p38-mediated resistance mechanism to support survival 
or to delay the ongoing cell death processes. Inhibition 

of  p38 by SB203580 has also been reported as an effec-
tive sensitizer reducing cell migration/invasion and en-
hancing sensitivity to etoposide treatment through Cox-2 
downregulation in neuroblastomas[154].

Due to correlation with metastatic potential, cell mi-
gration in advanced tumors is another important issue 
to overcome in cancer therapy. p38α acts as a potent 
inducer of  tumor invasion by regulating matrix metal-
loproteinases (MMP1, MMP3 and MMP13) in metastatic 
cancer cells[155]. TGFβ, which contributes to tumor pro-
gression and cell migration, acts through the p38 MAPK 
pathway, and p38 activity is required for TGFβ-mediated 
migration[67]. Death receptor-3-mediated p38 activation is 
required to promote survival and migration of  CRC cells, 
and SB202190 treatment was found to decrease metas-
tasis in in vivo breast cancer models[156,157]. These studies 
indicate that the p38 MAPK pathway is also involved in 
metastasis and affects cancer cell behavior beyond che-
moresistance in advanced cancers (Figure 3).

CONCLUSION
The current idea is that tumorigenesis requires deregula-
tion of  several cellular processes and acquisition of  par-
ticular features: independence from proliferation signals, 
evasion of  apoptosis, insensitivity to anti-growth signals, 
unlimited replicative potential and ability to invade, me-
tastasize and sustain angiogenesis for nutrient supply[30]. 
In addition, cancer cells need to acquire drug resistance 
and avoid oncogene-induced senescence[158]. In recent 
years, an emerging role has also been established for a 
subclass of  neoplastic cells within tumors, termed can-
cer stem cells (CSCs)[30]. Importantly, CSCs show similar 
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characteristics to normal intestinal stem cells, from which 
they are believed to originate. They are thought to be 
responsible for cancer relapse and to contribute to tu-
mor chemoresistance. Recent reports identified the p38-
Hsp27 axis as a survival pathway in hypoxic and serum-
starved colorectal CSCs[159]. Moreover, the p38-Hsp27 
pathway has been shown to mediate CSCs drug resistance 
to cisplatin[160] and anti-angiogenic agents[161].

Although the association of  p38α activation with 
pro-apoptotic functions has been studied for years, in 
this review we showed that there are a significant num-
ber of  reports highlighting its involvement in cancer cell 
survival, proliferation and chemoresistance. Indeed, p38α 
is over-active in CRC cells and tissues and is required to 
maintain cancer-specific metabolism[87]. Combined use 
of  p38α inhibitors (SB202190, SB203580, BIRB796) and 
autophagy inhibitors (3MA, bafilomycin), MEK inhibi-
tors (PD98059, UO126, CI-1040), HER2 inhibitors (lap-
atinib), multikinase inhibitors (sorafenib) or chemothera-
peutic agents (5-FU, irinotecan, cisplatin) significantly 
reduced CRC growth in vitro and in preclinical models by 
inducing a higher degree of  apoptosis compared to each 
single treatment[21,71,77,121,134]. Thus, targeting p38α in CRC 
offers oncologists various options for combined therapies 
and personalized medicine approaches: p38α inhibitors 
may be used in association with autophagy inhibitors, 
with molecularly-targeted drugs directed against the EGF 
pathway and with conventional chemotherapy. Besides, 
the phosphorylation status of  p38 MAPK might be used 
as a marker of  resistance and a predictor of  therapy re-
sponse in CRC. 

p38α blockade exerts its chemosensitizing effects 
through nuclear accumulation of  the transcription factor 
FoxO3A and activation of  its pro-apoptotic gene expres-
sion program. Besides being involved in the response 
to the above mentioned p38 inhibitors and to cisplatin, 
FoxO3A is also implicated in the cellular response to 
paclitaxel, doxorubicin, imatinib, PI3K-Akt inhibitors, 
EGFR/HER2 inhibitors, and ionizing radiation[162]. Elu-
cidation of  the cellular players involved in resistance to 
chemotherapy and sensitization to cell death is a key issue 
for improving the efficacy of  anti-cancer strategies, since 
response to treatment is often compromised by the de-
velopment of  chemoresistance. In this light, the new role 
described for the p38-FoxO3A axis in chemoresistance 
might prove of  high importance for the design of  new 
therapeutic strategies for CRC in combination with the 
above mentioned drugs.

Bax is required for proper apoptosis induction in all 
the combined therapeutic applications involving p38α in-
hibitors described for CRC in this review. Thus, Bax sta-
tus may also represent a predictive bio-marker for p38α-
targeted therapy response. Retention of  one Bax wild-
type allele is still sufficient to transduce apoptotic signals, 
while inactivation of  the second allele produces apoptosis 
resistance. Importantly, Bax inactivating mutations have 
been described in more than 50% of  CRCs characterized 
by a MIN phenotype, however these only account for 

10%-15% of  all CRCs[163]. 
Several p38α inhibitors passed phase Ⅰ clinical tri-

als and are currently in phase Ⅱ or Ⅲ for inflammatory 
diseases and cancer[109,164]. Of  note, LY2228820 dimesyl-
ate, a selective inhibitor of  p38 MAPK, passed a human 
phase Ⅰ study in patients with advanced cancer[165]. Thus, 
these agents could be available for future combined 
therapy with chemotherapeutic agents and molecularly 
targeted drugs. Still, it is important that further clinical 
trials are developed to investigate the incorporation of  
more effective combination chemotherapy regimens into 
the multimodality treatment of  CRC.
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