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Abstract
BACKGROUND 
In their everyday life, clinicians face an overabundance of biological indicators 
potentially helpful during a disease therapy. In this context, to be able to reliably 
identify a reduced number of those markers showing the ability of optimising the 
classification of treatment outcomes becomes a factor of vital importance to 
medical prognosis. In this work, we focus our interest in inflammatory bowel 
disease (IBD), a long-life threaten with a continuous increasing prevalence 
worldwide. In particular, IBD can be described as a set of autoimmune conditions 
affecting the gastrointestinal tract whose two main types are Crohn’s disease and 
ulcerative colitis.

AIM 
To identify the minimal signature of microRNA (miRNA) associated with 
colorectal cancer (CRC) in patients with one chronic IBD.

METHODS 
We provide a framework of well-established statistical and computational 
learning methods wisely adapted to reconstructing a CRC network leveraged to 
stratify these patients.

RESULTS 
Our strategy resulted in an adjusted signature of 5 miRNAs out of approximately 
2600 in Crohn’s Disease (resp. 8 in Ulcerative Colitis) with a percentage of success 
in patient classification of 82% (resp. 81%).

https://www.f6publishing.com
https://dx.doi.org/10.35713/aic.v3.i2.27
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CONCLUSION 
Importantly, these two signatures optimally balance the proportion between the number of 
significant miRNAs and their percentage of success in patients’ stratification.

Key Words: Inflammatory bowel disease; microRNA; Muti-group comparison; Machine learning; Colorectal 
cancer; Sparse partial least squares-discriminant analysis

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study provides an optimised strategy based on classic learning methods and multi-group 
variable selection combination from 2600 microRNAs of 225 patients with one chronic inflammatory 
bowel disease to identify the minimal signature of microRNAs associated with the development of 
colorectal cancer in these patients.

Citation: Abaach M, Morilla I. Learning models for colorectal cancer signature reconstruction and classification in 
patients with chronic inflammatory bowel disease. Artif Intell Cancer 2022; 3(2): 27-41
URL: https://www.wjgnet.com/2644-3228/full/v3/i2/27.htm
DOI: https://dx.doi.org/10.35713/aic.v3.i2.27

INTRODUCTION
The emergence of high-through experiments, image-based analysis and massive sequencing techniques
[1-3] has disrupted the way clinicians make decision on a disease therapy. Now the usage of the grade 
of expertise in their respective do- mains to decide a treatment, frequently considered as a subjective 
evaluation, is strengthened by an overwhelming capability of support. However, this overabundance of 
available information does not make their task that straightforward. In this context, the use of 
interpretable mathematical methods can decipher the underlying complexity of data, generating 
systemic hypothesis that really help practitioners with their treatment outcomes. In this study, we 
introduce a learning framework based on a combination between unsupervised hierarchical clustering 
and weakly supervised classification approaches. These methods are applied to the analysis of a pool 
with approximately 6000 miRNAs extracted from biopsies of 216 inflammatory bowel disease (IBD) 
patients with and without colorectal cancer (CRC).

IBD consist of various disorders that cause prolonged inflammation of the digestive tract. Its 
prevalence rises more and more in the western developed countries[4] largely affecting their health-care 
systems. Besides that fact, the treatment of such disorders requires an early assessment of the response 
to the medical treatment[5]. Thus, the finding of a reduced signature optimally predicting the strata a 
patient will be lying on is of paramount importance during therapy. The main goal of our methodology 
is using the above approaches to reconstructing a minimal network that stratifies patients with a chronic 
IBD[5,6] having developed CRC as indicated in[7,8].

Unsupervised hierarchical clustering[5] is a robust method successfully used in the comparison of 
more than two groups. Particularly, this method enables the identification of biologically meaningful 
biomarkers, i.e. miRNAs, reducing significantly the amount of data in the study. Powered by parse 
partial least squares discriminant analysis (sPLS-DA) this signature becomes minimal[9] in the 
description of the required CRC network in IBD. And the later application of random forests (RF)[10] 
and support vector machines (SVM)[11,12] to the adjusted signature of selected miRNAs ensures the 
classification of patients is less sensitive to data heterogeneity. Regarding the calibration of classifiers, 
the performance of each algorithm is assessed by means of leave-one-out (LOO) cross validation[13] and 
their confusion matrices[14]. Overall this methodology shortens clinicians’ efforts, enhancing a reduced 
set of important features and avoiding unnecessary time delays prior to make any decision on the 
course of a disease therapy.

Motivation
There exist intra patient differences in miRNA expression between the inflammatory and healthy tissue, 
between the healthy tissue of an inflammatory and non-inflammatory patient and between the healthy 
tissue of a cancer and non- cancer colic patient. We want to identify a minimal miRNA profile of 
developing or not cancer in patients with a chronic inflammatory bowel disease. In other words, a 
miRNA profile of healthy tissue from patients with chronic IBD with (case) vs without cancer (control). 
In that way, provided a specific miRNA profile is of interest, this one could be prospectively validated, 
and its predictive marker maybe also developed. Ultimately, this would allow clinicians to in- crease the 
diagnosis colonoscopy pace in IBD patients where a miRNA profile of risk is detected and conversely 

https://www.wjgnet.com/2644-3228/full/v3/i2/27.htm
https://dx.doi.org/10.35713/aic.v3.i2.27
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decreasing that pace in patients tagged as at lower risk.

MATERIALS AND METHODS
Samples and mi RNA extractions
Patients were recruited from various public French hospitals for this study. Our sample consists of 225 
IBD patients with 75 cases developing dysplasia in colon. These cases matched with 150 controls, i.e., 
patients with IBD who did not develop dysplasia, yielding a total ratio of 1 case for each 2 controls. The 
extraction of 6609 miRNAs in each sample resulted from the biopsies of 216 quantified patients. A 
posteriori, 10 out of these 216 patients were discarded because of their difficulty in extracting miRNAS.

Biological variability
At least 40 biopsies were extracted from each sample during diagnostic chromo-endoscopies in IBD. The 
anatomopathological grading of inflammation described in[15,16] is adopted on the Hematoxylin Eosin 
Saffron slide of each sample. To not get affected the miRNA signature by a mucosa inflammation, only 
the healthy mucosa (non-inflammatory nor dysplastic) corresponding to the grade 0 in GOMES classi-
fication was collected. Finally, the absence of histological inflammatory lesion in the mucosa has been 
considered in preference to the colic segments.

Quality control
Following the Affymetrix hybridisation standards[17], the intensity of miRNA was log2-transformed 
(Supplementary Figure 1). A first quality control on all miRNA was performed using a principal 
component analysis (PCA). PCA by[18] allows transforming a set of correlated data, herein their 
intensity in the gene-chip of Affimetrix GeneChip miRNA 4.0 chips, in a new data set, uncorrelated, by 
following the top ranked principal components. These components are used as axes of a new space 
where detect patients with an ambiguous score of intensity, i.e., those intensity outputs generated by 
unsuitable experimental condition, and exclude them all. Just after one of the two RNA strands becomes 
functional the miRNA is prepared to participate in intricate biological processes within the cell. This 
maturation process leads the miRNA to a “steady-state” that provides a more valuable biological 
information. Thus, we opted for considering only mature transcript miRNAs defined in[19], noted by 
MIMAT, in the completion of this study. Those transcripts amount to 2578 miRNAs in total. In addition, 
miRNAs with an average intensity > 8 were also removed being considered as outliers of the overall 
expression profile.

Technical variability
The Affymetrix Genechip 4.0 encompasses around 36000 probes, more than 6000 of which are humans 
(each probe corresponds to a complementary sequence of nucleotides). Details on each miRNA and 
sample are provided by the Affymetrix database. The intensity values of 6609 miRNAs are considered 
from the 216 patients. Notably, both the RNA extraction and the miRNA technical analysis were 
performed twice with similar library sizes (see Supplemental Material) detecting a very low bias attrib-
utable to a defective sample collection or a poor miRNA quality.

STATISTICAL LEARNING ANALYSIS
Reconstruction of the miRNA signature
Differential expression using general linear models: A first signature of differentially expressed (DE) 
miRNAs is inferred from general linear models implemented in the limma R-package[20]. During this 
process we estimate variance for other miRNAs, weight to incorporate unequal variations in data, and 
pre-process to reduce noise.

Multiclass DE analysis: The signature identified by linear models returned an amount of miRNAs 
larger than expected to be considered in practice as biologically significant. We decided, then, to reduce 
the size of miRNA signature by means of a multi-group comparison strategy. Firstly, we cal- culated the 
mean expression of each miRNA according to the four analysed groups [i.e., Ulcerative colitis (UC) and 
Crohn’s disease (CD) cases and controls respectively]. Next, we construct the tree related groups. Thus, 
we assume an underlying tree structure to compare groups based on recursive binary splits along the 
tree. Then each mean expression was compared, using a simple t test as in[21]. Any miRNA with a 
significant t test (i.e., threshold = 0.005) was included in the final model.

We propose different strategies to test in pairwise all the possible combinations of groups: (1) Use the 
CD patients or the UC patients exclusively; and (2) Use each one of the groups to construct the tree 
(Figure 1 and Table 1): (1) Strategy 1: Comparison between the CD controls and the three remaining 
leaves (UC controls, CD cases and UC cases), then UC controls compare to CD cases and UC cases, etc.; 

https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
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Table 1 Possible comparisons to be made during the unsupervised (i.e., we do not rely on the type of disease) global analysis of 
patients following the considered three different strategies

Strategy Comparison

1 vs (2,3,4)

2 vs (3,4)

Strategy 1 (classic)

3 vs 4

1 vs 2; 1 vs 3; 1 vs 4

2 vs 1; 2 vs 3; 2 vs 4

3 vs 1; 3 vs 2; 3 vs 4

Strategy 2 (1&1)

4 vs 1; 4 vs 2; 4 vs 3

1 vs (2,3,4)

2 vs (1,3,4)

3 vs (1,2,4)

Strategy 3 (pairwise)

4 vs (1,2,3)

Figure 1 Pairwise leaves comparison to be tested. Hierarchical structure amounts to strategy 1 while horizontal and bottom arrows describe strategies 2 
and 3 respectively. Highlighted in red, green, blue, and black the 4 possible comparisons amongst group of patients. UC: Ulcerative colitis; CD: Crohn’s disease.

(2) Strategy 2: Comparison between each leaf and the others; CD controls compare to UC controls, CD 
cases and UC cases, then UC controls compare to CD controls and cases, and UC cases, and so on; and 
(3) Strategy 3: Comparison among leaves one by one; CD controls compare to UC controls, then CD 
controls compare to CD cases, and so on.

Upon setting the methodology, we analyse two related data set in tandem. Initially, we applied the 
method only to the miRNA labeled as MIMAT; to repeat the same approach, on a second occasion, with 
a set of 152 miRNAs previously selected by sparse PLS Discriminant Analysis (sPLS-DA).

In brief, PLS is an exploratory variable selection technique successfully proven in classification[22]. In 
particular, the sPLS-DA[9] is an extension of PLS applied in multi-class classification. It selects the most 
discriminant variables to classify patients, using Lasso penalization. By means of the mixOmics R 
package[23] three components of miRNAs were identified to predict cancer in all patients. The number 
of selected variables for each of the three components was chosen based on the lowest average balanced 
classification error rate with centroids after tuning of the sPLS-DA model using the selected number of 
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components and 5-fold cross-validation with 10 repeats. The linear programming problem associated 
with sPLS-DA may be succinctly described as:

Where  ,  is applied component-wise in the vector 

 (i.e., the left singular vector from the Singular Value Decom-
position (SVD) of the miRNA matrix expression M) and acts as the relaxed thresholding function that 
scales the Lasso penalty functions[24]. Thus, λ is the penalization parameter to tune.

Each sPLS-DA axe is constructed by a convex linear combination of a miRNA. Hence, the coordinate 
of any given patient on that axe is described by:

Then applying the majority vote criterion, any given individual having been calculated to have a 
probability > 0.5 in at least 2 out of 3 PLS-DA axes is considered misclassified.

Classification of patients
In an early exploratory classification, we based our results on the Euclidian distance of miRNA 
intensities across patients. Nevertheless, the high sensitivity of the Euclidean-based norm to hetero-
genous data and non-linearity produced a poor classification (Supplementary Figure 2). Anyway, this 
first classification definitively clued us in on the miRNA signature’s optimisation. Next, to prevent the 
non-linear effect of our measurements in classification, we contemplated the employment of learning 
methods. Thus, the main purpose random forests and support vector machines pursue is the re-
construction of a minimal CRC network that could lead to optimally stratify the IBD patients evaluating 
the associated miRNA signature. These two methods are powerful tools to predict patients developing 
CRC that perform well in different classification issues. Briefly, RF is a machine learning method for 
classification based on decision tree and probabilities, introduced in[10], whereas SVM is a strong 
classifier with the aim of finding the optimal separation hyperplane of data by maximising the margin
[25]. A total of 5,000 trees were conducted for RF analysis. The SVM was implemented using a linear 

kernel, i.e.,  with bandwidth and including soft-regularisation with 
Sequential Minimal Optimization (SMO) as solver to find the optimal hyperplane well separating 
classes. The general out- put of a binary SVM classifier can be computed by the following expression:

where αi ≥ 0 are Lagrangian multipliers obtained by solving a quadratic optimisation problem, b is the 
bias, and K is the above defined kernel function. We evaluated the performance of each patient’s classi-
fication using cross-validation with the LOO method. The RF classification was performed using the 
randomForest function of the random-Forest R-package[26]. Complementary, the variable importance 
(VIMP) of each miRNA for RF[27] was also calculated using the varImp and varImpPlot functions of the 
same pack- age. The Matlab© classification app implemented the SVM analysis and results are 
confirmed using svm function of the e1071 R-package.

Performance evaluation of classification methods
We evaluate how optimal a miRNA signature is by means of its confusion matrix, using the confusion-
Matrix function of the caret R-package[28], and the so-called Receiver Operating Characteristic (ROC) 
curve along the calculus of its area under curve (AUC) using the plotROC R-package[29]. Percentage of 
true classification, sensibility, specificity, and the AUC were also calculated for each strategy using these 
two packages.

In summary, all the calculations of the statistical learning analysis were implemented using in-house 
scripts based on R and Matlab© (2014a, The MathWorks Inc., Natick, MA), and figures were depicted 
with ggplot2 R-package.

RESULTS
A previous work of denoising is required if we want to reduce possible issues of bias and overfitting in 
our algorithms. Thus, the analysis was performed on 206 patients; excluding 4 patients considered as 
outliers, and 6 unmatched controls with cases. In addition, 101 miRNAs were removed since their 
expression was higher than 8. These miRNAs highly influenced to broke inconsistently down large 
clusters in the construction of tree and though considered as outliers. Yet, note that the unsupervised 
clustering can be biased by the lack of linearity in data. Hence, the way we use the hierarchical classi-
fication is limited to track a definite signature trend to be further learned by more robust methods. The 
best result was always obtained by the strategy 1. For clarity, we only show those results yielded by 

https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
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Table 2 Summary of patients’ classification predicted by random forests/support vector machines respectively. From left to right: 
Group of patients, amount of selected miRNA, percentage of success in true positive classification, sensitivity, specificity and their 
area under the curve

Methods Nº miRNA % True classification 
(95%CI) Sensitivity Specificity AUC

All miRNA

Strategy 1 56 69 (62-75)/69 (62-75) 0.25/0.43 0.93/0.83 0.76/0.74

CD 9 87 (78-93)/86 (77-92) 0.70/0.73 0.96/0.93 0.89/0.92

UC 30 72% (63-80)/76 (67-83) 0.45/0.55 0.86/0.87 0.77/0.81

miRNAs selected by sPLS-DA

Strategy 1 11 69 (62-75)/68 (62-75) 0.36/0.36 0.87/0.86 0.72/0.74

CD 5 80 (70-88)/82 (67-86) 0.67/0.60 0.87/0.87 0.84/0.86

UC 8 73 (64-80)/81 (73-88) 0.48/0.57 0.86/0.93 0.73/0.81

AUC: Area under curve; CD: Crohn’s disease; UC: Ulcerative colitis.

Table 3 All patients contingence matrix of the 56-selected miRNAs by means of random forests and support vector machines methods

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 18 54 31 41

Controls 10 124 23 111

RF: Random forests; SVM: Support vector machines.

means of this strategy. We address to supplemental material for further details on the other two 
remaining strategies (Supplementary Figures 3-5 and 7-8). Naturally, the performance of this approach 
depends on each initial tree re- construction. The Table 2 summaries patients classification performed by 
all the methods using the strategy 1.

The overall signature associated with CRC
A priori, one would expect to find here a tree with two well separated branches making distinction 
between CD and UC patients. Nevertheless, the tree this first comparison returned describes a structure 
composed of three branches that mixes up cases with controls. Hence, the primary leaf groups the CD 
cases, the second one binds UC cases together, whereas the third leaf consists of control patients. See 
Supplementary Figure 1 to visualise the tree corresponding to the analysis of all the IBD patients.

Strategy 1: When this first strategy is considered, we are able to identify 56 miRNAs whose expression 
is differential between the CRC cases and controls. Those miRNAs are potentially good candidates to be 
associated with a CRC network that can achieve an optimal stratification of patients. A heatmap 
enhancing these miRNAs are depicted below in Figure 2. However, data heterogeneity and non-
linearity negatively influence the measures captured by our multi-class strategy producing a poor strati-
fication performance when re- constructing the sought minimal CRC network. To overcome such an 
obstacle, we keep using the selected miRNAs, but applied to classifiers such as RF and SVM which are 
more robust in presence of non-linear heterogeneous data. This combination enables better learning 
how patients stratify according to CRC. In that way, we attained to correctly classify the 69% of patients 
by means of RF and using linear SVM (see Table 2 and Figure 2B and C). However, the SVM 
performance overtakes at large that one given by RF in every case of patient stratification. Notice the 
large number of selected miRNAs in this first analysis. For clarity, the VIMP analysis shown in 
Supplementary Figure 6A only discloses the top 30 miRNA. The results obtained in the performance of 
patients’ classification is represented as a confusion matrix in Table 3. In general control patients were 
correctly classified, but a remarkable number of cases was muddled with controls. This situation can be 
explained by the, pointed out in the literature, divergent genetic source of the two types of IBD. The 
ROC curve displayed in Figure 2B and C reported sensitivity-specificity ranges of 0.25-0.93 and 0.43-0.83 
associated with RF and SVM respectively (Table 2).

https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
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Figure 2 All patients hierarchical and leaning performance. A: Heatmap of the 56- selected miRNA intensity. Colour corresponding to the status of the 
patients: Purple: Ulcerative colitis patients; light blue: Crohn’s disease patients; green: cases and yellow: Controls; B: Receiver operating characteristic curve for the 
classification using random forests analysis; C: Using L-SVM models for the 56 selected miRNA. AUC: Area under the curve.

Constructing the local signature of CD patients
For this analysis we provide a sample data composed of 85 patients with CD, whose 30 are cases and 55 
controls. As observed in panel (A) of Figure 3, we detect 9 miRNAs differentially expressed between 
cases and control in CD patients. But the use of the Euclidian distance misleads their percent- age of 
classification as occurred in the previous case-control study. The results obtained by the above indicated 
RF and SVM learning methods may be observed in Figure 3B and C and Table 2. The variable 
importance of each miRNA is also considered to simplify the calibration of the RF models (data not 
shown, see Supplementary Figure 6B). Moreover, their associated sensitivity-specificity ranges are 0.70-
0.73 and 0.96-0.93 to RF and SVM respectively (Table 2). With these selected miRNAs, patients are 
correctly classified in the 87% and 86% of cases. These percentages are also shown in terms of a 
confusion matrix in Table 4. The adopted non supervised - supervised strategy returns rather good 
candidates to conform the network associate to CRC in IBD also providing the signature with an 
accurate predictive ability.

https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
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Table 4 Contingence matrix of the 9-selected miRNA and random forests methods for Crohn’s disease patients

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 21 9 22 4

Controls 2 53 8 51

RF: Random forests; SVM: Support vector machines.

Figure 3 Crohn’s disease patients hierarchical and leaning performance. A: Heatmap of the 9-selected miRNA intensity. Colour corresponding to the 
status of the patients: Purple: green: Cases and yellow: Controls; B: Receiver operating characteristic curve for the classification using random forests analysis; C: 
Using L-SVM models for the 9 selected miRNA. AUC: Area under the curve.

The local signature of UC patients
To identify a significant signature of UC patients we analysed a data set of 121 individuals. These 
patients are distributed in 42 cases and 79 controls respectively. Upon applying the previous approach 
to these samples, a signature of 30 miRNAs differentially expressed between cases and control in UC 
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was detected. The results derived from this calculation are plotted below in Figure 4.
As occurred with the two previous results, see Figure 2 and Figure 3, the presence of data hetero-

geneity hampers a right classification of patients when using the Euclidean norm across the expression 
profile of the detected 30 miRNAs. Additionally, the classification results yielded by the two learning 
methods used in this work are displayed by their ROC curves in Figure 4B and C. These curves attain a 
sensitivity-specificity ranges of 0.45-0.86 and 0.55-0.87 to RF and SVM respectively. And the miRNAs 
selected by multiple comparison of the annotated miRNAs achieved a percentage of success in classi-
fication of 76% across the mean expression of each group of patients. These amounts are slightly lower 
than in CD patients. Such a drop can be explained by a more scatter matching distribution among UC 
patients as well as a greater control-case ratio. The confusion matrix corresponding to this calculation is 
introduced above in Table 5.

Minimising the size of the overall signature by parse PLS discriminant analysis
Despite the relative low size of the prognostic signature identified so far, we wonder if it was possible to 
minimise the amount of miRNAs involved in the analysis without harming the overall classification 
performance. The statistical robustness of the parse PLS Discriminant Analysis in supervised feature 
selection makes us to consider its application before performing the unsupervised hierarchical 
clustering introduced in methods. The stratification of all patients is plotted in Figure 5A while 
Figure 5B describes the diseases tree architecture. The synergy between the two complementary 
statistical methods, supervised later unsupervised, still allow us to conclude the predictive power of the 
miRNAs minimal signature associated with CRC in IBD.

Reconstructing the overall signature: After having applied the proposed sPLS-DA to the miRNAs, the 
reconstruction of the tree structure based on the multi-class comparison strategy 1 improved the 
previous classification of patients between clusters (Figure 5B). The analysis of patients following such 
architecture resulted in a final signature composed by 11 miRNAs. Hence, these selected miRNAs 
correctly classified the 69% and 68% of cases (RF and SVM respectively). Both percentages are similar in 
accuracy to those obtained without the use of sPLS-DA, but with a signature consisting of only 11 out of 
initial 56 miRNAs. Nevertheless, the effect of the genetic drift of CD and UC origin could not have been 
prevented. We also provide the overall performance of the methods as a confusion matrix in the Table 6. 
For further details on the variable importance of this signature in the RF calculation see supplemental 
information (Supplementary Figure 9A).

Reconstructing the local signature of the CD patients: In this analysis 5 miRNAs were selected with 
the recursion cluster for CD patients. The SVM allows a better classification of true patients in the 82% 
of cases, and particularly the controls patients. The RF and SVM performances along their feature 
selection refining are presented in Figure 6B. See supplemental material for details on variable 
importance for each miRNA (Supplementary Figure 9B) of the RF computation. We also obtain their 
patients classification in a confusion matrix presented in Table 7. The accuracy and sensitivity are 
consistent with the above percentage of classification in CD patients reducing the signature in 4 
miRNAs up to a final figure of 5 predictive profiles.

Reconstructing the local signature of UC patients: The overall signature of UC patients after making 
use of sPLS-DA was composed of 8 miRNAs. We also calibrated models by feature selection of these 
miRNAs, which results are shown in the Figure 6C. The attained percentage of success goes to the 81% 
upon computation of a SVM model across UC samples what improved the RF performance as had 
already occurred with previous counterpart calculations. For further details on the RF analysis see 
Supplementary Figure 9C. Strikingly the use of sPLS-DA enabled reducing the quantity of miRNAs 
required to predict UC patients developing or not CRC from 30 to 8 while increasing in a 5% the 
percentage of success. This may be due to the detection and later removal of features largely 
contributing to the dispersal form of the matching distribution among UC patients. Finally, the 
confusion matrix corresponding to this miRNAs signature is described below in Table 8.

DISCUSSION
The soundness of the signature has been improved accordingly to the incremental combination of 
learning methods presented in this study until attaint a sensitivity of 73% in CD and 57% in UC with a 
specificity of 87% and 93% in CD and UC respectively (see Table 2). These results are depending on the 
assumption of an initial hierarchical tree structure. The usage of PLS-DA decreases a bit its global 
sensitivity but gaining more in CRC signature optimisation. Noteworthy, the final overall signature is 
composed by only 5 miRNAs in CD and 8 in UC. These miRNAs are molecules extremely resistant and 
highly preserved. In general, low percentages of true classification are obtained is no difference on 
disease type is made on the IBD patients. This is in accordance with previous works that suggest the 
genetic divergence between CD and UC. However, if we consider the two types of the disease 
separately, the aim of classifying false controls, i.e., controls with a closer profile to cases and 

https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1cc9d46c-016b-466a-96be-eb4f97cdd37d/AIC-3-27-supplementary-material.pdf
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Table 5 Contingence matrix of the 30-selected miRNA and random forests methods for Ulcerative colitis patients

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 19 23 23 19

Controls 11 68 10 69

RF: Random forests; SVM: Support vector machines.

Table 6 Contingence matrix of the 11-selected miRNA and random forests methods for all patients

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 27 45 26 46

Controls 18 116 19 115

RF: Random forests; SVM: Support vector machines.

Table 7 Contingence matrix of the 5-selected miRNA and random forests methods for Crohn’s disease patients

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 20 10 20 10

Controls 7 48 5 50

RF: Random forests; SVM: Support vector machines.

Table 8 Contingence matrix of the 9-selected miRNA and random forests methods for Ulcerative colitis patients.

Predicted by RF Predicted by SVM

Cases Controls Cases Controls

True Case 20 22 24 18

Controls 11 68 5 74

RF: Random forests; SVM: Support vector machines.

monitoring whether those samples are developing cancer can be approached now. Indeed, the 
introduced methodology would allow us to provide the identified molecular signature with predictive 
power. Additionally, the eventual availability of a second independent cohort could improve possibly 
the precision of results. Thus, we claim that in any case a clinician having this information will 
potentially benefit from an accurate prediction tool of prognosis rather than only using his or her own 
experience-based criteria[30,31]. This clinical scenario enhances the paramount importance of statistical 
learning-based applications in clinical practice since CRC is a feared life-threatening factor among 
patients with IBD[32,33]. In particular, the analysis of eventual miRNAs signatures associated with CRC 
in patients with IBD has been successfully proven previously in such contexts[34-36]. That way, these 
methodologies will contribute to shorten unnecessary delays prior to make any decision on a proper 
therapy in individuals with a IBD developing CRC[37,38].

CONCLUSION
In this study we provide a wise combination of statistical learning methods for patients’ stratification 
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Figure 4 Ulcerative colitis patients hierarchical and leaning performance. A: Heatmap of the 30-selected miRNA intensity. Colour corresponding to the 
status of the patients: Purple: Green: Cases and yellow: Controls; B: Receiver operating characteristic curve for the classification using random forests analysis; C: 
Using L-SVM models for the 30-selected miRNA. AUC: Area under the curve.

based on biologically meaningful characteristics, and its application in IBD based on a minimal miRNA 
network associated with CRC is demonstrated. The time constraint affecting the assessment of the 
response to the medical treatment indicates the interest of our method in improving the classification 
accuracy, minimising the signature of miRNAs required in the IBD patients’ stratification, and avoiding 
unnecessary time delays. The findings are also consistent with the physio-pathological knowledge. 
Comparison with other existing classifying method shows that SVM makes our method yields better 
mean performances, using a reduced miRNA signature and reporting a much lower sensitivity to data 
heterogeneity. The application of the proposed method to a multi-class classification further points out 
the robustness and efficiency of our strategy particularly in the CD and UC group of patients. 
Additionally, the use of parse PLS Discriminant Analysis is also concluded for a minimal signature with 
accurate enough performances. In the next future, we will combine this method with other approaches 
such as deep learning methods enabling more intricate relationships between the elements of the 
signature and possibly another robust clinical data. Finally, we are convinced our methodology will be 
also instrumental for other diseases broadening the general framework herein provided.
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Figure 5 Partial least squares discriminant analysis base. Left-hand side panel: Patient-control stratification (i.e. orange-blue) in three dimensional view 
with 152 miRNAs; Right-hand side panel: Classification tree with the 152 miRNAs selected by sPLS-DA.

Figure 6 Final performance of each reconstructed sub-signature. A: Receiver operating characteristic curve amounts to all patients learned classification 
by a signature corresponding to 13 selected miRNA; B: Similarly to the Crohn’s disease patients classification of 5 selected miRNA; C: Ulcerative colitis patients 
classified according to 9 selected miRNA.

ARTICLE HIGHLIGHTS
Research background
Face the overabundance of information, it is not easy to clinicians discriminating amid biological 
indicators that potentially could be helpful during an inflammatory bowel disease (IBD) disease 
therapy.

Research motivation
There exist intra patient differences in miRNA expression between the inflammatory and healthy tissue, 
between the healthy tissue of an inflammatory and non-inflammatory patient and between the healthy 
tissue of a cancer and non- cancer colic patient. We want to identify a minimal miRNA profile of 
developing or not cancer in patients with a chronic inflammatory bowel disease. In other words, a 
miRNA profile of healthy tissue from patients with chronic IBD with (case) vs without cancer (control). 
In that way, provided a specific miRNA profile is of interest, this one could be prospectively validated, 
and its predictive marker maybe also developed. Ultimately, this would allow clinicians to in- crease the 
diagnosis colonoscopy pace in IBD patients where a miRNA profile of risk is detected and conversely 
decreasing that pace in patients tagged as at lower risk.

Research objectives
In this scenario, the identification of an optimal signa- ture, for example composed by microRNA 
(miRNA), associated with colorectal cancer (CRC) in patients with one chronic IBD is of vital 
importance.
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Research methods
We provide a framework of well-established statistical learning methods (i.e., RF, SVM, PLS-DA, ...) 
wisely adapted to reconstructing a CRC network leveraged to stratify these patients.

Research results
Our strategy provides an adjusted signature of 5 miRNAs with a percentage of success in patient classi-
fication of 82% in Crohn’s disease (resp. 81% in Ulcerative Colitis).

Research conclusions
The application of the proposed method to a multi-class classification further points out the robustness 
and efficiency of our strategy particularly in the CD and UC group of patients. Additionally, the use of 
parse PLS Discriminant Analysis spots a minimal signature with accurate enough performances.

Research perspectives
In the next future, the combination of this method with deep learning models will enable more intricate 
relationships between the elements of the signature and possibly another robust clinical data. Finally, 
we are convinced our methodology will be also instrumental for other diseases broadening the general 
framework herein provided.
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