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Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devas-
tating disease with a median overall survival time of 
5 mo and the five years survival less than 5%, a rate 
essentially unchanged over the course of the years. A 
well defined progression model of accumulation of ge-
netic alterations ranging from single point mutations to 
gross chromosomal abnormalities has been introduced 
to describe the origin of this disease. However, due to 
the its subtle nature and concurring events PDAC cure 
remains elusive. Nuclear receptors (NR) are members 
of a large superfamily of evolutionarily conserved li-
gand-regulated DNA-binding transcription factors func-
tionally involved in important cellular functions ranging 
from regulation of metabolism, to growth and develop-
ment. Given the nature of their ligands, NR are very 
tempting drug targets and their pharmacological mod-
ulation has been widely exploited for the treatment of 
metabolic and inflammatory diseases. There are now 
clear evidences that both classical ligand-activated and 
orphan NR are involved in the pathogenesis of PDAC 
from its very early stages; nonetheless many aspects 

of their role are not fully understood. The purpose 
of this review is to highlight the striking connections 
that link peroxisome proliferator activated receptors, 
retinoic acid receptors, retinoid X receptor, androgen 
receptor, estrogen receptors and the orphan NR Nur, 
chicken ovalbumin upstream promoter transcription 
factor Ⅱ and the liver receptor homologue-1 receptor 
to PDAC development, connections that could lead to 
the identification of novel therapies for this disease.
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Core tip: Pancreatic cancer is a devastating disease 
with well defined genetic alterations made deadly 
by its subtle nature and the lack of effective drugs. 
Nuclear receptors (NR) are ligand-regulated transcrip-
tion factors involved in important cellular functions and 
tempting targets for drug development. There are now 
evidences that classical ligand-activated peroxisome 
proliferator activated receptors, retinoic acid receptors, 
retinoid X receptors, androgen receptor, estrogen re-
ceptors and orphan Nur, chicken ovalbumin upstream 
promoter transcription factor Ⅱ and liver receptor 
homologue-1 NR are involved in the pathogenesis of 
pancreatic cancer. No clinical application of these NR in 
pancreatic cancer cure is reported but a more compre-
hensive analysis of NR action could lead to the identifi-
cation of new treatments for this disease.
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INTRODUCTION
The most frequent form of  pancreatic cancer is pan-
creatic ductal adenocarcinoma (PDAC) one of  the most 
lethal cancer and the fifth cause of  cancer death in the 
Developed Countries[1]. Treatment of  PDAC is primarily 
a combination of  curative surgery and adjuvant chemo-
therapy with modestly effective drugs[2]. Unfortunately, 
due to absence of  specific symptoms, a high percentage 
of  patients at the time of  diagnosis present a incurable 
locally advanced or metastatic disease that precludes a 
successful surgical resection, the only possible curative 
methods for PDAC, at least for early stages diseases.

Approved in 1996[2], Gemcitabine is the frontline stan-
dard chemotherapy used essentially in monotherapy for 
the treatment of  pancreatic cancer with modest results; 
the innate or acquired resistance to chemotherapy drugs 
of  PDAC remains the major obstacle to its successful 
control[3]. Early detection of  PDAC is difficult if  not 
impossible: benign and malignant lesions share similar 
clinical presentations and imaging features, making imag-
ing detection of  early disease difficult[4], and the majority 
of  available molecular markers possess low specificity[5]. 
Therefore the median overall survival time is 5 mo and 
the five years survival is less than 5%, a rate essentially 
unchanged over the course of  the years[6]. Consequently, a 
deeper understanding the pathobiology of  this disease is 
essential to lead to new targeting strategies.

The route to PDAC
Despite the effort of  the scientific community, the etiol-
ogy of  PDAC is still poorly understood undermining the 
efforts for its prevention and cure. A large number of  
epidemiological studies suggested that tobacco smok-
ing, alcohol consumptions, obesity, chronic pancreati-
tis, genetic risk factors and diabetes are risk factors of  
PDAC[7-9].

Pancreatic adenocarcinoma arises from three precur-
sor lesions: the microscopic pancreatic intraepithelial 
neoplasia (PanIN) and the macroscopic intraductal pap-
illary mucinous neoplasm and mucinous cystic neoplasm 
(Figure 1)[10,11].

PanINs are the more frequent preneoplastic precur-
sors of  PDAC[12]; they are classified according to the ac-
cumulation of  architectural, cytologic, and genetic altera-
tions: from PanIN 1 with the appearance of  columnar 
cells with mucin, to PanIN3 (also called carcinoma in situ) 
characterized by a severe cyto-architectural athypia[10].

PDAC is a disease with a well defined progression 
model of  accumulation of  genetic alterations ranging 
from single point mutations to gross chromosomal ab-
normalities[13-17]. The most frequent and studied altera-
tions determine the activation of  epidermal growth 
factor receptor-KRAS pathway[15]. Although almost all 
patients posses at least one of  these mutations, the late 
stage disease is characterized by increased genome in-
stability and heterogeneity with an average of  63 genetic 
alterations, the majority of  which are point mutations, 
grouped in a core set of  12 cellular signaling pathways[18]. 

Morphological progression from PanIN to PDAC is par-
alleled by the accumulation of  these genetic alterations 
in a progression model resembling the colon cancer 
model. Ductal origin of  PanIN and PDAC is however 
questioned and a new model has been proposed where 
the cancer ductal cells in PanIN lesions originate from 
metaplastic acinar cells in a process called “acinar to 
ductal metaplasia” (ADM)[19].

Nuclear receptors: Classification, structural features, 
and ligands
Nuclear receptors (NRs) are members of  a large super-
family of  evolutionarily related ligand-regulated DNA-
binding transcription factors present in most meta-
zoan[20].

The first NR was only cloned in the ‘80s by Professor 
Evans R[21] long after the presence of  NR was detected 
biochemically[22,23]; so far 48 NR has been identified in 
human by genome sequencing. All NR share characteris-
tic structural features or domains named A to F from the 
N-terminal to the C-terminal; however, defining features 
of  NR are only the presence of  two highly conserved 
regions: the DNA binding domain (DBD) and the ligand 
binding domain (LBD), that can function independent-
ly[24] and are located in the region C and in the region E 
of  the protein, respectively (Figure 2).

NR are classified into six different subfamilies on 
homology basis: NR1 (thyroid hormone like), NR2 
(HNF4-like), NR3 (estrogen like), NR4 (nerve growth 
factor IB-like), NR5 (fushi tarazu-F1 like), and NR6 
(germ cell nuclear factor like), all originally named from 
the first member identified. A seventh subclass, NR0, 
has been introduced to classify two receptors, DAX-1 
and SHP, that do not possess the DBD[25] (Table 1, in-
formation on ligands obtained from the “nuclear recep-
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Figure 1  Origin of pancreatic ductal adenocarcinoma. It is widely accepted 
that pancreatic ductal carcinoma (PDAC) arises from precursor lesions derived 
from ductal cells; however, recently another model has been proposed where 
PDAC arises from acinar cells through a process called “acinar to ductal meta-
plasia” (ADM). PanIN: Intraepithelial neoplasm; IPMN: Intraductal papillary 
mucinous neoplasm; MCN: Mucinous cystic neoplasm.



tor signaling atlas”, NURSA, www.nursa.org).
NR ligands are small hydrophobic molecules that 

bind to the LBD; retinoids, fatty acids, cholesterol, lipo-
philic hormones and vitamins, as well as some antibiot-
ics, xenobiotics and synthetic drugs are all NR ligands. 
The ligand binding induces a conformational change 
that modify the DBD ability to bind specific DNA 
sequences called response elements. NR act as mono-
meres, homodimers or heterodimers with the retinoid-
X-receptor (RXR) (Figure 3). Upon DNA binding, the 
final transcriptional activity depends on the presence of  
co-activator or co-repressor molecules[26].

NR physiologic functions vary from the regulation 
of  metabolism, to growth and development; NR are also 
implicated with a number of  diseases such as cancer. 
The association of  NR with major diseases has trans-
formed these proteins in the most popular and prom-
ising drug targets thanks also the properties of  their 
ligands that can easily cross the cell membrane[27].

NR IN PANCREATIC CANCER
NRs are important in the development and homeostasis 
of  the pancreas and their role in PDAC development is 
the subject of  intense study by the scientific community. 
Here, we will describe the role of  a group of  these re-
ceptors, specifically the peroxisome proliferator activated 
receptors, the retinoid receptors, the androgen and es-
trogen receptors, and the orphan NRs.

PEROXISOME PROLIFERATOR 
ACTIVATED RECEPTORS
The peroxisome proliferator activated receptors (PPARs) 
belong to the NR1 (thyroid-like) subfamily of  NR. Three 
PPARs are known: PPARα (NR1C1), PPARβ/δ (NR1C2) 
and PPARγ (NR1C3). PPARγ is the only PPAR with 
three isoforms with different spatial distribution[28]. They 
were identified as NR that responded to peroxisome 
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Figure 2  Domains and structural features of a classical nuclear receptor. A typical nuclear receptor (NR) consists of 6 region (A to F); region F may or may not 
be present. Region D (hinge) contains the nuclear localization signal (NLS); other NLSs may be present in region E. AF-1: Activator function 1; AF-2: Activator function 2.
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Figure 3  Mechanisms of action of nuclear receptors. Type Ⅰ nuclear receptors (NR) (steroid receptors) are complexed with heat shock proteins (HSP) and 
maintained in the cytoplasm in the absence of ligands. The other receptors are instead mainly nuclear and the ligands induce hetero- (for type Ⅱ receptors) or homo-
dimerization (for type Ⅲ receptors). Furthermore, a group of receptors (type Ⅳ) whose regulation is poorly known act as monomers.
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Table 1  Nomenclature of nuclear receptors

12065 September 14, 2014|Volume 20|Issue 34|WJG|www.wjgnet.com

Subfamily official name 
(class)

NRNC group Member trivial name Official name Abbreviation Ligand

NR0 (domain-depleted 
receptors)

B [DAX-like receptors 
(DAX, SHP)]

Dosage-sensitive sex reversal-adrenal hypoplasia 
congenita critical region on the X chromosome, 

gene 1

NR0B1 DAX-1 Orphan

NR1 (TR/RAR/PPAR/
VDR-like receptors)

A (thyroid hormone 
receptors)

Short heterodimer partner NR0B2 SHP Orphan
Thyroid hormone receptor α NR1A1 TRα GC-1, thyroid hor-

mone
B (retinoic acid recep-

tors)
Thyroid hormone receptor β NR1A2 TRβ GC-1, thyroid hor-

mone
Retinoic acid receptor α NR1B1 RARα Am 580, all-trans-Ret-

inoic acid, Arotinoid 
acid

Retinoic acid receptor β NR1B2 RARβ Am 580, all-trans-Ret-
inoic acid, Arotinoid 

acid
C (peroxisome prolifera-
tor activated receptors)

Retinoic acid receptor γ NR1B3 RARγ Am 580, all-trans-Ret-
inoic acid, Arotinoid 

acid
Peroxisome proliferator-activated receptor α NR1C1 PPARα GW409544, GW7647, 

GW6471, Pirinixic 
acid, Palmitic acid, 

Leukotriene B4
Peroxisome proliferator-activated receptor β NR1C2 PPARβ/δ Eicosapentaenoic 

acid, GW0742
Peroxisome proliferator-activated Receptor γ NR1C3 PPARγ Rosiglitazone, 

GW1929, GW9662, 
GW409544, 

GW7647, 15-Deoxy-
∆-12,14-prosta-

glandin, 15-Deoxy-
∆-12,14-PGJ2

D [Rev-Erb (NRD, E75)]
F (RAR-related orphan 
receptors (ROR, HR3)

Rev-erbα NR1D1 Rev-erbα Orphan
NR1D2 Rev-erbβ Orphan

Retinoic acid receptor-related orphan receptor α NR1F1 RORα Melatonin, CGP 
52608

Retinoic acid receptor-related orphan receptor β NR1F2 RORβ Melatonin, CGP 
52608

Retinoic acid receptor-related orphan receptor γ NR1F3 RORγ Melatonin,CGP52608
Liver X receptor β NR1H2 LXRβ GW3969, T0901317, 

oxysterols
H (ecdysone-like recep-

tors)
Liver X receptor α NR1H3 LXRα GW3969, T0901317, 

oxysterols
Farnesoid X receptor α NR1H4 FXRα GW4064, bile acid 

chenodeoxycholic 
acid

I (vitamin D3-like recep-
tors)

Vitamin D3 receptor NR1I1 VDR 1,25-dihydroxyvita-
min D3

Pregnane X receptor NR1I2 PXR Hyperforin, SR12813, 
rifampicin, preg-

nenolone carbonitrile, 
T0901317, 24(S),25-
epoxycholesterol, 

butamben
Constitutive androstane receptor NR1I3 CAR Androstanol, CITCO, 

phenobarbital, ATE
NR2 (HNF4/RXR/
TLL/COUP-like 
receptors)

A (hepatocyte nuclear 
factor 4)

Hepatocyte nuclear factor 4 α NR2A1 HNF4α Palmitoyl coenzyme 
A

Hepatocyte nuclear factor 4 γ NR2A2 HNF4γ Orphan
B (retinoid X receptors) Retinoid x receptor α NR2B1 RXRα LGD 100268, 

GW0791, 9-retinoic 
acid

Retinoid x receptor β NR2B2 RXRβ LGD 100268
Retinoid x receptor γ NR2B3 RXRγ LGD 100268

Testis receptor NR2C1 TR2 Orphan
E (tailless-like receptors) NR2C2 TR4 Orphan

Tailless NR2E2 TLL Orphan
Photoreceptor-specific nuclear receptor NR2E3 PNR Orphan
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proliferators, heterogenous chemicals that increase the 
number of  peroxisomes (making them “proliferate”) in 
hepatocytes[29]. Natural ligands for PPARs are free fatty 
acids and PPARγ is also activated by 15-Deoxy-delta 
(12,14)-prostaglandin J(02)(15d-PGJ2)[30]. Some other 
PPAR ligands are the PPARα agonists hypolipidemic 
drugs fibrates and leukotriene B4 (LB4), the PPARγ 
specific agonist and antidiabetic drugs thiazolidinediones 
(TZD), and the PPARβ/δ specific agonist GW501516[31].

PPARs show a different expression pattern, and PPARβ 
is the most widely expressed[32]; they act as heterodimers 
with RXR and regulate complex gene networks espe-
cially in energy homeostasis and inflammation[28,33,34]. 
Furthermore they are involved in a spectrum of  disease 
such as alcoholic liver disease and may mediates oxida-
tive stress response[28,30,32,34].

PPARα
PPARα sustained activation leads to the development of  
cancers in the liver, testis and pancreas in rodents[35,36]. 
Moreover, PDX-1, an oncogene for pancreatic cancer 
that is overexpressed in PDAC[37], is a PPARα -dependent 

gene and its expression is downregulated by MK886, a 
specific PPARα antagonist[38]. However PPARα -depen-
dent carcinogenesis has been recently questioned[39].

PPARβ/δ
Recently it has been reported that PPAR signaling, espe-
cially PPARβ/δ, is reduced in pancreatic cancer relapse, 
compared to primitive cancer[40], but PPARβ/δ has been 
suggested to be a critical component of  the angiogenetic 
switch in pancreatic cancer[41,42]. Abdollahi[42] showed 
that the expression of  PPARβ/δ detected by immuno-
histochemistry in human pancreatic specimens high-
density tissue microarrays correlated with tumor staging; 
indeed PPARβ/δ staining intensity increased from nor-
mal pancreas to chronic pancreatitis, pancreatic cancer 
and metastasis and the up-regulation of  PPARβ/δ is 
actually more enhanced in the tumor vasculature and in 
the tumor stroma[42]. High expression of  PPARβ/δ in 
tumor is also confirmed by a recent paper[31]. Elevated 
PPARβ/δ expression levels are also highly correlated 
with advanced stages of  tumor progression and with in-
creased risk for tumor recurrence or distant metastasis[42] 
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F [COUP-TF-like recep-
tors (COUP-TF, SVP, 

EAR2)]

Chicken ovalbumin upstream promoter transcrip-
tion factor Ⅰ

Chicken ovalbumin upstream promoter transcrip-
tion factor Ⅱ

NR2F1 COUP-TFI Orphan

NR2F2 COUP-TFⅡ Orphan
ErbA2-related gene-2 NR2F6 EAR2 Orphan

NR3 (ER/ERR/GR/
MR/PR/AR)

A Estrogen receptor NR3A1 Erα Fulvestrant, 
17β-estradiol, 4-hy-

droxytamoxifen, 
Raloxifene

NR3A2 Erβ Fulvestrant, 
17β-estradiol, 4-hy-

droxytamoxifen, 
Raloxifene

B Estrogen receptor-related receptor NR3B1 ERRα Orphan
NR3B2 ERRβ GSK4716, Diethylstil-

bestrol
NR3B3 ERRγ GSK4716, 4-hydroxy-

tamoxifen
C Glucocorticoid receptor NR3C1 GR Dexamethasone, hy-

drocortisone, RU486
Mineralocorticoid receptor NR3C2 MR Spironolactone, aldo-

sterone, RU486
Progesteron receptor NR3C3 PR R5020, progesterone, 

RU486
Androgen receptor NR3C4 AR Dihydrotestosterone, 

RU486, Bicalutamide, 
R1881

NR4 (NGFIB-like 
receptors )

A [nerve growth factor 
IB-like receptors (NGFIB, 

NURR, NOR, HR38, 
CNR-8)]

Growth factor-inducible immediate early gene 
Nur77

NR4A1 Nur77 Orphan

Nur-related protein 1 NR4A2 NURR1 Orphan

Neuron-derived orphan receptor 1 NR4A3 NOR1 Orphan
NR5 (FTZ-F1/SF1-like 
receptors)

A [fushi tarazu F1-like 
receptors (SF1, FTF, 

FTZ-F1)]

Steroidogenic factor-1/ELP NR5A1 SF1 Orphan

Liver receptor homolog 1 NR5A2 LRH-1 Orphan
NR6 (GCNF) A (germ cell nuclear 

factor)
Germ cell nuclear factor 1 NR6A1 GCNF1 Orphan

PPAR: Peroxisome proliferator-activated receptor; PDAC: Pancreatic ductal carcinoma; TZD: Thiazolidinediones; IFN: Interferon; RAR: Retinoic acid recep-
tor; RXR: Retinoid X receptor; AR: Androgen receptor; ER: Estrogen receptor; LHR-1: Liver receptor homologue-1 receptor; COUP-TFⅡ: Chicken ovalbu-
min upstream promoter transcription factor Ⅱ.
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and PPARβ/δ has been proposed as a “central hub” in 
tumor angiogenesis given that tumor growth and an-
giogenesis were greatly reduced when tumor cells were 
implanted in PPARβ/δ null mice[42].

PPARβ/δ is also expressed in human pancreatic can-
cer cells and its activation regulates the metallo-protease 
matrix metalloproteinases (MMP)-9, decreasing cancer 
cells ability to transverse the basement membrane[31]. 
PPARβ/δ activation reduces the tumor necrosis factor 
(TNF)α-induced expression of  various genes implicated 
in metastasis increasing the availability of  the transcrip-
tional repressor B-cell lymphoma (BCL)-6. BCL-6 is 
bound to PPARβ/δ and is released after GW501516 treat-
ment resulting in decreased MMP-9 expression. These re-
sults suggest that increased expression of  PPARβ/δ regu-
lates pancreatic cancer cell invasion sequestering BCL-6 
and hence inducing MMP-9 mediated invasion[31].

PPARγ
PPARγ is not only implicated in adipocyte differentia-
tion, lipid accumulation, and glucose homeostasis but it 
is also an important regulator of  inflammation via the 
inhibition of, or the interference with, proinflammatory 
signalings such as signal transducers and activators of  
transcription (STATs), nuclear factor-κB (NF-κB), and 
activator protein-1 (AP-1)[28,30].

PPARγ is expressed in primary PDAC[43-46] and strongly 
correlates with a more advanced clinical stage; PPARγ 
staining is also associated with shorter overall survival and 
its has proved to be an independent prognostic factor in 
uni- and multi-variates analysis[43,45]. However, whereas 
Kristiansen et al[45] found a strong overexpression of  
PPARγ by expression profiling in 19 microdissected car-
cinoma compared to 14 ductal epithelia, Pazienza et al[44] 
did not find significant alterations in the expression levels 
of  PPARγ in pancreatic cancer. A possible explanation 
of  this discrepancy may be that is the expression “per 

se” of  PPARγ, and not its levels, important in pancre-
atic cancer progression. Interestingly, a large number of  
studies have demonstrated that TZD reduce the risk of  
PDAC[9].

A genetic association PPARγ/PDAC has been tested 
by two different groups[47,48] analyzing the expression of  
the single nucleotide polymorphisms (SNP) Pro12Ala 
that has been associated with reduced risk of  diabetes and 
some cancers[47]. Fesinmeyer et al[48] demonstrated that this 
SNP is associated with increased risk of  PDAC in a high-
risk sample of  smokers randomized to high-dose vitamin 
A; however, two years later, a similar study in obese and 
diabetic patients demonstrated a protective role of  the 
SNP, prompting the need of  further studies[47].

In vitro, the role of  PPARγ is controversial but it is 
generally accepted that the receptor acts as a tumor in-
hibitor at multiple levels (Figure 4). PPARγ is expressed 
in human pancreatic cancer cell lines[46,49-55] and its ex-
pression follows a circadian rhythmicity with a period of  
24 h that could potentially influence the cell phenotype 
and the human disease behavior[55]. Agonists of  PPARγ 
such as TZD, its natural ligand 15d-PGJ2, or 1,1-Bis(3-
indolyl)-1-(p-substituted phenyl)methanes (C-DIMs), 
induce cell cycle arrest in G1, apoptosis and ductal dif-
ferentiation in pancreatic cancer cells[46,53,54,56-58]. However 
some of  the effects associated with PPARγ activation are 
instead receptor independent: this is especially true for 
TZD agonists whose receptor independent effects have 
been widely described[51,52,59-69].

Cell cycle arrest is associated to decreased PPARγ-
dependent expression of  cyclin D1[53,54,57,58] whereas the 
reported induction of  p21 might be PPARγ-dependent 
or PPARγ-independent[52,54]. Deletion analysis of  the p21 
promoter indicates that PPARγ-dependent activation 
of  p21 requires GC-rich sites in the proximal region of  
the promoter[54]. It is worth to note that some agonists 
of  PPARγ[61] may induce a PPARγ independent down-
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Figure 4  Peroxisome proliferator activated receptors and pancreatic ductal carcinoma. Peroxisome proliferator activated receptor (PPAR)γ acts as a tumor 
inhibitor at multiple levels, blocking cell cycle progression, inflammation, and cell invasion. NAG-1: Non steroidal anti-inflammatory drug-activated gene-1; Cox-2: Ci-
clooxigenase-2; NF-κB: Nuclear factor-κB.
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regulation of  cyclin D1, due to induction of  non steroi-
dal anti-inflammatory drug-activated gene-1 (NAG-1). 
NAG-1 is a member of  the TGF-β superfamily involved 
in tumor progression acting as a pro-apoptotic gene. In-
terestingly, it has been reported that NAG-1 expression 
is positively regulated by PPARγ: MCC-555, a PPARγ ag-
onist, induces the expression of  the transcription factor 
KLF-4 in PPARγ-dependent manner who subsequently 
enhances the NAG-1 promoter activity[51,52]. PPARγ ago-
nists reduce the invasive capacity of  PDAC cells with a 
PPARγ dependent mechanism[50]. The PPARγ ligands 
15d-PGJ2 and ciglitazone attenuate pancreatic cancer 
cell invasion increasing plasminogen activator inhibi-
tor-1 and decreasing urokinase plasminogen activator 
levels resulting in the reduction of  total urokinase activ-
ity in pancreatic cancer cells[50]. Interestingly, the PPARγ 
antagonist T0070907 suppresses pancreatic cancer cell 
motility by altering the localization of  p120 catenin and 
by suppressing the activity of  the Ras-homologous GT-
Pases Rac1 and Cdc42[49].

The effects of  PPARγ activation or inhibition by spe-
cific molecules sinergize or interact with other pathways 
or other NR activations[53,56,62-64]. Combination of  re-
combinant interferon-β (IFN-β) and the PPARγ agonist 
troglitazone induces a synergistic effect on the growth 
inhibition of  pancreatic cancer cells, through the coun-
teraction of  the IFN-β-induced activation of  STAT-3, 
MAPK and AKT and the increase in the binding of  
both STAT-1 related complexes and PPARγ with specific 
DNA responsive elements. The combination induces also 
an increase in autophagy and a decrease in anti-autoph-
agic bcl-2/beclin-1 complex formation, mediated by the 
inactivation of  the AKT/mTOR-dependent pathway[64]. 
PPARγ form mandatory heterodimers with RXRα and its 
activity is maximal in the presence of  RXRα agonists; it 
is not surprising then that co-treatment with PPARγ and 
RXRα agonists exacerbates the effects of  PPARγ increas-
ing the inhibition of  cell growth[53,62,63]. Synergistic effects 
on growth inhibition are also visible when inhibitors of  
ciclooxigenase-2 (Cox-2) and PPARγ agonists are used in 
combination[56,65]. Cox-2 is an inducible ciclooxygenase 
that contributes to the metabolism of  arachidonic acid 
forming prostaglandin H2, a precursor of  15d-PGJ2[66]. 
Cox-2 is a downtarget of  PPARγ and its expression may 
be either induced or repressed by the NR, depending on 
the cell context[30]. However, selective Cox-2 inhibitors 
have opposite effects in pancreatic cancer depending 
on Cox-2 expression: in high Cox-2-expressing cells the 
inhibitors reduced tumor growth; conversely, in Cox-2 
negative or low expressing cancer cells the inhibitors, at 
very high concentrations, enhance tumor progression in-
creasing intratumoral VEGF and tumor angiogenesis in a 
PPARγ-dependent way[65].

PPARγ is known to reduce tumor growth in mice in 
vivo[49,62,65,67] and its activation increases the gemcitabine 
mediated tumor suppression[68]. Tumor growth inhibition 
mediated by PPARγ may be due to reduced inflammation 
and increased activation of  anti-inflammatory genes[30,67]. 

Genetic deletion of  Ikk2, a component of  the canonical 
NF-κB signaling pathway, in the Kras(G12D)Pdx1-cre 
mouse model of  pancreatic cancer, substantially delays 
pancreatic oncogenesis and results in downregulation 
of  the classical Notch target genes Hes1 and Hey1[67]; in 
the same model TNF-α stimulation resulted in increased 
Hes1 expression and consequent suppression of  PPARγ 
expression facilitating the formation of  a inflammatory 
pro-tumoral enviroment; induction of  PPARγ instead 
may block NF-κB induced processes[30] reducing or de-
laying tumor formation[67].

Despite all these intriguing discoveries on PPARγ 
role in PDAC, clinical application of  PPARγ modulation 
has recently suffered yet another failure when a new oral 
anticancer agent with LB4 antagonist and PPARγ agonist 
properties[69,70], the LY29311, did not demonstrate any 
benefit in association with gemcitabine in unpretreated 
patients with advanced PDAC[69].

RETINOIC AND RETINOID RECEPTORS
Retinoic acid receptors (RARs) and RXRs are NRs 
transcription factors that bind retinoids, natural and 
synthetic molecules structurally and/or functionally 
related to vitamin A, and regulate cell differentiation, 
proliferation, and survival[25,71,72]. A list of  retinoids with 
biological functions comprises, but is not limited to, all 
trans retinoic acid (atRA), 9-cis-retinoic acid (9-cis-RA), 
11-cis-RA, 13-cis-RA, being the atRA the predominant 
physiological form; retinoids that specifically bind to 
RXR are called rexinoids and have been effective in can-
cer treatment. RARs can be activated by both atRA and 
9-cis RA, while RXRs are exclusively activated by 9-cis-
RA, initially identified as a bona fide RXR ligand in vitro[71], 
but never detected in vivo[73]. Other RXR natural ligands 
have been identified in vivo but they are not RXR specific 
ligands[74-76].

RARs and RXRs are each encoded by three different 
genes that give rise to the -α, -β, -γ isoforms of  RXR 
and RAR, each presenting transcription variants, and 
characterized by different spatial distribution[77,78]. RXRs 
were identified as cofactor for efficient binding of  RAR 
to its DNA response elements[79], but unique among 
the NRs, RXR play a modulatory role along multiple 
pathways forming mandatory dimers with thyroid hor-
mone receptor, PPAR, vitamin D receptor (VDR), RAR, 
Nur77, etc.[25,71]; in these heterodimers RXR may function 
as an active partner (such in the case of  PPARγ:RXR di-
mers) meaning that the dimers respond to 9-cis-RA, or as 
silent partner and the dimers do not respond to RA.

Due to their regulatory potential, these NRs are ma-
jor drug targets for a number of  pathologies, including 
cancer and metabolic diseases.

RAR and RXR receptors are expressed during pan-
creatic organogenesis and are essential for ductal dif-
ferentiation[80,81]. Retinoid receptors are more expressed 
in the exocrine compartment, usually during late gesta-
tion, with a strong lineage specificity. Exogenous 9-cis-
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RA induces predominantly ducts instead of  acini, plus 
more mature endocrine architecture, whereas exogenous 
atRA induces predominantly acini instead of  ducts, with 
no apparent endocrine effect[80]. RAR-selective agonists 
mimicked the acinar suppressive effect of  9-cis-RA, 
suggesting that RAR-RXR heterodimers are critical to 
ductal differentiation; however, retinoids do not regulate 
exocrine lineage selection cell-autonomously but epithe-
lial-mesenchymal interactions are mandatory given that 
9-cis -RA does not induce ductal differentiation in the 
absence of  mesenchyme and requires the presence of  
laminin-1[81]. The ability to restore a more differentiated 
phenotype and to regulates ductal differentiation may 
explain the effects of  retinoids.

Expression of  RXR and RAR has been described 
in pancreatic cancer cell lines and PDAC[42,53,62,63,82-88] but 
their biological and clinical significance is not clear: in 
most cases RXR and RAR receptors apparently act as 
tumor suppressors in PDAC cancer both in vivo and in 
vitro[43,53,62,63,84-88], inducing arrest in cell proliferation and 
differentiation although results suggestive of  a pro-
oncogenic role are also reported[89-91].

A differential expression of  RAR-α, -β, and -γ, and 
RXRα was detected in histological sections of  human 
PDAC and their adjacent normal tissues. Whereas all 
four receptors were detected in adjacent normal pan-
creatic tissue specimens, RARβ mRNA transcripts were 
detected in only 67% of  the malignant tissues and when 
expressed, the level of  expression was significantly lower 
than that of  the corresponding adjacent normal tissues, 
especially in moderately- and poorly-differentiated can-
cers[92]; these results are in agreement with previous pa-
pers showing that RARβ expression is lost during PDAC 
malignant transformation[84]. The mechanisms at the ba-
sis of  RARβ mRNA downexpression are not known but 
it is worth noting that in pancreatic endocrine neoplams 
the NR promoter is often hypermethylated[93,94], suggest-
ing that in certain pancreatic carcinomas the reduction 
or loss of  RARβ expression by epigenetic mechanisms 
might be associated with the development or progres-
sion of  tumors[92]; interestingly one missense mutation in 
RARβ has also been identified in PDAC[18]. The anti-tu-
moral role of  RARβ is confirmed by its overexpression 
in DAN-G pancreatic cancer cells that results in induc-
tion of  differentiation and inhibition of  proliferation in 
vivo and in vitro[84].

Immunohistochemical evaluation of  PPARγ and RXRα 
protein expression in 65 PDAC patients statistically ana-
lyzed in relation to clinicopathological characteristics, tu-
mor proliferative capacity, and patients’ survival showed 
that 75% of  patients tested positive for PPARγ and 85% 
stained positive for RXRα. Interestingly, RXRα positiv-
ity was significantly associated with tumor proliferative 
capacity and PPARγ positivity but RXRα failed to pre-
dict patients’ survival[43].

In vitro, RXR and RAR involvement in PDAC has 
been usually tested by means of  specific agonists or 
antagonists. Retinoids may be useful agents for the treat-

ment of  pancreatic cancer; however, RAR-selective reti-
noids produce unwanted side effects. In contrast, RXR-
selective retinoids produce fewer side effects. The re-
ported results indicate that these receptors often possess 
antiproliferative and pro-differentiative effects whereas 
reports on induction of  apoptosis are mixed[82,83,88].

In 13 cell lines established from patients who under-
went surgery for PDAC Albrechtsson et al[86] detected the 
expression of  the RAR and RXR subtypes and evalu-
ated the effect of  atRA and 9-cis-RA on cell prolifera-
tion. They demonstrated that RARα, β and RXRβ were 
expressed in most of  the cell line. RXRγ was expressed 
in about half  of  them and RARγ in only one whereas 
the RXRα receptor was expressed in all cell lines. Incu-
bation of  the cells with atRA or 9-cis-RA reduced cell 
proliferation, although only about half  of  the cell lines 
responded to the latter[86]. These results partially contra-
dict a previous paper that showed that pancreatic cancer 
cell lines in vitro responded to 9-cis-RA but not atRA at 
clinically relevant concentrations[87]. Moreover, as previ-
ously reported[53], 9-cis-RA acts additively with the TZD 
Troglitazone blocking the cells in G1 phase through re-
duction of  cyclin D1 levels.

The RXR-selective retinoid, AGN194204 inhibits the 
proliferation of  pancreatic cancer cells more efficiently 
than RAR-selective retinoids, but does not increase the 
apoptosis, whereas other retinoids are also able to induce 
apoptosis[82]. Block of  cell proliferation in these cells is 
associated with reduced cyclin E and cyclin dependent 
kinase 6 levels, an effect reversed by the RXR antagonist 
AGN195393 but not by RAR antagonist AGN193109. 
Treatment of  MIAPaCa-2 cells with AGN194204 and 
cytotoxic agents such as gemcitabine, 5-fluorouracil, or 
IFNγ resulted in an additive but not synergistic reduc-
tion in cell number[95]. Interestingly, the retinoid-related 
ligand AGN193198 reduces BxPC-3, MIAPaCa-2 and 
AsPC-1 cell proliferation (blocking the cell in the S 
phase) more efficiently than high-affinity RAR- or RXR-
selective retinoids and induces apotosis[88]; however the 
compound does not activate transcription from RAR 
or RXR response elements and its effects on cell sur-
vival are not reversed by treatment with RAR- or RXR 
receptor-selective antagonists. These results suggest that 
AGN193198 (but we may not exclude also other reti-
noids) might act independently of  the classical retinoid 
receptors.

Treatment of  pancreatic cancer cells with 9-cis-RA 
induces apoptosis lowering the ratio Bcl2/Bax2 and 
requires the presence of  RARγ[83]. Interestingly, 9-cis-
RA acting on RXRα may induce the nuclear export 
of  Nur77[96,97], facilitating its interaction with Bcl2 and 
hence increasing the apoptosis (see later for details).

Retinoids possess the ability to induce pancreatic 
cancer differentiation in vitro[82,89,98]. The differentiation 
phenotype changes are associated with increase in aero-
bic metabolism, expression of  mucins, synthesis and 
secretion of  TGF-β, and reduction of  EGF receptor 
expression[82]. This differentiation effects are dependent 
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on TGF-β, because co-treatment with atRA and a pan-
TGF-β neutralizing antibody abolishes the anti-prolif-
erative and pro-differentiative effect of  the retinoid and 
reduces MUC4 expression[82,89]. As previously described, 
ADM might play an important role in PDAC develop-
ment and DSL-6A/C1 cells, who expresses RAR-α and 
-β and RXRα, represent an in vitro model of  this car-
cinogenic sequence[98]. Treatment of  DSL-6A/C1 cells 
with retinoids results in a time- and dose-dependent in-
hibition of  cell growth, paralleled by a retinoid-mediated 
transactivation of  a pTK:betaRAREx2-luciferase report-
er; growth inhibition is reverted by the RARα specific 
antagonist Ro 41-5253, suggesting that the RARα might 
influence ADM[98].

Regulation of  expression of  mucins (MUCs) by reti-
noids however raises questions regarding the response 
of  pancreatic tumor cell in vivo. RAR and RXR recep-
tors have been reported to influence the expression of  
MUC4 and MUC17[89-91] and RXR:VDR response ele-
ments are present in the promoter region of  MUC17 
gene[90]. Both mucins are associated to the progression 
of  pancreatic cancer: MUC17 is linked to the presence 
of  lymph node metastasis[99] and MUC4 expression in-
creases during progression of  PDAC from PanIN1 to 
PanIN3, and it is highly expressed in invasive adenocarcino-
mas[100-102]. The expression of  MUC17 gene is regulated 
by a 1146-bp DNA fragment upstream of  MUC17 that 
contains GATA, NF-κB, Cdx-2 and RXR:VDR response 
elements, but no data are available on the role of  the lat-
ter. Instead, retinoids directly regulates the expression of  
MUC4[91], sinergistically with IFNγ and dependently of  
TGF-β. Interestingly, IFNγ has been shown to possess 
antitumor activity and it is well known that TGF-β pos-
sess tumor suppressive and oncogenic activities[103]. At 
early stages TGF-β acts as a tumor suppressor, whereas 
at later stages tumor cells become resistant to its antip-
roliferative effects but continue to secrete high quantity 
of  the factor. Indeed, pancreatic tumors overexpress 
all the three TGF isoforms and this correlates with de-
creased patient survival[104] and induction of  epithelial 
to mesenchymal transition (EMT). On the other hand, 
although IFNγ is antiproliferative in vitro against pancre-
atic cancer cells, the temporal aspect of  this process has 
never been studied. Indeed, the expression of  MUC4 
does not require the continuing presence of  IFNγ or 
RA which instead are required for the priming of  MUC4 
expression[91]. From a pathological point of  view, aber-
rant expression of  mucins on the surface of  PDAC cells 
may provide protection against the host’s activated im-
mune system while conferring antiadhesive properties 
upon the cells and hence favoring the EMT-mediated 
metastatization, casting a shadow on the use of  retinoids 
in vivo. Nonetheless, retinoids have been used in phase Ⅱ 
clinical trials in the past[105-107] with mostly disappointing 
results. In 1998, basing on promising in vitro results, one 
trial in which patients with advanced PDAC were treated 
with 13-cis-RA and IFNα resulted in prolonged stable 
disease in two third of  the patients[105]; this however con-

tradict a 1995 phase Ⅱ trial where the same therapeutic 
regimen did not improve patients condition[107]. Further-
more, the combination of  13-cis-RA with gemcitabine 
in a more recent phase Ⅱ clinical trial, although well 
tolerated, did not determine an improvement in the re-
sponse[106]. PDAC resistance to retinoid treatment might 
be dependent on the relative intracellular expression of  
the retinoids-binding proteins fatty acid-binding protein 
5 (FABP5) and cellular retinoic acid-binding protein 2 
(CRABP2)[108] that were shown to be critical for either 
antisurvival (CRABP2) or prosurvival (FABP5) effects 
of  retinoic acid[109].

ANDROGEN AND ESTROGEN RECEPTORS
Androgen receptor (AR, NR3C4) and estrogen recep-
tors (ER)-α and -β (NR3A1 and NR3A2) belong to the 
steroid receptor subfamily (NR3). These NR regulate 
multiple physiological processes including sexual devel-
opment and are implicated in multiple cancers[110-113].

Their involvement in PDAC has long been suggested 
by the evidence that pancreatic cancer shows an appar-
ent hormonal imbalance in the incidence with a male 
to female ratio ranging from 1.25-1.75:1[114,115], that ap-
proach the 1:1 ratio with advancing age[116] (for recent 
reviews see[117,118]).

In the early ‘90s, the presence of  AR in PDAC was ques-
tioned, but recent papers clearly demonstrated that pancreat-
ic cancer cells express detectable levels of  AR[117,119,120]. In vi-
tro, PDAC cancer cells variably respond to the treatment 
with the agonist testosterone, showing a modest increase 
in cell proliferation[119,121]. Flutamide, an AR blocker used 
for the treatment of  prostate cancer, induces a reduction 
in cell proliferation that does not however correlate with 
AR expression levels[119]. Furthermore, flutamide treat-
ment does not alter the cell response to gemcitabine in 
vitro and in vivo[119]. AR activity is modulated by IL-6, an 
inflammatory cytokine overexpressed in pancreatic can-
cer[120,122]. IL-6 enhances STAT3 and MAPK pathways 
that in turn increase the AR transcriptional activity; IL-6 
also enhances pancreatic cancer cell migration in the 
presence of  AR, an effect blocked by the silencing of  
the receptor[120] (Figure 5A). In a double-blind placebo-
controlled trial, flutamide doubled the survival duration 
when administered in a dosage of  250 mg three times 
daily[123]. This excellent result has not been confirmed by 
other small phase Ⅱ trials where flutamide was used in 
monotherapy or in combination with gemcitabine[124,125]. 
The lack of  AR response in PDAC patients suggests 
that the tumor cells, although expressing the AR, are in 
a hormone-refractory proliferative status, as observed in 
prostate cancer[119].

The role of  ER in PDAC is controversial: although 
several papers described the presence of  ER (usually 
ERα) in primary PDAC, other reports did not detect 
the receptors at all[118,126,127] and the antiestrogen tamoxi-
fen has been used in clinical trials with no benefit[118,128]. 
Expression of  both ERα and -β has been described in 
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pancreatic cancer cells[129] and a recent proteomic valida-
tion study in formalin-fixed paraffin-embedded tissues 
identified several proteins tightly associated through 
ERα[130]. In vitro, PDAC cells respond to the treatment 
with estrogens modulating agents: lower concentrations 
usually induce cell proliferation whereas high concen-
trations arrest cell proliferation (Figure 5B)[129]. The re-
sponse seems dependent on the expression of  ERα and 
ERβ, specifically to their ratio. ERα and ERβ share an 
almost perfect homology in the LBD that allows both 
of  them to bind estrogen; other domains are instead less 
conserved with the most divergent region being the A/B 
domain, characterized by the absence of  the activator 
function-1 in the ERβ. Analyzing the expression of  the 
two estrogen receptors Iwao et al[129] found that pancre-
atic cancers showed significantly lower ERα mRNA lev-
els than ER-negative breast cancers while ERβ mRNA 
levels (that were higher in ER-negative than ER-positive 
breast cancers) were significantly higher than ER-nega-
tive breast cancers; in seven out of  eight pancreatic can-
cer cell lines ERβ outweighs ERα and cells with lower 
ERα/ERβ ratio tend to have higher responsiveness[128], 
suggesting that ERβ may play a more important role in 
PDAC[118,128]. Interestingly, phytoestrogens such as ge-
nistein block pancreatic cancer growth in vitro and show 
higher affinity for ERβ.

OTHER NRS: ORPHAN NRS IN THE 
SPOTLIGHT
Roughly half  of  the 48 human NR are classified as or-
phan NRs. The orphan NRs form a specific subgroup 
of  the NR proteins characterized by different functional 
and evolutionary origin; orphan NR are distributed 
along the all the six NR subfamilies. These proteins have 
in common only the term “orphan receptor” conied few 
decades ago to describe, by definition, gene products 
that appear to belong to the nuclear receptor family on 
the basis of  sequence identity but for whom no ligands 
is known[131,132]. Orphan receptors diverge also at the 
structural levels with various examples of  members 
without all the classical features of  nuclear receptor, 
such as the LBD or the DBD[132]. The discovery of  the 

orphan receptors drastically changed endocrinology in-
troducing the “reverse endocrinology” approach where 
orphan receptors are used to identify new hormones and 
their associated biology, conversely to traditional endo-
crinology that identified hormones starting from their 
physiological or pathological effect[131].

Although the term “receptor” implies the existence 
of  a natural ligand, this assumption is debated and not 
necessarily true for at least some of  the orphan NRs[25]. 
In time, the number of  orphan receptors has diminished 
due to the discovery of  natural ligands for some of  
them that have then become “adopted”, such in the case 
of  PPARγ or FXR for example[25].

Here we will discuss recent findings on orphan re-
ceptors, specifically the NR4As, the liver receptor ho-
mologue-1 receptor (LRH-1) and the chicken ovalbumin 
upstream promoter transcription factor Ⅱ (COUP-TFⅡ) 
discussing their role in PDAC.

Nur77: A “two faces” action in pancreatic cancer
The orphan NR subfamily 4 subgroup A (NR4A) is 
comprised by three members: NR4A1 (also known as 
Nur77, testicular receptor TR3, or nerve growth fac-
tor 1b NGFI-B), NRA42 (Nurr-related factor 1) and 
NR4A3 (neuron-derived orphan receptor1, Nor-1)[25,133]. 
The first member of  NR4A family was identified by dif-
ferential hybridization in the rat pheochromocytoma cell 
line PC-12 cell as encoded by an immediate early gene 
(i.e., a gene that is rapidly and transiently transcribed in 
response to stimuli) induced by the nerve growth fac-
tor[134]. As in the case of  other NRs, the NR4A members 
show common features of  a classic nuclear receptor and 
an high degree of  sequence homology specifically in the 
DBD and LBD regions, where homology may be as high 
as 95% (Figure 6).

All three members are localized in the nucleus due to 
the presence of  a nuclear localization signal in the DBD 
(three signals in the case of  NR4A1). The three mem-
bers of  the family show a different and often overlap-
ping expression in adult tissues, being Nur77 more abun-
dantly and broadly expressed[133]. NR4A receptors might 
act as monomere or as homo- hetero-dimers with dif-
ferent affinity to DNA response elements; dimers show 
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stronger activity over monomers[133]. The crystallographic 
analysis of  NR4A receptors suggests that the members 
of  this subfamily are constitutively activated: their LBD 
is almost completely occupied by bulky aminoacid side 
chains conferring a 3D structural conformation similar 
to that of  agonist-bound receptors[132,133]. Consequently, 
unlike others NR, the activity of  NR4As is not regulated 
by stimuli through a ligand binding but instead by modu-
lation of  their expression or via post-translational modi-
fications[132,133]. Expression of  these receptors is induced 
by a range of  stimuli, including stimuli associated with 
metabolic functions, such as: fatty acid, growth factors, 
prostaglandines, membrane depolarization, cold, glucose, 
cholesterol, TZD and hormones[135]. Other hormones 
may regulate NR4A transcriptional activity interacting 
with the NR4 heterodimers, such 9-cis-RA on NR4A:
RXR dimers, and new molecules have been identified 
acting as agonists or antagonists[96,97,136].

The involvement of  NR4A2 in pancreatic cancer in vi-
tro has been reported by two papers[133,136]. NR4A2 is highly 
expressed in many cancer cell lines including Panc1 and 
Panc28 pancreatic cancer cells. Structure-dependent activa-
tion of  NR4A2 by a series of  C-DIM analogs, especially a 
p-bromophenyl analog (DIM-C-pPhBr), alters the expres-
sion of  NR4A2 target genes; among the altered genes the 
drug determines a NR4A2-dependent repression of  neu-
ropilin (NP)-2 in both cell lines, whereas it induces the ex-
pression of  NP-1 in PANC28 but not PANC1[136]. NPs are 
important in the progression of  pancreatic cancer and are 
currently seen as potential target for PDAC treatment[137] 
and it is conceivable that differential expression of  these 
molecules by NR4A2 might be important for PDAC de-
velopment. Moreover, in PC3 cells NR4A2 acts as a pro-

survival antiapoptotic factor[133]: silencing of  the receptor 
greatly reduced the anchorage independent growth, with 
minimal effect in anchorage-dependent growth, largely 
due to increase anoikis; NR4A2 silencing also impaired the 
formation of  tumors in nude mice[133].

More data link NR4A1 to pancreatic cancer, depict-
ing a complex mechanism of  action where Nur77 acts 
as having “two faces”, being pro-survival and anti- and 
pro-apoptotic at the same time.

NR4A1 is expressed as a nuclear protein in pancreat-
ic cancer cells[136,138-142] and was found to be overexpressed 
in PDAC tissues primarily in the nucleus, whereas 83% 
of  non-tumor pancreatic tissues did not express it[142]

.

c-DIMs are a class of  molecules that activate PPARγ 
and might act on NR4A receptors[136,138,139]; a c-DIM, spe-
cifically the 1,1-Bis(3’-indolyl)-1-(p-anisyl)methane (DIM-
C-pPhOCH3), is the first identified Nur77 agonist[139]. 
DIM-C-pPhOCH3 activates GAL4-Nur77 chimeras 
expressing wild-type and the ligand binding domain of  
Nur77. In Panc-28 pancreatic cancer cells, Nur77 ago-
nists decrease cell survival activating the cell death path-
ways, including tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) and poly(ADP-ribose) poly-
merase (PARP) cleavage. Activation of  TRAIL and PARP 
was further confirmed using Nur77 siRNA in Panc-28 
cells. Nur77 agonists also inhibit tumor growth in vivo in 
athymic mice bearing Panc-28 cell xenografts[139]. DIM-
C-pPhOCH3 arrests pancreatic cancer cell in G0-G1, by 
a Nur77-dependent, but KLF-4-independent, expression 
of  cyclin-dependent kinase inhibitor p21. Interestingly, 
regulation of  p21 does not require the presence of  Nur77 
response elements but involve a GC-rich promoter re-
gion and requires the presence of  the Sp proteins Sp1 
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and Sp4, but not Sp3[140]. Microarray analysis of  L3.6pL 
pancreatic cancer cells treated with DIM-C-pPhOCH3 
demonstrated a NR4A1-dependent induction of  genes 
associated with metabolism, homeostasis, signal transduc-
tion, transcription, stress, transport, immune responses, 
growth inhibition and apoptosis. Among the most highly 
induced growth inhibitory and proapoptotic genes were 
activating transcription factor 3 (ATF3), p21, cystathion-
ase, dual specificity phosphatase 1 and growth differentia-
tion factor 15. Furthermore, DIM-C-pPhOCH3 induced 
Fas ligand and TRAIL, the latter with a ATF3 dependent 
mechanism[141].

Although activation of  Nur77 by specific c-DIM sug-
gests that Nur77 is a tumor suppressor, experiments with the 
antagonist 1,1-bis(3’-indolyl)-1-(p-hydroxyphenyl)methane 
(DIM-C-pPhOH) suggest the contrary[142]. Blocking of  
endogenous Nur77 results in increased cell death and 
reduced cell proliferation; moreover expression of  anti-
apoptotic genes Bcl-2 and Survivin is also reduced. When 
administered in vivo, DIM-C-pPhOH inhibits tumor 
growth, acting on the same antiapoptotic markers ob-
served in vitro. Survivin is overexpressed in pancreatic 
cancer[143,144] and its expression increases during PanIN 
progression to PDAC[144]. Transcriptional regulation of  
Survivin by Nur77 is Sp1-dependent, paralleling the p21 
regulation[140], and it is co-regulated by p300. Thus, acti-
vation of  nuclear Nur77 by the agonist DIM-C-pPhO-
CH3 or inactivation by the antagonist DIM-C-pPhOH 
reduces proliferation and induces apoptosis through two 
different transcription pathways: the first involves the in-
duction of  expression of  apoptosis promoter genes such 
as p21 and TRAIL, whereas the latter is dependent on 
suppression of  pro-survival genes. Consequently, Nur77 
acts both as a tumor suppressor and as a tumor promot-
ing gene in pancreatic cancer (Figure 7).

Interestingly, Nur77 may act as an apoptotic inducer 
agent in several cancer cells after nuclear export[96,97,145-147]; 
although not yet described in PDAC it is conceivable 
that this extra-nuclear action may also be present in pan-
creatic cancer cells. Inducers of  apoptosis, including 5’
-fluorouracil which is used in PDAC treatment, stimulate 
nuclear export of  Nur77 mediated by the export recep-
tor CRM1[145,147]. NR4A1 nuclear export may also be 
induced by 9-cis-RA, requires RXRα as a carrier[97], and 
targets Nur77 to mitochondria[96]. Despite lacking clas-
sical mitochondria targeting sequences, Nur77 might 
translocate to mitochondria in response to cell death 
stimuli, through interaction with anti-apoptotic Bcl-2[147]. 
Bcl-2 acts forming channels in the mitochondria mem-
brane to regulate apoptosis[148]. The interaction Bcl-2/
Nur77 is mediated by the N-terminal loop of  Bcl-2 and 
by the NR4A1 LBD: this binding induces a conforma-
tional change that exposes the BH3 region of  Bcl-2, 
resulting in its transformation in an inducer of  apopto-
sis[147]. Interestingly, Nur77 may also translocate to other 
organelles, specifically endoplasmic reticulum (ER). Cell 
treatment with CD437 induces a nucleus-cytoplasmic 
translocation of  Nur77, followed by ER localization: this 
requires again the interaction with Bcl-2 and triggers the 
release of  Ca2+ from ER inducing apoptosis. Again, this 
effect has been demonstrated in human neuroblastoma, 
esophageal squamous carcinoma and hepatocarcinoma 
cells[145,146] but not in PDAC cells (Figure 7).

LRH-1 in pancreatic cancer
LHR-1 (NR5A2) is an orphan NR that is essential during 
development and necessary in the adult for the function 
of  the pancreas, liver, intestine, and ovary[149,150]. LHR-1 
recognizes specific DNA sequences to whom it binds as 
monomere[151].
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Figure 7  Nur77 acts as a tumor suppressor and as tumor promoting gene in pancreatic ductal carcinoma, inducing pro-apototic and anti-proliferative 
genes or repressing pro-survival genes. Dashed lines: Effects yet to be demonstrated in pancreatic ductal adenocarcinoma (PDAC). TRAIL: Tumor necrosis factor-
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The status of  LHR-1 as “orphan” is debated and 
some scientists suggest that it may be classified as “ad-
opted”[132,151]. The structure of  the mouse LHR-1 LDB 
shows an active conformation with a large hydrophobic, 
but empty, ligand binding pocket resulting in a consti-
tutive active receptor[132]; instead, the crystallographic 
analysis of  the human LHR-1 revealed the presence of  
phosphatidyl inositol in the binding pocket[151]. Phos-
phatidyl inositol is required for activation[151] but it is 
not clear if  it may enter and leave the pocket acting as a 
proper ligand[132]. Nonetheless, new molecules acting as 
antagonists have been recently identified by screening of  
commercially available compounds[152].

Chromatin immunoprecipitation-seq and RNA-seq 
analyses revealed that LRH-1 directly induces expression 
of  genes encoding digestive enzymes and secretory and 
mitochondrial proteins and cooperates with the pancreas 
transcription factor 1-L complex in regulating exocrine 
pancreas-specific gene expression[153].

LHR-1 is important in maintaining acinar identity 
but is not required for acinar development[154] and mice 
with a selective deletion of  LHR-1 in the pancreas did 
not display histological abnormalities[153-155]. A genome-
wide association study conducted in pancreatic cancer 
patients and unaffected controls identified 5 SNP in the 
vicinity of  NR5A2 associated with the risk of  PDAC[156], 
that were confirmed by later studies[47,157,158].

In normal human pancreas, the LRH-1 protein is 
expressed at low levels in the nucleus and cytoplasm 
of  both acini and ducts cells; in contrast PDAC show 
heightened levels of  the protein and in some neoplastic 
cells the receptor appeared to localize predominantly in 
the cytoplasm[159]. An increased presence of  LRH-1 was 
also detected in the acinar cells affected by pancreatitis 
and in PanIN lesions[159]. Overexpression of  the receptor 
was also detected in pancreatic cancer cells in vitro[159].

Treatment of  pancreatic cancer cells in vitro with 
LHR-1 antagonists or with LHR-1 siRNA significantly 
inhibits cell proliferation inducing a G0/G1 block as-
sociated with a reduction of  of  cyclins D1 and E1[152,159], 
suggesting that in vitro LHR-1 promotes tumor prolif-
eration. In vivo, selective inactivation of  one NR5A2 
allele in pancreatic epithelial cells is sufficient to cause 
impaired recovery from pancreatitis[154] and conditional 
pancreatic deletion of  LHR-1 leads to destabilization 
of  the mature acinar differentiation state, increased 
inflammation, ADM and loss of  regenerative capacity 
following acute caerulein pancreatitis[154,155]; loss of  both 
alleles also dramatically accelerates the development of  
oncogenic Kras driven ADM and PanIN lesions[154,155].

The in vivo studies clearly show that LHR-1 inhibits 
the ductal transformation of  adult acinar cells by mutant 
Kras and prevent PDAC progression; however in vitro 
studies show that NR5A2 promotes, instead of  inhibit-
ing, tumorigenesis. It has been hypothesized that NR5A2 
exercises an inhibitory action in the early phase of  PDAC 
development, blocking RAS with unknown mechanisms, 
while it will have an opposite effect later on[160].

COUP-TFⅡ expression predicts survival in PDAC
COUP-TFⅡ is a orphan nuclear receptor encoded 
by the NR2F2 gene localized in the chromosome re-
gion 15q26, a region frequently amplified in pancreatic 
cancer[14], and it is a down target of  multiple pathways 
altered in pancreatic cancer[46,161-163]. In mouse two dif-
ferent transcription variants are described whereas in 
human at least four different variant are expressed. They 
differ in the N-terminal region and only one variant 
presents the structural features of  NR being the others 
without the DBD. The role of  these variants is not fully 
understood and two recent papers gave contradictory 
results describing one of  the DBD lacking forms acting 
either as enhancer of  COUP-TFⅡ transcriptional activ-
ity or as a repressor, increasing the cytoplasmic localiza-
tion of  full length COUP-TFⅡ, suggesting a cell specific 
function for this truncated NR[164,165]. COUP-TFⅡ exists 
in a autorepressed conformation that prevents recruit-
ment of  coactivators, and might respond to retinoids 
that promote COUP-TFⅡ to recruit coactivators[166]. 
Full length COUP-TFⅡ exerts an important role during 
development and in adulthood[167], and it is implicated in 
the progression of  various type of  cancers[168]. COUP-
TFⅡ is expressed at low levels in adult normal exocrine 
pancreas[168,169] and recently we demonstrated its involve-
ment in pancreatic cancer in vitro and in vivo[168] (Figure 
8). COUP-TFⅡ was expressed in 69% of  tested primary 
samples correlating with the presence of  lymph and dis-
tant metastasis as well as clinical stage; PDAC patients 
stained positive for the NR showed a significant reduc-
tion of  survival compared to NR-negative patients. In 
vitro silencing of  COUP-TFⅡ reduces the cell growth 
and invasiveness and it strongly inhibits angiogenesis, an 
effect mediated by the regulation of  VEGF-C. The re-
duced proliferation is associated with a block in G1 and 
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involved in the regulation of angiogenesis, invasion and tumor prolifera-
tion. Expression of chicken ovalbumin upstream promoter transcription factor 
Ⅱ (COUP-TFⅡ) is induced by several pathways altered in pancreatic ductal 
carcinoma, including Wnt/β-catenin, RAS-MAPK and Hedgehog.
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Table 2  Expression of nuclear receptors and clinical trials

decreased expression of  E2F1, but not apoptosis; more-
over, COUP-TFⅡ silencing reduces OCT4 and increases 
Nanog expression. In vitro effects were confirmed in 
nude mice where COUP-TFⅡ silencing reduces tumor 
growth by 40%[168].

CONCLUSION
PDAC is a devastating disease originating from well de-
fined genetic alterations. However, due to the its subtle 
nature, the lack of  efficient diagnostic methods and of  
effective drugs it is a deadly disease with a dismal prog-
nosis. NR are ligand-regulated transcription factors func-
tionally involved in important cellular functions ranging 
from regulation of  metabolism, to growth and develop-
ment. Given the nature of  their ligands, NR are very 
tempting drug targets and their pharmacological modu-
lation has been widely exploited. There are now clear 
evidences that both classical ligand-activated and orphan 
NR are involved in the pathogenesis of  pancreatic can-
cer disease from its very early stages. From the review of  
the literature PPARs, RARs, RXRs, AR, ERα and ERβ 
and the orphan NR Nur, COUP-TFⅡ and LHR-1 show 
striking connections with PDAC development, that for 
certainty will need more experimental confirmations, es-
pecially for the orphans. Although clinical application of  
NR modulators in the PDAC treatment still suffers from 
failure (Table 2), a more comprehensive analysis of  NR 
action in PDAC could lead to the identification of  novel 
therapies for this disease.
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