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Abstract
BACKGROUND 
Bleeding is one of the major complications after endoscopic submucosal dissection 
(ESD) in early gastric cancer (EGC) patients. There are limited studies on 
estimating the bleeding risk after ESD using an artificial intelligence system.

AIM 
To derivate and verify the performance of the deep learning model and the 
clinical model for predicting bleeding risk after ESD in EGC patients.

METHODS 
Patients with EGC who underwent ESD between January 2010 and June 2020 at 
the Samsung Medical Center were enrolled, and post-ESD bleeding (PEB) was 
investigated retrospectively. We split the entire cohort into a development set 
(80%) and a validation set (20%).  The deep learning and clinical model were built 
on the development set and tested in the validation set. The performance of the 
deep learning model and the clinical model were compared using the area under 
the curve and the stratification of bleeding risk after ESD.

RESULTS 
A total of 5629 patients were included, and PEB occurred in 325 patients. The area 

https://www.f6publishing.com
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under the curve for predicting PEB was 0.71 (95% confidence interval: 0.63-0.78) in the deep 
learning model and 0.70 (95% confidence interval: 0.62-0.77) in the clinical model, without 
significant difference (P = 0.730). The patients expected to the low- (< 5%), intermediate- (≥ 5%, < 
9%), and high-risk (≥ 9%) categories were observed with actual bleeding rate of 2.2%, 3.9%, and 
11.6%, respectively, in the deep learning model; 4.0%, 8.8%, and 18.2%, respectively, in the clinical 
model.

CONCLUSION 
A deep learning model can predict and stratify the bleeding risk after ESD in patients with EGC.

Key Words: Clinical model; Deep learning model; Post-endoscopic submucosal dissection bleeding; 
Stratification of bleeding risk

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Bleeding is one of the major complications after endoscopic submucosal dissection (ESD) in 
early gastric cancer patients and requires hospital-based intervention. We established a deep learning 
model to stratify the bleeding risk after ESD and demonstrated its performance compared with a clinical 
model. The deep learning model showed acceptable area under the curve and could stratify the post-ESD 
bleeding risk as low-, intermediate-, and high-risk categories, which correlated with actual bleeding rate 
comparatively. A deep learning model would be valuable in assessing the bleeding risk after ESD in early 
gastric cancer patients.

Citation: Na JE, Lee YC, Kim TJ, Lee H, Won HH, Min YW, Min BH, Lee JH, Rhee PL, Kim JJ. Utility of a deep 
learning model and a clinical model for predicting bleeding after endoscopic submucosal dissection in patients 
with early gastric cancer. World J Gastroenterol 2022; 28(24): 2721-2732
URL: https://www.wjgnet.com/1007-9327/full/v28/i24/2721.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i24.2721

INTRODUCTION
In South Korea, gastric cancer has a high incidence and is the second most common malignancy and the 
fourth most common cause of cancer-related mortality[1]. After the advent of screening programs for 
gastric cancer in South Korea and Japan, up to 50%–70% of cases with gastric cancers have been 
diagnosed at an early stage[2-4]. With the increasing rate of diagnosis at early stages, endoscopic 
submucosal dissection (ESD) is being actively applied for the minimally invasive treatment of early 
gastric cancer (EGC) without suspicion of regional lymph node metastasis[5,6].

In accordance with the current trend of active use of ESD, it is necessary to pay attention to the post-
ESD complications. Bleeding is one of the significant complications, with an incidence of 3.6%–6.9%[7,
8]. Because bleeding after ESD requires hospitalization and hemostatic interventions, there is a need to 
predict patients at a high risk of bleeding after ESD. Therefore, there have been reports on risk factors 
related to bleeding after ESD[9-12]. Recently, a predictive risk-scoring model for bleeding after ESD was 
proposed in Japan; this tool is expected to raise awareness regarding the potential bleeding sources and 
thus, help physicians manage patients with EGC who are treated with ESD[13].

Currently, artificial intelligence systems are being applied in various fields of gastroenterology[14]. 
The machine learning models showed good performance in the triage of necessity for intervention in 
patients with upper gastrointestinal bleeding and predicting recurrent ulcer bleeding[15,16]. Deep 
learning is advantageous over the machine learning model among artificial intelligence systems; its 
performance is optimized by automatic learning while experiencing various cases. It can integrate and 
interpret multiple factors simultaneously without external intervention. Hence, the automatically 
trained deep learning model can generalize well. There has been no study on the efficacy of deep 
learning for predicting post-ESD bleeding (PEB), and no study has compared these systems with a 
clinical model.

This study aimed to develop and compare the performance of the deep learning and clinical model 
for predicting PEB in EGC patients. We chose deep learning among the artificial intelligence systems as 
a sophisticated algorithm.

https://www.wjgnet.com/1007-9327/full/v28/i24/2721.htm
https://dx.doi.org/10.3748/wjg.v28.i24.2721
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MATERIALS AND METHODS
Patients
Patients who underwent ESD for EGC between January 2010 and June 2020 at the Samsung Medical 
Center, Seoul, South Korea, were screened retrospectively. We excluded cases with: Failure to complete 
ESD (n = 1); prior gastrectomy (n = 2); additional gastrectomy within 28 d after ESD (n = 497); no 
residual tumor in the ESD specimen (n = 48); multiple procedures, such as EMR for other benign lesions 
and ESD for EGC (n = 46); and missing values for important variables (n = 7) (Figure 1). A total of 5629 
patients were included in the analysis, and they were randomly categorized into the development set 
(80%) and the validation set (20%). The Institutional Review Board of the Samsung Medical Center, 
Korea, approved this study, and the requirement for obtaining informed consent was waived owing to 
the study's retrospective nature.

Outcome, data sources, study variables, and definitions
The main outcome included the development of a deep learning model and a clinical model that predict 
the bleeding after ESD in patients with EGC and the comparison of performance between the deep 
learning model and the clinical model.

The variables used to build the deep learning and clinical models were collected from the medical 
records retrospectively based on the date of ESD. These variables included: Age; sex; comorbidities such 
as hypertension, diabetes mellitus, liver cirrhosis, and chronic kidney disease (estimated glomerular 
filtration rate < 60 mL/min per 1.73 m2); patient management with antithrombotic agents (ATs) [aspirin, 
P2Y12 receptor agonist (P2Y12RA), warfarin, direct-acting oral anticoagulants (DOAC), and cilostazol], 
non-steroidal anti-inflammatory drugs (NSAIDs), interruption of ATs, replacement of antiplatelet 
agents (APA), and heparin bridging; tumor characteristics (single or multiple lesions, location, 
pathologic size, type of differentiation); piecemeal resection; and laboratory data (albumin level and 
international normalized ratio).

Bleeding after ESD was defined as the presence of signs of bleeding (melena, hematemesis, or a 
decrease in the hemoglobin level by > 2 g/dL) along with endoscopic stigmata of recent bleeding, such 
as Forrest class Ia, Ib, IIa, and IIb, within 28 d after ESD. Interruption of ATs was defined as the discon-
tinuation of these medications before the procedure, according to the recommended duration. 
Replacement of APA was described as when the procedure was performed with aspirin or cilostazol 
alone in patients who were receiving multiple APAs. Heparin bridging was defined as the adminis-
tration of heparin during the period between the discontinuation and resumption of anticoagulants. A 
hemoglobin reduction of > 2 g/dL was evaluated by calculating the differences in the hemoglobin levels 
between the day before and after ESD.

Development of the deep learning and clinical models 
We built a deep learning model and a clinical model based on the development set, which comprised 
80% of the overall cohort. Subsequently, we validated the deep learning and clinical models in the 
validation set, which comprised 20% of the overall cohort. The categorical variables were converted 
using one-hot encoding, and the continuous variables were normalized, as preprocessing. We built the 
deep learning model as follows: First, we augmented the development set using the borderline synthetic 
minority over-sampling technique to overcome the imbalance of the dataset. Synthetic data were 
generated from 5%–100% of the majority class. Second, we constructed the deep learning model using 
automated machine learning, called Keras Tuner, to tune hyperparameters automatically. The initial 
architecture of the model was configured similarly to a transformer based on the attention mechanism
[17]. Then, we set the number of neurons as a hyperparameter variable, ranging from 12 to 24, in four 
dense layers. The learning rate was also set to a range from 1e-2 − to 1e-4 −. The combination of 
hyperparameters was determined using Bayesian optimization. Finally, we evaluated the performance 
in the validation set using a model tuned with the 20% of synthetic data of the majority class. The 
optimal units of dense layers were selected to 24. The optimal number of attention head was chosen to 
16. The architecture is depicted in Supplementary Figure 1. The optimal learning rate with Adam 
optimizer was 1e-3.

Multivariable logistic regression analysis was performed in the development set to build the clinical 
model. Then, the clinical model was constructed as a formula with the sum of the beta coefficient values 
of significant factors with a P value of < 0.05.

The calculated value from the deep learning and clinical models was multiplied by 1000 and 
converted as a score. The score that indicated the risk probability was divided by the decile in the 
development set. We selected cutoff to discriminate the risk categories as low-, intermediate-, and high-
risk at a bleeding rate of < 5% and < 9% in the development set referred to in a previous report[13]. 
Decile 1st to 4th was allocated to low risk, 5th to 8th to intermediate risk, and 9th to 10th to high-risk 
category. Link to the deep learning and clinical models: https:// github.com/YeongChanLee/Predict-
PEB.

https://f6publishing.blob.core.windows.net/ec66e258-8bc2-4eed-93df-7583a764e619/WJG-28-2721-supplementary-material.pdf
https:// github.com/YeongChanLee/Predict-PEB
https:// github.com/YeongChanLee/Predict-PEB
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Figure 1 Patient flowchart. EGC: Early gastric cancer; ESD: Endoscopic submucosal dissection.

Statistical analysis 
Descriptive statistics for continuous and categorical variables are presented as means (standard 
deviation) and frequencies (%). The deep learning model and the clinical model for prediction of 
bleeding after ESD were evaluated using two methods. First, sensitivity, specificity, positive predictive 
value (PPV), negative predictive value (NPV), and receiver operating characteristic area (ROC) curve 
along with the area under the curve (AUC) were analyzed. The performance with AUC was compared 
using the bootstrap test. Second, the risk stratification of PEB based on the development set was applied 
to the validation set and compared with the actual bleeding rate in the validation set. For example, if the 
score of calculated cases belongs to the high-risk category, we verified that the real bleeding rate was in 
the predicted range of 9% or higher. The predictors for PEB were identified with multivariable logistic 
regression analysis in the entire cohort and development set. Model development for deep learning was 
performed using Tensor Flow 2.4.0, and Python 3.8.5. statistical analyses were performed using the R 
software (version 3.5.1, Vienna, Austria).

RESULTS
Baseline characteristics
Of the 5629 patients, 325 experienced post-ESD bleeding (PEB). The non-PEB and PEB groups were 
comparable in age, liver cirrhosis status, albumin level, international normalized ratio level, a 
proportion of aspirin or cilostazol use, undifferentiated tumor type, and piecemeal resection. The PEB 
group had a higher proportion of males and comorbidities (hypertension, diabetes mellitus, and chronic 
kidney disease) than the non-PEB group. P2Y12RA and anticoagulants (warfarin or DOAC) and the 
proportion of patients receiving replacement therapy or heparin bridging were higher in the PEB group 
than in the non-PEB group. The PEB group had a higher proportion of multiple tumors and middle 
location of tumors and larger size of tumors than the non-PEB group (Table 1). There was no difference 
in the baseline characteristics between the development and validation sets (Supplementary Table 1).

Predictors for bleeding after ESD
In the overall cohort, the independent predictors were identified as follows: Age [odds ratio (OR) = 0.98; 
95% confidence interval (CI): 0.96–0.99; P value < 0.001], male (OR = 1.65; 95%CI: 1.19–2.28; P value = 
0.003), hypertension (OR = 1.56; 95%CI: 1.19–2.03; p value = 0.001), chronic kidney disease (OR = 1.78; 
95%CI: 1.18–2.70; P value = 0.006), P2Y12RA (OR = 2.40; 95%CI: 1.22–4.74; P value = 0.011), DOAC (OR 
= 4.31; 95%CI: 1.26–14.78; P value = 0.020), middle location (OR = 1.72; 95%CI: 1.07–2.74; P value = 
0.024), and size (OR = 1.03; 95%CI: 1.02–1.04; P value < 0.001) (Supplementary Table 2).

In the development set, age (OR = 0.98; 95%CI: 0.96–0.99; P value = 0.001), male (OR = 1.54; 95%CI: 
1.09–2.19;  P value = 0.015), hypertension (OR = 1.35; 95%CI: 1.00–1.82; P value = 0.049), chronic kidney 
disease (OR = 1.78; 95%CI: 1.12–2.84; P value = 0.015), P2Y12RA (OR = 2.26; 95%CI: 1.05–4.88; P value = 
0.037), middle location (OR = 1.97; 95%CI: 1.14–3.41; P value = 0.015), and size (OR = 1.04; 95%CI: 
1.03–1.05; P value  < 0.001) were identified as independent predictors. The clinical model was a formula 
described bottom of Table 2.

https://f6publishing.blob.core.windows.net/ec66e258-8bc2-4eed-93df-7583a764e619/WJG-28-2721-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/ec66e258-8bc2-4eed-93df-7583a764e619/WJG-28-2721-supplementary-material.pdf
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Table 1 Baseline characteristics of patients in entire cohort

Variable Non-PEB, n = 5304 PEB, n = 325 P value1

Age2 64 ± 10 63 ± 11 0.065

Sex 0.001

Female 1245 (23.5) 49 (15.1)

Male 4059 (76.5) 276 (84.9)

Hypertension 1413 (26.6) 120 (36.9) < 0.001

Diabetes mellitus 936 (17.6) 74 (22.8) 0.024

Liver cirrhosis 93 (1.8) 4 (1.2) 0.629

Chronic kidney disease 299 (5.6) 33 (10.2) 0.001

Aspirin 515 (9.7) 42 (12.9) 0.074

P2Y12RA 181 (3.4) 23 (7.1) 0.001

Warfarin 22 (0.4) 7 (2.2) < 0.001

DOAC 31 (0.6) 6 (1.8) 0.017

Cilostazol 47 (0.9) 3 (0.9) 1.000

NSAIDs 28 (0.5) 3 (0.9) 0.583

Preprocedure management of AT < 0.001

No indication 4605 (86.8) 264 (81.2)

Interruption 676 (12.7) 53 (16.3)

Replacement or heparin bridge 23 (0.4) 8 (2.5)

Tumor 

Multiple 284 (5.4) 28 (8.6) 0.018

Location < 0.001

Upper 433 (8.2) 22 (6.8)

Middle 1728 (32.6) 157 (48.3)

Lower 3143 (59.3) 146 (44.9)

Size2, mm 17 ± 10 21 ± 13 < 0.001

Undifferentiated type 125 (2.4) 7 (2.2) 0.963

Piecemeal resection 64 (1.2) 4 (1.2) 1.000

Laboratory data

Albumin2, g/dL 4.3 ± 0.3 4.4 ± 0.4 0.345

INR2 1.0 ± 0.1 1.0 ± 0.1 0.106

1P value calculated using Student’s t-test for continuous variables or Pearson’s chi-square test for categorical variables for overall data.
2mean ± SD presented for continuous variables.
Values are expressed as n (%) unless otherwise specified. AT: Antithrombotic; DOAC: Direct oral anticoagulant; INR: International normalized ratio; 
NSAIDs: Non-steroidal anti-inflammatory drugs; PEB: Post-endoscopic submucosal dissection bleeding; P2Y12RA: P2Y12 receptor antagonist.

Performance and comparison of deep learning model and clinical model 
The deep learning model was found to have a sensitivity of 64.3%, specificity of 74.0%, PPV of 11.4%, 
NPV of 97.5%, and AUC of 0.71 (95%CI: 0.63–0.78). The clinical model had a sensitivity of 69.6%, 
specificity of 71.0%, PPV of 11.1%, NPV of 97.8%, and AUC of 0.70 (95%CI: 0.62–0.77) (Table 3 and 
Figure 2). There were no significant differences in the AUCs between the deep learning and clinical 
models (Table 3).

The score multiplied by 1000 to the derived value based on the deep learning and clinical models 
reflects the risk probability and was divided into deciles. The maximum cutoff was 35.9 in low risk, 57.5 
in intermediate risk, and over the 57.5 was assigned to a high-risk category of the deep learning model 
based on development set (Table 4). In the clinical model, the maximum cutoff was 12.7 in low risk, 24.6 
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Table 2 Logistic regression analysis for predictors of bleeding after endoscopic submucosal dissection in development set

Multivariable
Variables

OR 95%CI P value ß regression coefficient

Age 0.98 0.96–0.99 0.001 -0.024

Sex Female/male 1.54 1.09–2.19 0.015 0.435

Hypertension No/yes 1.35 1.00–1.82 0.049 0.299

Diabetes mellitus No/yes 1.27 0.92–1.75 0.145 0.238

Liver cirrhosis No/yes 0.59 0.18–1.95 0.385 -0.532

Chronic kidney disease No/yes 1.78 1.12–2.84 0.015 0.578

Aspirin No/yes 1.51 0.62–3.69 0.363 0.414

P2Y12RA No/yes 2.26 1.05–4.88 0.037 0.818

Warfarin No/yes 1.51 0.28–8.07 0.629 0.413

DOAC No/yes 3.24 0.76–13.82 0.113 1.174

Cilostazol No/yes 1.35 0.35–5.18 0.662 0.300

NSAIDs No/yes 2.65 0.77–9.14 0.124 0.973

No indication 1

Interruption 0.63 0.24–1.67 0.353 -0.464

Preprocedure management of 
AT

Replacement orHeparin 
bridge

3.32 0.47–23.60 0.231 1.199

Multiple No/yes 1.48 0.92–2.38 0.104 0.393

Upper 1

Middle 1.97 1.14–3.41 0.015 0.680

Location

Lower 1.11 0.64–1.91 0.711 0.103

Size 1.04 1.03–1.05 < 0.001 0.036

Undifferentiated type No/yes 0.56 0.20–1.57 0.271 -0.579

Piecemeal No/yes 0.98 0.30–3.22 0.976 -0.019

Albumin, g/dL 1.33 0.89–2.00 0.168 0.286

INR 2.04 0.37–11.08 0.410 0.711

Clinical model = 1/[1 + exp(-1 × [-0.024 × Age in years + 0.435 × Sex (0: female, 1: male) + 0.299 × Hypertension (0: no, 1: yes) + 0.578 × Chronic kidney 
disease (0: no, yes: 1) + 0.818 × P2Y12RA (0: no, 1: yes) + 0.680 × Middle location (0: no, 1: yes) + 0.036 × Size in mm])]. AT: Antithrombotic; DOAC: Direct 
oral anticoagulant; ESD: Endoscopic submucosal dissection; INR: International normalized ratio; NSAIDs, Non-steroidal anti-inflammatory drugs; 
P2Y12RA: P2Y12 receptor antagonist; OR: Odds ratio; CI: Confidence interval.

in intermediate risk, and over 24.6 was considered a high-risk category based on development set 
(Table 4). In the validated set, the deep learning model showed an actual bleeding rate in low-, 
intermediate-, high-risk categories, respectively, of 2.2%, 3.9%, and 11.6%; the clinical model showed an 
actual bleeding rate of 4.0%, 8.8%, and 18.2%, respectively, in low-, intermediate-, high-risk categories 
(Table 4).

DISCUSSION
The deep learning and clinical models for predicting bleeding after ESD in patients with EGC showed 
good performance. We demonstrated that deep learning and clinical models could stratify the PEB risk, 
which correlated with actual bleeding rates. Hence, we suggest that the deep learning model can aid in 
the prediction of bleeding after ESD, in addition to the clinical model.

This study was the first to establish a deep learning model for predicting bleeding after ESD and 
demonstrate its performance compared to that of a clinical model. The strengths of this study were its 
large sample size and the relatively recent data from a single institution. In addition, we included all 
essential variables and sought the advantages of the deep learning model that can deal with extensive 
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Table 3 Utility of deep learning model and clinical model

Deep learning model Clinical model P value

Sensitivity (%) 64.3 (45.8–84.1) 69.6 (54.2–80.8)

Specificity (%) 74.0 (50.6–89.2) 71.0 (68.5–79.5)

PPV (%) 11.4 (7.4–18.1) 11.1 (8.0–15.4)

NPV (%) 97.5 (96.4–98.7) 97.8 (96.6–98.7)

AUC (95%CI) 0.71 (0.63–0.78) 0.70 (0.62–0.77) 0.730

One thousand times for bootstrapping were conducted to measure 95% confidence intervals. P value for statistical significance between area under the 
curves was derived from Delong’s test. AUC: Area under the curve; CI: Confidence interval; NPV: Negative predictive value; PPV: Positive predictive 
value.

Table 4 Decile of risk probability based on deep learning model and clinical model

Deep learning Clinical model
Decile Risk categories

Score1 Patients Bleeding Rate (%) Score1 Patients Bleeding Rate (%)
Development set

1 Low 25.7 451 11 2.4 8.4 451 12 2.6

2 29.1 451 15 3.3 12.2 451 15 3.3

3 32.5 451 6 1.3 12.4 451 12 2.6

4 35.9 450 17 3.8 12.7 450 20 4.4

5 Intermediate 40.2 450 27 6.0 14.8 450 34 7.6

6 45.3 450 29 6.4 16.6 450 15 3.3

7 50.8 450 36 8.0 23.3 450 24 5.3

8 57.5 450 24 5.3 24.6 450 32 7.1

9 High 67.2 450 41 9.1 31.0 450 54 12.0

10 197.0 450 63 14.0 122.0 450 51 11.3

Validation set

Low 35.9 411 9 2.2 12.7 956 38 4.0

Intermediate 57.5 466 18 3.9 24.5 137 12 8.8

High 147.0 249 29 11.6 155.0 33 6 18.2

1The score is calculated with probability multiplied by 1000 and presented as maximum cutoff in each decile.
Decile 1st to 4th: Low-risk category. Decile 5th to 8th: Intermediate-risk category. Decile 9th to 10th: High-risk category. The Cochran–Armitage test for trend 
was performed.

data and complex problems and improve its performance incrementally by automated learning. We 
included all types of ATs separately and clarified the distinction between patients without an indication 
for ATs, patients who received an interruption before the procedure, and patients who received 
replacement or heparin bridging.

Our study identified younger age, male sex, hypertension, chronic kidney disease, P2Y12RA use, 
DOAC use, middle tumor location, and tumor size as the predictors of PEB.  Previous studies also 
reported that younger age was associated with PEB[18-20]. It is unclear why younger age was associated 
with PEB. Several reports proposed that atrophic change along with aging might relate to decreasing the 
vascularity on the mucosal and submucosal layers[18,20-23]. Although aging and changes in intestinal 
vasculature have not been clearly elucidated, a decrease in the volume of vasculature with aging was 
observed in animals[24]. Aspirin did not increase the PEB risk after discontinuation about 1 wk[25]. 
Although some reported that maintaining aspirin did not increase the PEB risk[25-28], a meta-analysis 
showed that aspirin was associated with increased bleeding risk, requiring clinical caution[29]. There is 
still controversial due to limited evidence for P2Y12R[9,13,20,30]. In comparison, an increased bleeding 
risk after ESD has been reported consistently in patients receiving dual antiplatelets. In addition, there 
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Figure 2 Area under the curve for prediction of bleeding after endoscopic submucosal dissection in deep learning model and clinical 
model.

were reports that warfarin or DOAC are related to bleeding risk[13]; rather, some reported heparin 
bridging was associated with PEB risk[9,26]. The irony is that most of the patients who experience 
heparin bridging take warfarin or DOAC, but the results about each factor were inconsistent in previous 
retrospective studies. It is assumed that the duration of discontinuation and other individual factors 
might influence these results. In addition, it has been suggested that large size[8,19,20], CKD with 
hemodialysis[13,26,31], and long procedure time[20] were associated with bleeding after ESD. The 
upper location showed increased PEB risk[18,32]; in contrast, some others reported lower location 
related to increased PEB risk[18,32]; a recent meta-analysis did not prove significance according to the 
location[8].

Recently, a predictive risk-scoring model for PEB in Japan showed that CKD with hemodialysis, 
usage of aspirin, P2Y12RA, cilostazol, warfarin, DOAC, lower third tumor location, tumor size > 30 mm, 
and the presence of multiple tumors were the predictors of PEB, whereas interruption was a protective 
factor against PEB[13]. Another recent model proposed a simple algorithm including significant factors 
with continuous use of ATs, size ≥ 49 mm, and age < 62 years.  We also found an association between 
P2Y12RA or DOAC usage and PEB; however, other ATs were not associated with PEB, and interruption 
and heparin bridging or replacement of APA were not identified as the protective factors. In our 
institution, ESD is classified as a high-risk procedure based on the national practice guidelines, and 
experts are consulted before ESD in patients receiving ATs. The expert assesses the thromboembolic risk 
depending on the underlying disease and recommends the possibility of interruption, duration of 
interruption, and the need for heparin bridging or replacement of APA[33-36]. Recently, a guideline 
published in South Korea also categorized ESD as an ultra-high-risk procedure and recommended 
interruption of ATs with heparin bridging or replacement of APA according to the thromboembolic risk
[37].

The deep learning model in our study showed an AUC of 0.71, which was comparable to the AUC of 
0.72 for a risk-scoring model in Japan[13] and the AUC of 0.70 for the clinical model in our study. In the 
validation set, predicted low-, intermediate-, and high-risk categories showed an actual bleeding rate of 
2.2%, 3.9%, and 11.6%, respectively in the deep learning; 4.0%, 8.8%, and 18.2%, respectively, in the 
clinical model. Our study demonstrated that the deep learning and clinical models can stratify the 
bleeding risk after ESD. The predicted risk categories correlated with actual bleeding rate; even 
considering the actual bleeding rate was slightly lower than predicted range of ≥ 5% and < 9% 
(intermediate risk) in the deep learning and was close to upper range in the clinical model. Our findings 
support the clinical potential of the deep learning model for predicting PEB risk based on its comparable 
performance. Because bleeding after ESD requires intervention and hospitalization, physicians are 
concerned about the occurrence of PEB as a major complication. Based on the risk-prediction model, 
physicians could carefully assess the bleeding risk and perform preventive hemostasis during the 
procedure. Suppose additional management like the shielding method for preventing PEB in the 
selected high-risk group is attempted; in that case, it is anticipated that the deep learning model could 
support risk stratification.

Our study has several limitations. Due to its retrospective design, information such as the timing of 
the resumption of ATs, endoscopist’s experience, defect size, and procedure duration was missing. 
Furthermore, our study was designed as a single-center study; hence, hospital-based validation in other 
hospitals was not performed, and further proof is warranted. However, the deep learning model might 
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be generalizable because it automatically identifies the risk or probability of bleeding without the 
external intervention of known relevant factors. Both the deep learning and clinical models showed a 
low PPV, which may be related to the low incidence of bleeding after ESD, even though bleeding is one 
of the major complications. In our cohort, the number of patients who received anticoagulants (warfarin 
or DOAC) was small; therefore, it is possible that the statistical significance of these variables was 
insufficient for establishing a clinical model in the development set. In this regard, despite the fact that 
our study focused on the development of a deep learning model and a clinical model, as well as the 
utility of the deep learning model, further accumulation of data and additional analysis will be required 
before the commencement of the clinical application of artificial intelligence systems.

CONCLUSION
In conclusion, we introduced a deep learning model to predict the risk of bleeding after ESD in patients 
with EGC. The model demonstrated its performance as comparable to the clinical model. The deep 
learning model could help physicians raise caution to the PEB and would be a desirable tool for 
supporting ESD application.

ARTICLE HIGHLIGHTS
Research background
With the increasing rate of diagnosis at early stages of gastric cancer, endoscopic submucosal dissection 
(ESD) is being actively applied as the minimally invasive treatment. Bleeding is one of the significant 
complications, with an incidence of 3.6%–6.9%. Because bleeding after ESD requires hospitalization and 
hemostatic interventions, there is a need to predict patients at a high risk of bleeding after ESD.

Research motivation
Currently, artificial intelligence systems are being applied in various fields of gastroenterology. Deep 
learning among artificial intelligence systems was automatically trained so that it could be generalized 
well. There has been no study on the efficacy of deep learning for predicting post-ESD bleeding (PEB), 
and no study has compared these systems with a clinical model.

Research objectives
This study aimed to develop and compare the performance of the deep learning and clinical model for 
predicting PEB in early gastric cancer (EGC) patients.

Research methods
Patients who underwent ESD for EGC between January 2010 and June 2020 at the Samsung Medical 
Center, Seoul, South Korea, were screened retrospectively. We built a deep learning model and a clinical 
model based on the development set, which comprised 80% of the overall cohort. Subsequently, we 
validated the deep learning and clinical models in the validation set, which comprised 20% of the 
overall cohort. The deep learning model and the clinical model for prediction of bleeding after ESD 
were evaluated using two methods. First, sensitivity, specificity, positive predictive value, negative 
predictive value, and receiver operating characteristic area curve along with the area under the curve 
(AUC) were analyzed. The performance with AUC was compared using the bootstrap test. Second, the 
risk stratification of PEB based on the development set was applied to the validation set and compared 
with the actual bleeding rate. The authors selected cutoff to discriminate the risk categories as low-, 
intermediate-, and high-risk at a bleeding rate of < 5% and < 9% in the development set referred to in a 
previous report.

Research results
Of the 5629 patients, 325 experienced PEB. The AUC for predicting PEB was 0.71 (95% confidence 
interval: 0.63-0.78) in the deep learning model and 0.70 (95% confidence interval: 0.62-0.77) in the clinical 
model, without significant difference (P = 0.730). In the validated set, the deep learning model showed 
an actual bleeding rate of 2.2%, 3.9%, and 11.6% in low-, intermediate-, high-risk categories, 
respectively; the clinical model showed an actual bleeding rate of 4.0%, 8.8%, and 18.2% in low-, 
intermediate-, high-risk categories, respectively.

Research conclusions
In conclusion, we introduced a deep learning model to predict the risk of bleeding after ESD in patients 
with EGC. The model demonstrated its performance as comparable to the clinical model.
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Research perspectives
Based on the risk-prediction model, physicians could carefully assess the bleeding risk and perform 
preventive hemostasis during the procedure. Suppose additional management like the shielding 
method for preventing PEB in the selected high-risk group is attempted; in that case, it is anticipated 
that the deep learning model could support risk stratification.
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