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Abstract
With the rapid development of high-throughput sequencing and artificial 
intelligence (AI) techniques, gut mucosal microbiota begins to be recognized as 
critical drivers of human colorectal cancer (CRC). Various AI approaches have 
been designed to obtain effective information from enormous numbers of 
microbial cells residing in gut mucosal as well as cancer cells. These mainly 
include detection of microbial markers for early clinical diagnosis of stage-specific 
CRC, characterization of pathogenic bacterial activities via genomic and 
transcriptomic analyses, and prediction of interplay between bacterial drivers and 
host immune systems. Here I review the current progresses of AI applications in 
profiling gut microbiomes linked to CRC initiation and development. I further 
look forward to future AI research for improving our understanding of the roles 
of gut microbiota in CRC evolution.
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INTRODUCTION
Colorectal cancer (CRC) continuously receives public and academic attentions due to 
its high prevalence and mortality rate[1]. Understanding the genetic mechanisms 
behind CRC initiation and progression is important to the development of early 
diagnosis and new therapy for CRC and its recurrence. The concept of the adenoma-
carcinoma sequence, which refers to a sequential activation of oncogenes and 
inactivation of tumor suppressor genes, is well recognized for CRC progression[2,3]. 
The adenoma-carcinoma sequence involves genetic mutations and epigenetic 
modification of human genome in vivo, which have been believed to be caused by 
exogenous and endogenous mutagens for decades[4-6]. However, it is still not fully 
understood which exogenous mutagens induce cancers and the induction mechanisms 
behind them remain largely unknown, especially when the questions go deep to a 
defined type of cancer.

Growing evidences indicate that gut mucosal microbiota is strongly linked to CRC 
development and may serve as a primary driver to induce inflammation in the human 
colon[7-13]. High-throughput sequencing (HTS) of 16S ribosomal RNA (rRNA) gene 
fragments is widely applied to profile microbial communities and used to study the 
composition structures of gut mucosal microbiota associated with human CRC 
(Figure 1)[14-17]. Moreover, metagenome sequencing of gut mucosal microbiomes 
coupled with binning strategies and other downstream analysis are able to reveal 
metabolism pathways in potential pathogenic bacteria at lineage levels, which are 
critical to screening microbial biomarkers (e.g., taxa and gene) for CRC and 
understanding the microbe-host interactions (Figure 1)[18-20]. Emerging meta 
transcriptomic sequencing, which examines large-scale gene expressions in microbial 
communities, is able to provide comprehensive insights into microbial population 
activities in host. Based on these in silico analyses and following wet-lab validations, 
species such as Fusobacterium nucleatum, Peptostreptococcus anaerobius, pks+ Escherichia 
coli and Eubacterium rectale have been identified as pathogenic drivers responsible for 
CRC progression[9,10,12,21]. However, due to the expensive and time-consuming wet-
lab experiments, a list of CRC-associated species is on the way to be examined for the 
physiological roles in CRC progression. Instead, AI approaches can serve as efficient 
methods to detect potential roles of these microbes in microbe-host interactions and 
provide clues for wet-lab validation.

With its increasingly wide applications in our everyday life, e.g. self-driving cars, 
facial recognition, and medical diagnosis, AI becomes one of the most popular fields 
that are heavily invested and supported in a number of countries. AI is capable of 
mimicking and going beyond human capabilities. In some biological fields such as 
genomics and transcriptomics, AI is able to complete the complex tasks that are 
impossible for human to finish[22]. AI technique encompasses machine learning (ML) 
as a major branch that includes deep learning as a subset of ML[23,24]. In essence, ML 
are computing algorithms that are either supervised by training datasets or designed 
as unsupervised algorithms. They are widely applied in gut microbiome field. Here I 
review the current progresses of AI applications in detection of pathogenic drivers for 
CRC and prediction of their driving roles in CRC evolution.

TAXONOMIC PROFILING OF GUT MICROBIOMES BASED ON 16S RRNA 
GENE SEQUENCING
Classification algorithms to categorize operational taxonomic unit
To understand the roles of pathogenic bacterial species in initiating and driving CRC 
progression, the first and most important step is to identify the spectrum of 
indigenous bacterial taxonomy in human gut. Current HTS technology has developed 
sufficiently mature methods and is able to extensively characterize bacterial taxonomy 
in samples collected from diverse environments and various hosts, including human 
gut mucosal[14-20,25,26]. As a key step for taxonomic assignment, classification of 
operational taxonomic units (OTUs) from large datasets of HTS 16S rRNA sequencing 
reads employs various AI algorithms. Classical algorithms for OTU classification 
include long-sequence-fist list removal algorithm[27,28], uclust algorithm[29], random 
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Figure 1 Schematic of artificial intelligence applications in characterizing the traits of gut microbiota associated with colorectal cancer. 
OTU: Operational taxonomic unit.

forest algorithm[30], and RDP naïve Bayesian classifier algorithm[31]. Because the 
datasets are usually generated in large scales, both accuracy and computation speed 
must be considered for trade off. Long-sequence-fist list removal algorithm 
implements a super-fast heuristic to identity DNA segments with high identity 
between sequences, to avoid costly computational alignments of full sequences[27,28]. 
Uclust algorithm sorts k-mer of sequencing reads to rapidly identify sequences in 
common[29]. Random forest algorithm builds an ensemble of decision trees that are 
trained with a combination of learning models[30]. RDP naïve Bayesian classifier 
algorithm classifies based on the multinomial model in both training and testing for 
computing classification probabilities[31]. However, challenges still remain to 
accurately determine the species using 16S rRNA sequences. Errors introduced due to 
experimental limitations such as polymerase chain reaction amplification and HTS 
sequencing need to be considered. In addition, although hypervariable regions in 16S 
rRNA sequences were used for taxonomic assignment, some sequences from bacterial 
species within the same genus are highly homologous or identical, leading to 
problems for taxonomic assignment. To solve these issues, new algorithms are also 
developed. For example, Bayesian-like operational taxonomic unit examiner algorithm 
employs a grammar-based assignment strategy to deal with sequencing reads errors, 
in which unsupervised Bayesian models are built based on k-mers split from 
sequencing reads[32]. To solve homology issues of hypervariable regions in 16S rRNA, 
Gwak and Rho used a k-nearest neighbor algorithm and the species consensus 
sequence models to determine species-level taxonomy[33]. Further development of AI 
methods for OTU classification will help improve the accuracy for taxonomic 
assignment and speed for dealing with large-scale dataset.

Neighbor-joining and maximum-likelihood based phylogenetic trees
Since gut microbiome OTUs may represent novel species/strains, placing them on a 
phylogenetic tree can shed light on their taxonomic positions. The computation of 
phylogenetic likelihood for reconstruction of evolutionary tress from sequence data is 
both memory and computing consuming. Both Neighbor-Joining (NJ) and maximum-
likelihood algorithms are the most popular methods in resolving topology of OTU 
sequences[34-38]. The NJ tree inference method belongs to distance-based method and 
takes a matrix of pairwise distance between the sequences to build evolutionary tree. 
The maximum-likelihood algorithm calculates all the possible tree topologies based on 
the probability.

Principal component analysis based dimension reduction of big data
The composition structure of gut microbiome is highly complex, containing high-
dimensional information for hundreds of bacterial species and their abundances[39]. 
To apply data mining strategies on looking for critical factors that distinguish gut 
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microbiomes, large numbers of samples were usually collected from patients in 
different CRC conditions, such as various intestinal locations and CRC stages. To 
examine the differences among samples that belong to specific conditions, the high-
dimensional information from each sample need to be reduced and presented on a 
two-dimensional space. As an unsupervised algorithm, principal component analysis 
is a dimensionality reduction algorithm that transforms and compresses matrix 
consisting of high-dimensional interrelated variables to a new set of two-dimensional 
variables[40,41]. By plotting the compressed two-dimensional variables, the 
microbiome patterns of gut mucosal samples collected from different conditions can be 
evaluated.

CLINICAL MICROBIAL GENOMIC ASSEMBLY ALGORITHM
To understand gut microbiome functions, bacteria residing in gut mucosal ecosystem 
need to be isolated and cultivated in laboratory for experimental validation[42]. 
Sequencing the genomes of these bacteria can reveal their metabolism traits and guide 
downstream functional analyses. For whole genome shotgun sequencing, bacterial 
genomic DNA is fragmented into small pieces for 2 × 100 or 2 × 150 bp paired-end 
sequencing. Various de novo assemblers, including Velvet, SPAdes and SoapDeNovo, 
have been designed to assemble a large number of short sequence reads to form a set 
of contiguous sequences representing the genome[43-45]. Because the reads are short, 
they are usually generated in large quantities with a high coverage depth. To deal with 
such a large dataset, the assemblers are not designed to assemble the short reads 
directly. Instead, the reads are splitted to form a set of k-mers and then mapped 
through de Bruijn graph. Although de Bruijn graph is suggested for short read 
assembly (100-200 bp), it is not recommended to assemble very short reads (25-50 bp). 
Velvet was designed to manipulate de Bruijn graph algorithm efficiently for very short 
reads assembly[43]. Elimination of errors and resolving repeats regions were 
considered in Velvet[43]. Reconstruction of consensus sequences from k-mers based on 
de Bruijn algorithm may lead to fragmented assembly. To deal with the issues, paired 
de Bruijn graphs using read-pairs (bireads) was designed. Inspired by paired de Bruijn 
graphs, SPAdes uses paired assembly graph algorithm by introducing k-bimer 
adjustment that reveals exact distances for the adjusted k-bimers[44]. SOAPdevo2, as 
the version 2 of SOAPdenovo, also utilizes de Bruijn graph algorithm but is designed 
to reduce memory consumption in de Bruijn graph constructions[45]. The algorithm 
supports error correction for long k-mers to improve accuracy and sensitivity during 
the assembly process. Moreover, the program benefits the assembly of repeat regions 
with high coverage depth and regions with low coverage depth via application of a k-
mer size selection strategy. Therefore, these assembly algorithms have their specific 
advantages and are widely utilized in practical applications.

METAGENOMICS ASSEMBLY AND BINNING
Gut mucosal microbiomes comprise hundreds of bacterial species, of which some are 
uncultivable in laboratory conditions[46,47]. Sequencing these mixed bacterial 
populations facilitates discovery of the genomic traits of these uncultivable bacteria. 
Although assembling the reads and reconstructing genes from these complex mixtures 
are challenging, metagenomic assembly algorithms and downstream binning 
strategies are under developing progresses to solve the technique problems.

Metagenomic assembly algorithms
Genome assembly for sequencing reads from a single species assumes that all the 
reads are sequenced from the same genomic DNA and contaminations can be screened 
out during quality control process[48]. The genome size of single species can be 
estimated based on the sizes of close phylogenetic neighbors and k-mer counting, and 
the required sequencing depth can be calculated according to the genome size. During 
assembly process, de Bruijn algorithm is designed to simply consider nodes or edges 
with low coverage depth as contamination and remove them[48,49]. In the same way, 
nodes with high coverage depth are considered by the algorithm as repetitive regions 
in the genome sequence. In contrast, metagenomic assembly cannot make such a 
simple assumption to decide nodes with low and high coverage depths to be from 
contamination sequences or repetitive regions. This is because metagenomic 
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sequencing reads are generated from mixed bacterial populations, in which certain 
species grow better than the rest and show high abundances in the mixed 
communities, whereas rare species show low abundances. Therefore, the coverage 
depths of heterogeneous reads cannot facilitate the assumption of their origins.

Currently, the most popular assemblers for metagenomics assembly include 
MEGAHIT and metaSPAdes[50,51]. MEGAHIT utilizes a fast parallel algorithm for 
succinct de Bruijn graphs to assemble k-mers from metagenomics reads[50]. To avoid 
k-mer singletons caused by sequencing error, MEGAHIT sorts and counts all (k + 1)-
mers splitted from the sequencing reads and only counts (k + 1)-mers with > 2 
occurrences[50]. In addition, MEGAHIT utilizes a mercy-kmers strategy to recover 
low-depth edges for the assembly of rare species[50]. MetaSPAdes uses de Bruijn 
graph of all reads using SPAdes, transforms it into the assembly graph using various 
simplification procedures[51]. The algorithm works across a wide range of coverage 
depths.

Binning strategy
Since assembled metagenomic scaffolds/contigs are derived from each species and 
show sequence composition characteristics such as GC content and coverage depth, 
various binning strategies are designed for the reconstruction of metagenome-
assembled genome (MAG). MAGs represent genomes from monophyletic lineages and 
can be used to analyze taxonomic and metabolic potentials. A number of programs 
have been designed for MAG binning, including MetaBat2, Maxbin2, CONCOCT, 
MyCC, and BinSanity[52-56]. MetaBat2 is a user-friendly program that does not need 
to tune the parameters for its sensitivity and specificity[52]. It utilizes a new adaptive 
binning algorithm to tune these parameters automatically, and uses a graph based 
structure for contig clustering. MetaBat2 is optimized for extensive low-level 
computation and works very efficiently for very large datasets. MaxBin 2.0 employs an 
Expectation-Maximization algorithm to recover draft genomes from metagenomes
[53]. It measures the tetranucleotide frequencies of the contigs and their coverages and 
then classifies the contigs into each bins. CONCOCT uses Gaussian mixture models to 
cluster contigs into bins[54]. Sequence composition and coverage are considered for 
assigning contigs to bins. A variational Bayesian approach is used to determine the 
number of clusters. MyCC works in a way using metagenomics signatures, 
contig/scaffold coverage depths, and Barnes-Hut-SNE-based dimension reduction
[55]. MyCC predicts genes in metagenomic contigs using Prodigal and then identifies 
single-copy marker genes using Hidden Markov Model trained FetchMG along with 
UCLUST. The reduced genomic signatures via Barnes-Hut-SNE algorithm are then 
clustered using affinity propagation for binning. Similarly, BinSanity utilizes affinity 
propagation algorithm to generate bins based on coverage depth, tetranucleotide 
frequency, and GC content[56]. Although these bin extraction algorithms are designed 
based on their own specific principles, the resulted bins from the same dataset can be 
combined, evaluated, modified, and improved to generate high-quality final set of bins 
using metaWRAP[57].

Quality checking and taxonomic inference for MAGs
Quality evaluation of the assembled MAGs determines the reliability of downstream 
annotation analyses. Because the concept of metagenome sequencing is quite new, not 
many programs have been developed with matured principles to determine MAG 
qualities. Currently, the most popular program is CheckM, which uses a set of lineage-
specific marker genes within a reference genome tree[58]. By this way, CheckM 
estimates the completeness and contamination of the assembled MAGs and 
determines which MAGs are useful for downstream analyses. To determine the set of 
marker genes, CheckM reconstructed a genome tree based on 5656 reference genomes 
and then inferred the marker gene set using HMMER based on hidden Markov models 
and FastTree based on WAG and GAMMA models. To evaluate a MAG, the marker 
gene set is identified in the MAG using hidden Markov models. The identified 
homologous genes of the marker genes are further aligned, concatenated, and then 
placed into the reference genome tree using pplacer for taxonomic inference and 
quality checking[59]. Another evaluation method for the assembled MAG is 
MetaQUAST, which aligns contig sequences of MAG to a close reference genome[60]. 
This program is able to detect potential taxonomic position of MAG by BLASTN 
searches against 16S rRNA sequences from the SILVA database[61,62]. Then it 
automatically downloads close reference genomes from the on-line NCBI database and 
aligns them against MAG for evaluation.
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Different from the taxonomic assignment based on 16S rRNA sequencing, 
metagenome sequencing and assembly contain much more information than 16S 
rRNA sequences. Data mining strategies to obtain taxonomic information from large-
scale metagenome assembly need to be considered and designed. As discussed above, 
both CheckM and MetaQUAST provide lineage hints for taxonomic assignment of 
MAGs[58,60]. Additionally, PhyloFlash maps sequencing reads to small-subunit rRNA 
(SSU rRNA) database for taxonomic assignment and can be performed before the 
metagenomes are assembled[63]. FOCUS uses non-negative least squares algorithm to 
compare k-mers between references genomes and MAGs, and determine taxonomic 
position for contigs binned in MAGs[64].

PREDICTION OF MICROBE-HOST INTERACTIONS
Gut microbes living in intestine mucosal, including commensals and pathogens, 
regulate homeostasis of host immunity[65]. Their activities are able to alter host 
signaling and immunity by interacting with the host proteins. Deciphering how 
microbe and host interact via protein-protein interactions and through which microbial 
and host proteins they work are important to development of novel strategies for 
prevention of CRC. Since wet-lab experiments are time-consuming and laborious, 
experimentally determining the microbe-host interactions is still challenging. On the 
other hand, genome-wide computational methods can efficiently provide hints to 
enhance our understanding of this challenging task[66-71]. One category of these 
computational methods are AI based methods for determining protein-protein 
interactions (PPI) between microbes and host[69,70]. Currently, AI based methods for 
PPI predictions are still new and only a few of them have been developed. Most of 
them are supervised methods, which utilizes well-recognized datasets as standards to 
train AI models and determine parameters. These training datasets are either collected 
from high-throughput experiments or obtained from literatures by text mining. 
Supervised PPI methods utilize various AI models such as logistic regression, random 
forests, support vector machine, artificial neural networks, and K-nearest neighbors
[72-76]. However, these AI-based PPI methods are designed for the PPI relationship 
between specific pathogen and human such as human-Bacillus anthracis, human-
Yersinia pestis and human-Fusobacterium nucleatum[67,77-79]. Because high abundances 
of F. nucleatum are associated with CRC patients and especially associated with 
specific CRC stages, F. nucleatum is proposed for its causal role in CRC development. 
Computational scanning of F. nucleatum genome and human proteins identified 
FusoSecretome proteins and their targets in the host network[67]. PPI-coupled 
network analysis identified that F. nucleatum perturbed host cellular pathways 
including immune and infection response, homeostasis, cytoskeleton organization, 
and gene expression regulation[67]. However, AI-based PPI studies for human-
microbiome interactions still need more efforts due to the complex mixed-population 
of species within gut microbiome.

CONCLUSION
Rapid development of high-throughput sequencing and high-throughput screening 
experiments generate large-scale datasets and largely improve our understanding of 
functional roles of gut microbiomes in CRC evolution. Using AI-based analyses, 
potential pathogenic species from gut microbiome have been identified to play critical 
roles in driving CRC. However, there are still limitations in current methods and 
challenges remain for them to be improved. These include but not limited to the 
questions as follows. How to accurately identify bacterial species/strains that reside in 
gut mucosal? How to use metagenomics sequencing data to assemble complete or 
nearly complete MAGs for bacterial single species? How to build AI models to 
interpret human-microbiome interactions under different environmental conditions? 
And many more challenges remain to be solved. I believe that continuous 
improvement of AI technology in CRC diagnosis as well as many more diseases will 
facilitate answering the above questions and help develop clinical treatment and 
prevention of CRC in advance.
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