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Abstract
Oral and maxillofacial anatomy is extremely complex, and medical imaging is 
critical in the diagnosis and treatment of soft and bone tissue lesions. Hence, there 
exists accumulating imaging data without being properly utilized over the last 
decades. As a result, problems are emerging regarding how to integrate and 
interpret a large amount of medical data and alleviate clinicians’ workload. 
Recently, artificial intelligence has been developing rapidly to analyze complex 
medical data, and machine learning is one of the specific methods of achieving 
this goal, which is based on a set of algorithms and previous results. Machine 
learning has been considered useful in assisting early diagnosis, treatment 
planning, and prognostic estimation through extracting key features and building 
mathematical models by computers. Over the past decade, machine learning 
techniques have been applied to the field of oral and maxillofacial surgery and 
increasingly achieved expert-level performance. Thus, we hold a positive attitude 
towards developing machine learning for reducing the number of medical errors, 
improving the quality of patient care, and optimizing clinical decision-making in 
oral and maxillofacial surgery. In this review, we explore the clinical application 
of machine learning in maxillofacial cysts and tumors, maxillofacial defect 
reconstruction, orthognathic surgery, and dental implant and discuss its current 
problems and solutions.

Key Words: Radiography; Artificial intelligence; Machine learning; Deep learning; Oral 
surgery; Maxillofacial surgery
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Core Tip: A dramatic increase in medical imaging data has exceeded the ability of 
clinicians to process and analyze, which calls for higher-level analytic tools. Machine 
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learning-based image analysis is useful for extracting key information to improve 
diagnostic accuracy and treatment efficacy. In this review, we summarize the applic-
ations of machine learning in oral and maxillofacial surgery as well as its current 
problems and solutions.
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URL: https://www.wjgnet.com/2644-3260/full/v2/i6/104.htm
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INTRODUCTION
The oral and maxillofacial region is extremely complex, including many critical 
anatomical structures such as the maxillofacial bone, parotid gland, facial nerve, and 
major vessels. Computed tomography (CT), magnetic resonance imaging (MRI; an 
imaging technique mainly used for the examination of soft tissue), and other 
radiological examinations are commonly applied to improve the understanding of the 
three-dimensional spatial positional relationships among these anatomical structures. 
It is unavoidable to face rapid growth in the amount and complexity of medical 
imaging data, leading to increased workload for clinicians[1-2].

In recent years, artificial intelligence (AI) has been implemented in medicine to 
explore these enormous datasets and extract key information[1,3]. AI is a field focused 
on completing intellectual tasks normally performed by humans, and machine 
learning (ML) is one of the specific methods of achieving this goal[4]. AI models based 
on ML algorithms have demonstrated excellent performance in imaging data 
extraction and analysis and have increasingly matched specialist performance in 
medical imaging applications[5]. The integration of ML in oral and maxillofacial 
surgery has been proved to improve diagnostic accuracy, treatment efficacy, and 
prognostic estimation and reduce health care costs[6,7]. The purpose of this review is 
to explore the clinical application of ML in maxillofacial cysts and tumors, maxillo-
facial defect reconstruction, orthognathic surgery, and dental implant and discuss the 
current problems and solutions.

Arthur Samuel[6-8] first described the term ML in 1952. ML is a technique to build 
prediction outcomes by statistical algorithms learning from experience. According to 
the training types of the algorithms, ML can be divided into three categories: Super-
vised, unsupervised, and reinforcement learning[9]. Currently, supervised learning is 
the most commonly used training style in medical image analysis[10].

In supervised learning, labels are inputted simultaneously with the training data 
and then algorithms predict the known outcome[10]. Examples of supervised learning 
methods include classic Naive Bayes, decision tree (DF), support vector machine 
(SVM), random forest (RF), logistic regression, artificial neural network (ANN), and 
deep learning (DL). Specifically, SVM results in data classification by setting up an 
imaginary high-dimensional space and then separating labeled samples by a 
hyperplane[4,11]. RF is an extension of DF, in which each DF is independently trained 
and subsequently combined with others[4,12]. ANN has one hidden layer in addition 
to the input and output layer. Each layer is composed of neurons and sequentially 
stacked one after the other via weighted connections. The signals are transformed 
among neurons from the previous layer to the next and DL is comprised of multi-
layered ANN[13].

In unsupervised learning[10], the algorithm system will not be provided with labels 
but depends on itself for the detection of the hidden patterns in the data. Examples of 
algorithms of unsupervised learning include K-means, affinity propagation, and fuzzy 
C-means systems. Besides, reinforcement learning[14] holds a system including 
unlabeled data, agent, and environment. It aims to repeatedly optimize parameters 
based on environmental feedback through reward and punishment mechanisms. By 
accumulating the rewards, the models can keep adapting to the changing environment 
and obtaining the best return. Examples of reinforcement learning algorithms include 
Maja and Teaching-Box systems.

The protocol of ML comprises data procession and model construction, and the 
workflow of the model construction can be further divided into the training phase and 
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the validating/testing phase. Due to the impact of data volume and quality on the 
performance of machine-learning models, raw data should be standardized in advance 
for the following aspects: (1) Reducing noise without losing the important features
[15]; (2) Splitting the image into parts and delineating the region of interest; and (3) 
Accumulating enough data[16]. Effective methods have been proposed for achieving 
the tasks, including image denoising, segment, and augment[15,17-20].

APPLICATION IN ORAL AND MAXILLOFACIAL SURGERY
Maxillofacial cystic lesions and benign tumors 
Maxillofacial cysts and benign tumors are common lesions in the oral and maxillo-
facial region. In most cases, maxillofacial cysts and benign tumors cause facial 
swelling, tooth displacement, large bone cavity, and even pathological fracture when 
diagnosed. Surgery is the only treatment option, including enucleation, decompre-
ssion, and resection. And the choice of treatment modality is based on the final 
diagnosis, lesion size, and age of selected patients. However, these lesions are 
asymptomatic at the early stage. Consequently, early detection and diagnosis of 
maxillofacial cysts and benign tumors are crucial for avoiding serious surgery and 
achieving satisfactory treatment outcomes[21,22]. Numerous studies have demon-
strated the usefulness of ML in early screening, accurate diagnosis, proper treatment, 
and morbidity prevention in maxillofacial cysts and benign tumors.

Frydenlund et al[23] applied two ML classifiers (a SVM and bagging with logistic 
regression) to distinguish among lateral periodontal cysts, odontogenic keratocysts, 
and glandular odontogenic cysts in hematoxylin and eosin-stained digital micro-
graphs. The results proved the effectiveness of the ML-based classifiers in predicting 
these three types of odontogenic cysts (96.2% correct classification for both classifiers). 
Moreover, Okada et al[24] demonstrated the usefulness of a semiautomatic computer-
aided diagnosis framework to differentiate between periapical cysts and granulomas 
in cone-beam CT (CBCT) data. And the 94.1% best accuracy was yielded with the 
integration of graph-based random walks segmentation and ML-based boosted classi-
fication algorithms. Similarly, Endres et al[25] compared the performance of the DL 
algorithm with that of 24 oral and maxillofacial surgeons in detecting periapical 
radiolucencies in panoramic radiographs, demonstrating the reliable diagnoses of ML 
algorithms in dentistry. In addition, Kwon et al[26] developed a deep convolution 
neural network (DCNN) to automatically diagnose jaw odontogenic cysts and tumors 
in panoramic images, showing higher diagnostic sensitivity, specificity, and accuracy 
with augmented datasets. Liu et al[27] applied deep transfer learning to classify 
ameloblastoma and odontogenic keratocyst in panoramic radiographs and achieved an 
accuracy of 90.36%. Yang et al[28] also showed that the diagnostic performance of 
CNN You OnlyLook Once v2 was similar to that of experienced dentists in detecting 
odontogenic cysts and tumors on panoramic radiographs.

Maxillofacial malignant tumors
Oral cancer is the most common malignancy in the oral and maxillofacial region, 
which can exert a severe impact on the survival and quality of life of the patients[29]. 
The most effective method for reducing mortality rates is early detection. However, 
the optimal strategy for early screening remains debated. The advent of high-quality 
ML provides potential to improve early diagnosis, prognostic evaluation, and accurate 
prediction of treatment associated toxicity in oral cancer patients.

Aubreville et al[30] presented a novel automatic identification of oral squamous cell 
carcinoma (OSCC) in confocal laser endomicroscopy images, using a deep ANN. The 
accuracy of this deep ANN-based method was 88.3%, with a sensitivity of 86.6% and 
specificity of 90%. It outperformed textural feature-based classification. DL algorithms, 
including the DenseNet121 and faster R-CNN algorithm, have also been applied to 
automatically classify and detect oral cancer in photographic images, achieving 
acceptable precision[31]. Furthermore, Kar et al[29] and Jeyaraj and Samuel Nadar[32] 
developed regression-based partitioned CNN using hyperspectral image datasets for 
automated detecting oral cancer, obtaining improved quality of diagnosis compared to 
traditional image classifiers including the SVM and the deep belief network.

In addition, ML has also been applied to predict cancer outcomes using the 
following prognostic variables: (1) Histological grade; (2) Five-year survival; (3) 
Cervical lymph node metastases; and (4) Distant metastasis. Ren et al[33] included 80 
patients finally diagnosed with OSCC and performed ML-based MRI texture analysis 
using a minimum-redundancy maximum-relevance algorithm, achieving the best 
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performance with an accuracy of 86.3%. Others also concluded that the predictive 
performance of DL-based survival prediction algorithms exceeded that of conven-
tional statistical methods[34-38]. Chu et al[17] and Ariji et al[39] have achieved a DL 
accuracy of extranodal extension of 84% on 703 CT images. The diagnostic per-
formance outranked that of radiologists. Others also proved the effectiveness of ML in 
predicting lymph node metastasis in patients with early-stage oral cancer and thus 
guiding proper treatment plans[32,40,41]. Keek et al[42] found that compared with 
peritumoral radiomics based prediction models, a clinical model was useful for the 
prediction of distant metastasis in oropharyngeal cancer patients.

ML also contributes to the evaluation of treatment complications. Chu et al[17] and 
Men et al[43] have introduced a 3D residual CNN for the prediction of xerostomia in 
patients with head and neck cancer and achieved satisfying performance with an area 
under the curve value of 0.84 (0.74-0.91), an index for reflecting the authenticity of the 
detection method (the closer the numerical value to 1.0, the higher the authenticity of 
the detection method).

Nasopharyngeal carcinoma is a malignancy of the head and neck, and radiotherapy 
is the primary treatment option for the suffered patients[44]. To avoid unnecessary 
toxicities derived from radiotherapy, radiation oncologists propose the concepts of 
precise radiotherapy and adaptive radiotherapy. Recently, advanced ML techniques 
have mainly been applied to auto-recognition, early diagnosis, target contouring, and 
complication prediction in patients with nasopharyngeal carcinoma[45].

Li et al[46] developed an endoscopic image-based model to detect nasopharyngeal 
malignancies. And this DL model outperformed experts in detecting malignancies. Du 
et al[47] investigated the diagnostic performance of seven ML classifiers cross-
combined with six feature selection methods for distinguishing inflammation and 
recurrence based on post-treatment nasopharyngeal positron emission tomography/ 
X-ray CT images (a high-level imaging method that can make an early diagnosis of 
tumors) and identified the optimal methods in the diagnosis of nasopharyngeal 
carcinoma.

Lin et al[48] constructed a 3D CNN on MRI data sets and validated the performance 
of automated primary gross tumor (GTV) contouring in patients with nasopharyngeal 
carcinoma, demonstrating improved contouring accuracy and efficacy with the 
assistance of a DL-based contouring tool. Men et al[49] proposed an end-to-end deep 
deconvolutional neural network for segmentation of nasopharyngeal carcinoma in 
planning CT images, showing a high-level performance than that of the VGG-16 
model in the segmentation of the nasopharynx GTV, the metastatic lymph node GTV, 
and the clinical target volume. In addition, Liang et al[44] developed a fully automated 
DL-based method for the accurate detection and segmentation of organs at risk in 
nasopharyngeal carcinoma CT images and achieved excellent performance. The results 
showed a sensitivity of 0.997 to 1 and specificity of 0.983 to 0.999. For early detecting 
the radiotherapy complication in nasopharyngeal carcinoma patients, Zhang et al[50] 
applied the RF method to early predict radiation-induced temporal lobe injury (RTLI) 
based on MRI examinations. The results demonstrated that the RF models can 
successfully predict RTLI in advance, which can allow clinicians to take measures to 
stop or slow down the deterioration of RTLI.

Altogether, ML techniques have been shown well-performed in early screening and 
prognosis evaluation of maxillofacial malignant tumors.

Maxillofacial bone defect reconstruction
Maxillofacial bone defects after congenital deformities, trauma, and oncological 
resection greatly decrease patients’ quality of life. The goal of reconstruction of 
maxillofacial bone defects is to restore optimal function and facial appearance using 
free tissue, vascularized autogenous bone flap transplantation, or prostheses. Maxillo-
facial reconstructive surgery remains challenging, especially in the cases of massive 
maxillofacial bone defects across the midline. Most recently, ML algorithms have 
achieved major success in virtual surgical planning and thus posed great potential in 
the reconstruction of facial defects.

Jie et al[51] proposed an iterative closest point (ICP) algorithm based on normal 
people database (a database comprised of normal and healthy adults) to predict the 
reference data of missing bone and performed symmetry evaluation between the 
postoperative skull and its mirrored model. The result showed that the ICP model 
achieved similar accuracy to that of navigation-guided surgery. Dalvit Carvalho da 
Silva et al[52] combined CNN with geometric moments to identify the midline 
symmetry plane of the facial skeleton from CT scans, which aided the surgeons in the 
maxillofacial reconstructive surgery.
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With the development of an imaging database, ML is a promising tool to assist the 
maxillofacial bone defect reconstruction.

Orthognathic surgery
Orthognathic surgery is used for the treatment of dental malocclusion, facial 
deformities, and obstructive sleep apnea to improve facial aesthetics and function. 
Traditionally, surgical planning is based on clinical examination, two-dimensional 
cephalometric analysis, and manually made splints. However, these procedures 
require considerable labor efforts and lack precision[53-56]. With the rapid deve-
lopment of technologies and materials, 3D printers, digital software, and ML are 
increasingly used in orthognathic surgery and greatly improve surgical outcomes. 
Hence, the applications of ML are promising in orthognathic surgery.

According to the study of Shin et al[57], the authors extracted the features from 
posteroanterior and lateral cephalogram and evaluated the necessity for orthognathic 
surgery using DL networks. The results showed that the accuracy, sensitivity, and 
specificity were 0.954, 0.844, and 0.993, respectively, proving the excellent perfor-
mance. Lin et al[58] used a CNN with a transfer learning approach on 3D CBCT images 
for the assessment of the facial symmetry before and after orthognathic surgery. In a 
retrospective cohort study, Lo et al[59] first applied a ML model based on the 3D 
contour images to automatically assess the facial symmetry before and after or-
thognathic surgery. According to the study by Knoops et al[60], a 3D morphable 
model, a ML-based framework involving supervised learning, was trained with 4216 
3D scans of healthy volunteers and orthognathic surgery patients. The model showed 
high diagnostic accuracy with a sensitivity of 95.5% and specificity of 95.2%, satisfying 
treatment simulation. In addition, Patcas et al[61] demonstrated that patients’ facial 
appearance and attractiveness improved after orthognathic surgery using a CNN 
model.

To sum up, ML has been considered a useful tool in orthognathic surgery for 
establishing a precise diagnosis, evaluating surgical necessity, and predicting treat-
ment outcomes.

Dental implant
The dental implant has been considered a reliable treatment option for the repla-
cement of missing teeth. Undoubtedly, an excellent bone environment and implant 
planning are key to the success rate of dental implants. It is crucial to have a basic 
understanding of the quality and quantity of bone at the planned site and site of 
placement[62]. In recent decades, ML is growing in the field of dental implants and its 
use has been applied to improve the success rate of implants and identify dental 
implants.

Kurt et al[63] applied a DL approach on three-dimensional CBCT images to perform 
implant planning and compared the performance of this method with manual 
assessment, achieving similarly acceptable results in the measurements in the maxilla 
molar/premolar region, as well as in the mandible premolar region. A pilot study by 
Ha et al[64] demonstrated that the mesiodistal position of the inserted implant is the 
most significant factor predicting implant prognosis using ML methods.

Besides, Lee et al[65] evaluated the performance of three different DCNN 
architectures for the detection and classification of a fractured dental implant using 
panoramic and periapical radiographic images. The results showed the best per-
formance by the automated DCNN architecture based on only periapical images. 
Mameno et al[66] applied three ML methods for the prediction of peri-implantitis and 
analyzed the risk indicators. RF model achieved the highest performance in the 
prediction. And the results demonstrated that implant functional time influenced most 
on prediction.

In addition, several investigations proved the effectiveness of ML methods for 
implant type recognition using radiographic images[67-69]. As for the application of 
ML models for implant design optimization, Roy et al[70] used an ANN combined 
with genetic algorithms for the prediction of the optimum implant dimension.

ML models have demonstrated great potential in the field of dental implants for 
assisting implant planning, evaluating implant performance, improving implant 
designs, and identifying dental implants.

PROBLEMS AND SOLUTIONS
ML has shown great potential in the field of oral and maxillofacial surgery for 
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Table 1 Machine learning applications in oral and maxillofacial surgery

Ref. Applications Purpose Method

[23] A support vector machine and bagging with logistic regression

[24] Integration of graph-based random walks segmentation and machine 
learning-based boosted classification algorithms

[26] Deep convolution neural network

[27] Deep transfer learning

[28]

Accurate diagnosis

Convolution neural work You OnlyLook Once v2’s

[25]

Maxillofacial cystic lesions and 
benign tumors

Early detection Deep learning

[30] Deep artificial neural network

[31] Deep learning (DenseNet121 and faster R-Convolution neural work)

[29,
32]

Regression-based partitioned convolution neural network

[46] Deep learning

[47]

Early diagnosis

Machine learning

[48] Convolution neural network

[49] End-to-end deep deconvolutional neural network

[44]

Early detection

Deep learning

[33] Minimum-redundancy maximum-relevance algorithm

[34-
39]

Deep learning

[40-
42]

Prognosis estimation

Machine learning

[43] Convolution neural network

[50]

Maxillofacial malignant 
tumors

Treatment complication evaluation

Random forest 

[51] Missing bone prediction and facia 
symmetry evaluation

Iterative closest point

[52]

Maxillofacial bone defect 
reconstruction

Midline symmetry plane identification Convolution neural network

[57] Surgery necessity evaluation Deep learning

[58] Convolution neural network

[59]

Facial symmetry assessment

Machine learning

[60] Diagnosis Machine learning

[61]

Orthognathic surgery

Facial appearance and attractiveness 
evaluation

Convolution neural network

[63] Implant planning designing Deep learning

[70] Implant planning optimizing Artificial neural network

[64] Prognosis estimation Machine learning 

[65] Detection and classification of fractured 
dental implant

Deep convolution neural network

[66] Complicationprediction Machine learning

[67-
69]

Dental implant

Implant type recognition Machine learning

improving detection accuracy, optimizing treatment plans, and providing reliable 
prognostic prediction. Despite all the potential, there still exist some limitations.

First, the performance of ML mainly depends on the volume and quality of data and 
superior algorithms. The scattered distribution of dental databases across healthcare 
settings often leads to the problem of relatively small datasets, exerting an impact on 
real clinical decision-making. Efforts should be made for the development of cloud-
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based image databases and large open-access databases from diverse settings and 
populations[71].

Second, it is quite difficult for ML to analyze a large number of different and hetero-
geneous datasets. A set of well-standardized, segmented, and enhanced training data 
will enhance the performance of the ML model. Thus, the involved data should get 
properly pre-processed for maximally achieving homogenization of the data sets and 
reducing errors[15,17,72].

Third, the performance of ML algorithms in completing various common clinical 
tasks is similar to or outmatches that of experts. However, when dealing with cases of 
rare and complicated diseases, existing algorithms may have inferior performance[73,
74]. Consequently, further improvement of ML algorithms is required for computing 
enormous and complex medical data.

Lastly, there exist many ethical challenges, including privacy protection, data 
security, and legal and regulatory issue. Patients’ informed consent has to be obtained 
before using their clinical data for ML. Moreover, relevant guidelines should be 
developed for data acquisition and data sharing. Meanwhile, data should be trans-
parent and traceable without the disclosure of personal information. Strict legal 
requirements should be made regarding health data privacy.

CONCLUSION
ML will have an immense impact in the field of oral and maxillofacial surgery in the 
following aspects. First, ML is useful in early screening, accurate diagnosis, proper 
treatment, morbidity prevention, and accurate prediction of treatment associated 
toxicity in the treatment of maxillofacial cysts, benign tumors, and malignant tumors. 
Second, ML algorithms have achieved major success in virtual surgical planning and 
thus posed great potential in the reconstruction of facial defects. Third, ML has been 
considered a useful tool in orthognathic surgery for establishing a precise diagnosis, 
evaluating surgical necessity, and predicting treatment outcomes. Lastly, ML models 
have demonstrated great potential in the field of dental implants for assisting implant 
planning, evaluating implant performance, improving implant designs, and identi-
fying dental implants (Table 1).

Nonetheless, it remains vital to evaluate the reliability, accuracy, and repeatability 
of ML in medicine. Further studies should continually focus on improving the 
usability of algorithms for different diseases. Moreover, there exists an urgent need to 
develop guidelines for many ethical challenges, including privacy protection, data 
security, and legal and regulatory issue. Despite these issues, ML is still considered to 
be a powerful tool for clinicians. We believe that this review may provide detailed 
information regarding ML applications in oral and maxillofacial surgery and help 
assist clinicians to facilitate the clinical practices.
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