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Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease spectrum caused in part by 
insulin resistance and genetic predisposition. This disease is primarily charac-
terized by excessive lipid accumulation in hepatocytes in the absence of alcohol 
abuse and other causes of liver damage. Histologically, NAFLD is divided into 
several periods: simple steatosis, non-alcoholic steatohepatitis (NASH), hepatic 
fibrosis, cirrhosis, and hepatocellular carcinoma. With the increasing prevalence 
of obesity and hyperlipidemia, NAFLD has become the main cause of chronic 
liver disease worldwide. As a result, the pathogenesis of this disease is drawing 
increasing attention. Ductular reaction (DR) is a reactive bile duct hyperplasia 
caused by liver injury that involves hepatocytes, cholangiocytes, and hepatic 
progenitor cells. Recently, DR is shown to play a pivotal role in simple steatosis 
progression to NASH or liver fibrosis, providing new research and treatment 
options. This study reviews several DR signaling pathways, including Notch, 
Hippo/YAP-TAZ, Wnt/β-catenin, Hedgehog, HGF/c-Met, and TWEAK/Fn14, 
and their role in the occurrence and development of NASH.

Key Words: Non-alcoholic fatty liver disease; Non-alcoholic steatohepatitis; Ductular 
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©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

https://www.f6publishing.com
https://dx.doi.org/10.3748/wjg.v28.i19.2088
mailto:yejin8688@sina.com


Chen Y et al. Ductular reaction in liver diseases

WJG https://www.wjgnet.com 2089 May 21, 2022 Volume 28 Issue 19

Core Tip: With the increasing prevalence of obesity and hyperlipidemia, Non-alcoholic fatty liver disease 
(NAFLD) has become the primary cause of chronic liver disease worldwide. Thus, the pathogenesis of 
non-alcoholic steatohepatitis (NASH) is drawing increasing attention. Ductular reaction (DR) is a reactive 
bile duct hyperplasia involving hepatocytes, cholangiocytes, and hepatic progenitor cells, that plays an 
important role in NAFLD pathogenesis and promotes the occurrence and development of NASH and liver 
fibrosis. This minireview describes the characteristics of DR and summarizes its pivotal mechanisms. A 
role for DR during NASH is described that supplements current knowledge about the pathogenesis of this 
disease and informs potential prevention and treatment strategies.

Citation: Chen Y, Gao WK, Shu YY, Ye J. Mechanisms of ductular reaction in non-alcoholic steatohepatitis. World 
J Gastroenterol 2022; 28(19): 2088-2099
URL: https://www.wjgnet.com/1007-9327/full/v28/i19/2088.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i19.2088

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is defined as the presence of > 5% hepatic steatosis in the 
absence of significant alcohol consumption or other liver disease-induced steatosis. This is one of the 
most important causes of liver disease worldwide and will likely emerge as the leading cause of end-
stage liver disease in the coming decades. The epidemiology and demographic characteristics of 
NAFLD vary from country to country, correlating with the prevalence of obesity and risk factors for 
metabolic comorbidities. The global prevalence of NAFLD is currently estimated to be 29.1%, with more 
than 240 million individuals in China. NAFLD and its complications inflict a heavy financial burden on 
the global health system, patients, and their families. Thus, it is critical to conduct more research on 
NAFLD pathogenesis to inform the development of new prevention or treatment strategies[1,2].

As a result of fat accumulation, insulin resistance, and oxidative stress, a subgroup (approximately 
20%-30%) of NAFLD, a relatively benign condition, can develop into non-alcoholic steatohepatitis 
(NASH) within three years. This is defined as the presence of hepatic steatosis with evidence of 
hepatocyte damage accompanied by inflammation and regeneration, that can progress into liver 
fibrosis, cirrhosis, and hepatocellular carcinoma[3,4]. Chronic hepatocyte death often occurs during 
NASH, and liver regeneration is a common way to restore normal liver structure characterized by 
phenotypic fidelity of hepatocytes and/or cholangiocytes. There are two primary mechanisms of liver 
regeneration. Under physiological conditions, liver parenchymal cells are repaired by the division of 
adjacent resting hepatocytes. During chronic liver diseases, such as NASH, liver regeneration capacity is 
impaired, activating the alternate regenerative pathway and resulting in ductular reaction (DR). Under 
these circumstances, macrophages, hepatic stellate cells (HSCs), and the extracellular matrix (ECM) act 
together to form the inflammatory micro-environment, releasing inflammatory and pro-fibrotic factors 
and promoting type I collagen deposition. When this occurs, hepatocytes, cholangiocytes, and hepatic 
progenitor cells (HPCs) in the Hering duct around the portal vein become activated, resulting in DR and 
eventually leading to liver fibrosis. HPC expansion is shown to occur in NAFLD patients and is strongly 
correlated with DR[5,6]. This is a common phenomenon during NASH, affecting the stage of fibrosis 
and disease progression and prognosis[7,8]. In this study, the signaling pathways and the roles of DR 
during NASH are explored to better understand the pathogenesis of this disease and provide potential 
treatment strategies to improve NASH outcomes.

DEFINITION OF DR
In 1957, Popper et al[9] first characterized DR as a ductular reaction involved in both acute and chronic 
liver diseases and found that it was associated with recovery from liver homeostasis. Cells involved in 
DR include pre-existing cholangiocytes, HPCs, and hepatocytes, together known as ductular reaction 
cells (DRCs) (Figure 1)[10]. However, DR does not just manifest as bile duct hyperplasia but also as liver 
injury and cell microenvironment-dependent liver regeneration. In diseases involving cholangiocyte 
damage, biliary cell number and function can be compensated by cholangiocyte and/or HPC prolif-
eration and the transdifferentiation of hepatocytes into biliary-like cells. During hepatocyte injury and 
other related diseases, cholangiocytes can transdifferentiate into hepatocytes via HPCs[10,11]. DRCs 
exist in a niche with myofibroblasts and macrophages, and can actively promote liver inflammation and 
fibrosis. In human diseases such as primary sclerosing cholangitis, alcoholic or non-alcoholic steatohep-
atitis, and viral hepatitis, the number of DRCs in the liver directly correlates with fibrosis severity. In a 
mouse model, targeted apoptosis of DRCs alleviates fibrosis, while inhibition of DRC apoptosis 
aggravates liver fibrosis, suggesting that DR correlates with poor prognosis of liver diseases such as 

https://www.wjgnet.com/1007-9327/full/v28/i19/2088.htm
https://dx.doi.org/10.3748/wjg.v28.i19.2088
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Figure 1 The different compartments of the ductular reaction, including hepatocyte self-proliferation and transdifferentiation, hepatic 
progenitor cell differentiation, and cholangiocyte proliferation and transdifferention. HPC: Hepatic progenitor cell.

fibrosis and even cirrhosis[12-14]. Thus, research on the mechanism and intervention of DR is of great 
significance to liver disease treatment. EpCAM and NCAM/SOX9 have been proposed as HPC markers, 
CK7 and CK19 are used to identify cholangiocytes, and albumin and HNF 4α are regarded as 
hepatocyte markers (Table 1)[11,15-17]. CK7 immunohistochemistry is positive in HPCs and both initial 
and late intermediate hepatobiliary cell stages during DR[18]. By calculating the ratio of CK-positive 
cells in damaged liver tissue using immunostaining, DR can be divided into five grades, and liver injury 
severity can be predicted. Morphologically DR is divided into three types: (1) Regular bile duct 
structure commonly seen in biliary obstruction; (2) Incomplete bile duct structure observed in chronic 
active hepatitis; and (3) Small bile ducts reorganized by bile duct epithelial cells and hepatocytes, seen 
after submassive liver necrosis[19]. This allows the disease type and degree to be defined through the 
pathological manifestation of DR and informs disease treatment.

DR AND LIVER FIBROSIS IN NASH
Liver fibrosis is a major complication of almost all types of chronic liver damage including NASH. 
NAFLD includes three patterns of liver fibrosis according to histological characteristics, portal fibrosis, 
centrilobular fibrosis, and septal fibrosis[20]. In human liver diseases, fibrosis in the portal area is 
associated with poor prognosis even when the primary site of injury is lobular hepatocytes. Initially, 
NASH presents as active lobular necroinflammatory and typical centrilobular fibrosis, characterized by 
pericentral monocyte infiltration, myofibroblast activation, and localized collagen deposition, that can 
progress to portal fibrosis, septal fibrosis, and eventually lead to liver cirrhosis[7,21]. The DR correlates 
closely with fibrosis severity during NASH[6]. A rat model of liver fibrosis induced by chronic 2-
acetylaminofluorene showed that HPC expansion aggravated liver fibrosis by driving myofibroblastic 
transformation of fibroblasts and/or HSCs in the injured liver[22]. However, whether fibrosis aids the 
regeneration mediated by HPC or DR exacerbates fibrosis remain unclear[7,23].

Periportal DR in NASH
Periportal fibrosis is closely related to NASH progression. Periportal DR is a typical injury response 
caused by portal inflammatory infiltration that leads to periportal fibrosis[6,24]. Lobular injury activates 
macrophages to release pro-inflammatory factors such as TNF and IL-1β and promotes formation of the 
portal inflammatory infiltration microenvironment that is dominated by CD68+ macrophages, CD8+ 
lymphocytes, collagen I, and laminin, contributing to cell fate. As cell damage increases during NASH, 
HPC proliferation induces DR around the portal vein. DR activates HSCs and induces HPC differen-
tiation by releasing inflammatory mediators and pro-fibrogenic factors, eventually resulting in 
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Table 1 Identifying markers of cholangiocytes, hepatic progenitor cells, and hepatocytes

Cell types Markers Ref.

Cholangiocytes CK7/CK19/EpCAM/SOX9/TFF/etc.

EpCAM/NCAM/SOX9/MCAM/Foxl1/Lgr5/A6/OV6/NGA2/CXCR4/etc.

TROP2/CD24/CD133/CLDN3/FGFR2/CK7/CK19/SPP1/etc. (biliary progenitors)

Hepatic progenitor cells

ALB/AFP/DLK1/APOE/TF/HNF4α/etc. (hepatic progenitors)

Hepatocytes ALB/HNF4α/RBP4/PCNA/Ki67/Hep Par-1/ASGPR1/etc.

[15-17]

periportal fibrosis that resembles biliary fibrosis[25]. Except for hepatic parenchymal and nonparen-
chymal cells, current studies have confirmed that mixed infiltration of lymphocytes, neutrophils, 
monocytes, and a small number of eosinophils participate in DR, but the relative number of different 
cells and their relationship to disease progression is not fully understood[26].

Studies have shown that DR and portal inflammation are closely related during NASH and are 
independently related to fibrosis. In the portal vein area, inflammatory cells and their mediators affect 
HPC differentiation and this process affects the balance between liver regeneration and fibrogenesis. In 
a rat model using a 3,5-methoxycarbonyl-1,4-dihydrocollidine (DDC)-enriched diet, DRCs proliferated 
at the capillary bile duct and migrated radially from the portal area to the hepatic parenchymal region
[27]. This suggests that the portal DR may interact with the centrilobular DR, leading to progressive 
fibrosis and even septal fibrosis.

Centrilobular DR in NASH
DR has primarily been described in the periportal compartment. However, a recent study demonstrated 
that the DR also occurs in the centrilobular regions, suggesting that hepatocytes mount a metaplastic 
response to chronic injury and/or chronic ischemia, and promote transformation into a more ductular 
phenotype rather than a progenitor cell reaction[28]. Studies have shown that centrilobular DR is 
common in NASH and correlates well with lobular inflammation, hepatocellular ballooning 
degeneration, Mallory-Denk bodies, and necroinflammation. A cross-sectional analysis supported these 
findings, showing that centrilobular DR is highly correlated with the stage of fibrosis during adult 
NASH. Moreover, there was a distinct difference in centrilobular DR frequency between patients with 
progressive and non-progressive fibrosis, suggesting that centrilobular DR can serve as a histologic 
marker of fibrosis progression[22].

NASH begins with the accumulation of fatty acids and reactive oxygen species in the central area of 
the lobules, resulting in hepatocyte mitochondrial injury and activation of nearby macrophages and 
HSCs. Macrophages can release cytokines like TNF-α that promote insulin resistance and inflammation 
and result in hepatocyte damage. This can promote the transdifferentiation of hepatocytes into DRCs, 
the expression of inflammatory mediators and pro-fibrotic cytokines, and the activation of nearby HSCs 
to secrete type I collagen, eventually resulting in peripheral and subsinus fibrosis in the central area of 
the lobules[20]. Thus, DR in the central area is associated with liver regeneration and repairment of 
NASH. Centrilobular DR may be an important driver of fibrosis, in which case the degree of 
centrilobular DR could serve as a histological marker of fibrosis development[22,29].

DR MECHANISMS DURING NASH
During chronic liver diseases such as NASH, an alternative pathway for HPC proliferation is activated 
when hepatic self-renewal becomes impaired. Persistent HPC activation accompanies the recruitment of 
pro-inflammatory factors and the production of pro-fibrotic factors and results in DR, aiding 
pathological repair of the liver. HPCs can proliferate and differentiate into hepatocytes or cholan-
giocytes, and hepatocytes can further transdifferentiate into cholangiocytes (Figure 1). DR promotes 
liver and biliary fibrosis using similar mechanisms. A series of highly conservative signaling pathways, 
including Notch, Hippo/YAP-TAZ, Wnt/β-catenin, Hedgehog (Hh), HGF/c-Met, and TWEAK/Fn14, 
in the DR play an important role in driving HPC activation and/or HSC activation in chronic liver 
injury (Figure 2).

Notch signaling during NASH
The Notch ligands, Jagged (Jagged1, 2) and Delta-like (Delta-like, Dll1, 3, and 4), activate Notch 
receptors (Notch-1, -4) through cell-cell contact, determining cleavage of the Notch intracellular domain 
(NICD). NICD binds with CBF1/RBPjK in the nucleus and promotes transcription of several genes 
including the Hes and Hey-related family of transcription factors and SOX9. During embryonic 
development, Notch signaling can promote HPC differentiation into cells in the biliary lineage and 
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Figure 2 A series of highly conserved signaling pathways in the ductular reaction which promotes the occurrence of non-alcoholic fatty 
liver disease and aggravates the prognosis of non-alcoholic steatohepatitis (Created with BioRender.com). A: The Notch signaling pathway 
regulates expression of genes, such as the Hes and Hey-related family, to determine cell differentiation and function, maintain liver homeostasis, repair liver damage, 
and regulate liver metabolism, inflammation, and cancer; B: The Hippo/YAP-TAZ signaling pathway can regulate liver size, metabolism, cell proliferation, cell 
migration, the epithelial-mesenchymal transition, and formation of the extracellular matrix and cytoskeleton formation, etc; C: The Wnt/β-catenin signaling pathway 
affects liver development and physiological functions of all liver disease stages, from initial injury and inflammation to fibrosis, cirrhosis and tumor occurrence; D: The 
hedgehog signaling pathway affects cell proliferation, migration, and differentiation; E: The HGF/c-Met signaling pathway activates multiple intracellular signaling 
pathways and affect cell proliferation, migration, and differentiation; F: The TWEAK/Fn14 signaling pathway regulates tissue inflammation and damage repair in 
addition to cell survival and death. HPC: Hepatic progenitor cell; NASH: Non-alcoholic steatohepatitis.

induce morphogenesis and maturation of the intrahepatic biliary tree. In the DR that occurs during 
adult liver injury, Notch signaling can determine HPC differentiation into cells in the biliary (Notch 
activation) or hepatocyte lineage (Notch inhibition). In addition, Notch signaling reprograms 
hepatocytes into biliary epithelial cells to repair the biliary tract[30,31].

During NASH, inflammatory cells express Notch ligands and promote Notch signaling, increasing 
FoxO1-induced insulin resistance to regulate glucose production by hepatocytes[32]. The Notch 
signaling pathway can interact with the mTOR pathway to increase intracellular triglyceride synthesis 
and lipogenesis by regulating SREBP-1c expression[33]. Thus, it is believed that Notch signaling 
regulates adipogenesis, steatosis, and insulin resistance, and promotes NAFLD occurrence and 
progression.

Notch signaling is downregulated following liver cell differentiation in healthy individuals but is 
upregulated in NASH patients and mice. In Notch-2- and RPB-jK-deficient mice with DDC diet-induced 
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biliary damage, HPC activation is severely impaired, suggesting that Notch signaling plays an essential 
role in HPC driven biliary repair and biliary tubule formation[34]. One study indicated that continuous 
Notch signaling during lipid accumulation could induce liver steatosis and promote fibrogenesis, while 
suppression of Notch signaling could ameliorate liver fibrosis. Notch signaling also correlates strongly 
with the NAFLD activity score and alanine aminotransferase level, indicating that its activity is related 
to NAFLD progression to NASH. Notch signaling can directly promote liver fibrosis by activating HSCs 
through osteopontin and sinusoidal endothelial cells and can indirectly affect liver fibrosis through 
inflammation and DR[35,36]. In NASH mice induced using a methionine-choline deficient diet, high 
Notch ligand levels were found in activated HSCs and HPC activation was linked to inflammation and 
fibrosis. Liver fibrosis is improved by inhibiting Notch signaling, which reduces HPCs/DR expansion 
and hepatocyte transdifferentiation. Meanwhile, immunohistochemistry showed that about 2% of 
CK19+ cells were derived from Notch-1 induced Sox9+ hepatocytes reprogramming[37]. Lineage 
tracing showed that hepatocytes undergo extensive reprogramming to biliary epithelial cells (BECs) in 
the DR following chronic injury[38]. In summary, liver cell reprogramming into HPCs during the DR is 
Notch-dependent, and inhibition of Notch signaling improves fibrosis, providing a potential target for 
NASH treatment.

Hippo/YAP-TAZ signaling during NASH
In the canonical mammalian Hippo pathway kinase cascade, the tumor suppressor genes, MST1/2 and 
LATS1/2, are phosphorylated by the upstream kinase tumor suppressor, Hippo, resulting in YAP and 
TAZ phosphorylation and inactivation. SAV1 and MOB1A/B can act as adaptor proteins to enhance 
MST1/2 and LATS1/2 phosphorylation and inactivation, respectively. YAP/TAZ interacts with the 
DNA-binding transcription factors, TEAD (1-4), to regulate target gene expression, and this can be 
antagonized by TEAD family corepressors such as VGLL4[39].

Hippo-YAP/TAZ signaling participates in various metabolic processes such as liver glycolysis, 
gluconeogenesis, fatty acid accumulation, and amino acid metabolism. In mice with an MST1 deletion, 
fasting and high-fat diet aggravated liver metabolic damage. MST1 overexpression is induced by 
fasting, which decreases SREBP-1c and improves antioxidant genes expression[40]. A previous study 
demonstrated that AKT overexpression leads to the development of NAFLD by promoting maturation 
of the transcription factor, SREBP-1c[41]. Studies have shown a positive feedback loop between the 
Hippo and AKT signaling pathways to promote the development of NAFLD[42]. Thus, regulation of 
lipid metabolism by Hippo/YAP-TAZ can induce NAFLD. As a result, researchers have turned to the 
Hippo pathway as a potential therapeutic mechanism for preventing this disease.

Hippo-YAP signaling is related to DR and regulates regeneration of chronic liver disease by 
determining cellular fates. One study found that YAP levels were increased in NAFLD patients and 
mice and were primarily localized in the nucleus of DRCs that expressed progenitor markers, 
correlating with the degree of fibrosis. This suggests that Hippo/YAP signaling is associated with DR 
and promotes liver fibrosis rather than effective liver regeneration during NASH[43]. In DDC-injured 
livers, YAP activation occurs in the process of hepatocyte degeneration, and loss of YAP in hepatocytes 
results in a significant decrease in DR post-DDC injury. In addition, lineage traced hepatocytes in mice 
showed that YAP was necessary for hepatocytes to form duct-like structures after DDC injury[44]. In 
several DR mice models, YAP signaling occurred in CK19+ BEC (facultative liver stem cells) and 
periportal hepatocytes around the portal vein were activated, confirming that YAP was important for 
BEC expansion and organoid formation and growth. In mice lacking YAP, Sox9 expression in 
hepatocytes around the portal vein did not increase significantly, and BEC proliferation was 
significantly reduced. This indicates that YAP mediates the transdifferentiation of Sox9+ hepatocytes 
and promotes BEC expansion[45]. Another study showed that Hippo signaling could reprogram 
hepatocytes into ductal cells with characteristics of hepatic progenitors, supporting the idea that YAP 
could dedifferentiate hepatocytes and reprogram them into cholangiocytes via HPCs[46]. Taken 
together, these findings indicate that the YAP-driven transcriptional program is critical for liver 
regeneration and hepatocyte reprogramming towards a progenitor, biliary-like fate following liver 
injury.

In addition, TAZ levels are elevated in NASH patients and mice. When TAZ is silenced, liver inflam-
mation, fibrosis, and cell death are suppressed in NASH mouse models. In contrast, TAZ expression in 
hepatocytes induces the Indian Hedgehog (Ihh) pathway in mice, promoting pro-fibrotic gene 
expression in HSCs and mediating the DR process. Both in vitro and in vivo data indicate that TAZ 
promotes NASH progression in hepatocytes largely by inducing the Ihh pathway, while silencing TAZ 
reverses liver inflammation and fibrosis, with the exception of steatosis[47]. In summary, the Hippo-
YAP/TAZ signaling pathway provides a potential therapeutic target to prevent the progression of 
NAFLD to NASH or improve liver fibrosis when NASH is already occurring.

Wnt-β catenin signaling in NASH
Wnt was first discovered in Drosophila, and the canonical Wnt signaling pathway was defined as the 
Wnt-β-catenin mediated transcription pathway. Wnt ligand binds to Frizzled and co-receptor LRPs and 
blocks β-catenin degradation, causing the transcription of target genes in a T-cell factor/lymphoid 
enhancer factor dependent manner[48]. Wnt/β-catenin signaling is important for HPC and hepatoblast 
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proliferation and final differentiation into mature hepatocytes and for maintaining bile duct 
homeostasis. In the adult liver, Wnt signaling is only activated in hepatocytes around the central vein, 
and maintains a static state in other areas of the liver. When hepatocytes are impaired, Wnt-β catenin 
signaling is activated[49,50]. The β-catenin-T cell factor complex regulates cyclin expression and induces 
the cell-cycle G1/S transition, promoting liver regeneration[51].

β-catenin induces insulin resistance by interacting with FoxO1 during gluconeogenesis, promoting 
NASH. Inhibiting Wnt signaling reduces body lipid content, inhibits liver gluconeogenesis, and 
increases hepatic insulin sensitivity in NASH mice. These findings suggest that Wnt/β-catenin signaling 
is related to NASH pathogenesis[52]. Wnt/β-catenin signaling may induce DRC differentiation into 
hepatocytes, and inhibiting this pathway may improve liver cirrhosis. Wnt levels are higher in the area 
around the portal vein following continuous damage, suggesting that Wnt/β-catenin signaling regulates 
hepatobiliary repair[53]. Studies indicate that CK19+ DRCs are regulated by Notch signaling and finally 
differentiate into cells in the biliary system. Wnt/β-catenin signaling may change the fate of biliary-
derived DRCs and instead induce their differentiation into hepatocytes, aiding liver regeneration. 
However, some studies suggest that DRCs make little contribution to liver regeneration, and Wnt/β-
catenin signaling cannot alter DRC differentiation[54]. The differentiation of quiescent HSCs into active 
myofibroblasts is similar to the dedifferentiation of adipocytes into preadipocytes (loss of adipogenic 
properties), requiring Wnt/β-catenin signaling. In turn, inhibition of Wnt/β-catenin signaling can block 
liver fibrosis[52]. The effect of Wnt/β-catenin signaling on the repair of liver damage through DRC 
proliferation provides a new potential research target for hepatobiliary diseases. However, a more 
comprehensive understanding of the mechanism by which DRCs and Wnt/β-catenin signaling 
contribute to hepatobiliary regeneration and repair remains unclear, and more studies are needed to 
determine whether Wnt/β-catenin signaling regulates DRC differentiation[27].

Hh signaling in NASH
Hh was first discovered in drosophila and shown to be critical for promoting tissue development and 
maintaining homeostasis. There are three Hh ligands, sonic hedgehog (Shh), Ihh, and desert Hh. In the 
canonical Hh signaling pathway, Hh ligand binding to the transmembrane receptor relieves its 
inhibitory effect on smoothed, activating the transcriptional mediator glioma-associated oncogene 
homologues, Glis (Gli1, Gli2, and Gli3). Gli1 is a signal amplifier of Gli2-mediated transcriptional 
responses, Gli2 is the primary activator of Hh signaling, and Gli3 is responsible for inhibits Hh 
signaling. Gli1/2 or Gli3 bind to DNA in the nucleus and regulate the transcription of target genes. The 
Hh pathway plays an important role in hepatic injury repair and fibrogenesis by regulating HPC and 
mesenchymal cell proliferation and/or differentiation[55,56].

There are multiple mesenchymal cell types that exist in the liver, of which HSCs play a major role in 
liver fibrosis. In healthy adult liver, liver resident cells produce few Hh ligands and resting HSCs 
produce Hh inhibitors. As a result, the Hh signaling pathway is relatively quiescent[57,58]. Hh signaling 
induces HSCs and Gli1+ peribiliary mesenchymal cell proliferation and acquisition of a myofibroblast 
phenotype responsible for ECM deposition, thus contributing to fibrosis during chronic liver disease[57,
59]. Hh signaling recruits bone marrow-derived monocytes to the liver and promotes their 
transformation into fibrocytes and induces the epithelial-mesenchymal transition in DRCs in response to 
chronic liver injury[60]. Hepatocytes are the main source of Shh ligands and in the carbon tetrachloride-
induced DR model, Shh and Hippo-YAP1 activity are upregulated and correlate with the regulation of 
DRC fate for liver regeneration. Shh downstream molecular inhibitor, Gant61, can reduce Shh and Yap 
signaling thereby inhibiting DR and improving liver injury[61]. Thus, Hh signaling is important for the 
development of antifibrotic therapies because of its potential to regulate the fibrotic process and interact 
with the Hippo-YAP signaling pathway.

HGF/c-Met signaling in NASH
HGF is a pleiotropic growth factor derived from non-parenchymal cells. HGF combines with the c-Met 
to activate multiple intracellular signaling pathways that impact cell proliferation, migration, and differ-
entiation. HGF acts as an essential cell mitogen, motogen, and morphogen and plays an important role 
in mesenchymal-epithelial transformation. C-Met is a receptor tyrosine kinase that activates cell growth 
and morphogenesis, and HGF/c-Met signaling is strongly associated with epithelial, mesenchymal, and 
hematological malignancy[62].

HGF expression is upregulated in mice with partial liver excision, promoting liver cell division and 
maturation. Animal studies have shown that knocking out c-Met during embryonic development 
hinders liver development and can even result in death. The absence of c-Met and epidermal growth 
factor receptors arrests liver regeneration and can cause mice to die following partial hepatectomy. 
These findings highlight the importance of HGF/c-Met signaling in liver regeneration and protection
[63,64]. Experiments indicate that HPCs can express c-Met. Inhibiting c-Met phosphorylation inhibits 
HPC proliferation and the transdifferentiation of hepatocytes into cholangiocytes[65]. HGF also 
enhances collagenase activity. When the liver is severely damaged, HGF expression is up-regulated, 
increasing the degradation of collagen fibers and the inhibiting liver fibrosis[66]. HGF induces hepatic 
progenitor marker gene expression and promotes hepatocyte proliferation and HPC conversion into 
hepatocytes[67]. These findings suggest that HGF/c-Met signaling can promote regeneration and 
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improve fibrosis during chronic liver injury.

TWEAK/Fn14 signaling in NASH
TWEAK is a member of the tumor necrosis factor ligand superfamily. Once bound to its receptor, Fn14 
participates in many pivotal cellular activities like tissue inflammation, damage repair, cell survival, and 
death. TWEAK is produced by many myeloid and immune cells and Fn14 is upregulated by fibroblast-
like growth factor and other factors associated with injury and inflammation. While the physiological 
role of the TWEAK/Fn14 axis is to protect against tissue injury, excessive production of TWEAK or 
Fn14 can drive and orchestrate inflammation, fibrosis, and tissue remodeling[68]. Previous studies show 
that TWEAK can promote collagen production and pro-inflammatory cytokine secretion and regulate 
HSC senescence and migration[69].

TWEAK is widely expressed in adult tissue including activated monocytes, natural killer cells, and 
macrophages in the liver. TWEAK is a direct mitogen to HPCs, and TWEAK/Fn14 signaling can 
activate NF-κB and STAT3 signaling to increase pro-inflammatory cytokine secretion during liver 
disease[70]. Fn14 expression is relatively low in resting HSCs, but during chronic liver injury, Fn14 is 
highly expressed in HPCs and activated HSCs[71]. TWEAK promotes HSC migration through activation 
of the EGFR/Src and PI3K/AKT pathways, which are important for liver fibrogenesis[69]. One study 
demonstrated that Fn14-deficient mice treated with a choline-deficient, ethionine-supplemented diet 
had diminished HPC proliferation, inflammation, collagen deposition, and profibrotic cytokine 
production that resulted in considerably more mild liver fibrosis[72,73]. Given its effect on pathological 
remodeling, HSC migration, and pro-inflammatory cytokine expression, TWEAK/Fn14 signaling may 
serve as a potential strategy of antifibrotic treatment strategy for NASH by regulating HPC proliferation 
and fibrogenesis.

Signaling pathway crosstalk
Recent studies have supported the view that there is an interactive network between different signaling 
pathways to regulate DR during NASH. Signaling pathways such as the Hippo/YAP, Wnt/β-catenin, 
Shh pathway can interact with Notch signaling directly or indirectly to regulate cellular gene 
expression. Wnt/β-catenin promotes DRCs to differentiate into hepatocytes and inhibits Notch 
signaling[74]. Both in vitro and in vivo data indicate that hepatocyte TAZ promotes NASH progression 
in large part by inducing Ihh signaling, playing an important role in fibrogenesis[47]. Notch signaling is 
one important downstream YAP target in liver cells[46]. Hippo/YAP-TAZ can upregulate Notch 
ligands or cooperate with Notch signaling to manipulate target genes in DR[75]. These signaling 
pathways have distinct roles in DR, including regulating proliferation and transdifferentiation of 
hepatocytes, cholangiocytes, and HPCs, activating HSCs and fibrogenesis. These pathways can enhance 
or weaken each other’s effects through complicated signaling networks which will require more in-
depth understanding and research.

CONCLUSION
In summary, the DR is a response to the bile duct phenotype during liver injury, which aims to restore 
liver homeostasis and promote regeneration during chronic liver injury by regulating HPC, cholan-
giocyte, and hepatocyte proliferation and differentiation. The DR plays an important role in NAFLD 
pathogenesis and promotes the occurrence and development of NASH and liver fibrosis. It is shown 
that Notch, Hippo/YAP, Wnt/β-catenin, Hh, HGF/c-Met, TWEAK/Fn14, and other intracellular 
signaling pathways interact with each other to form a crosstalk network, which is related to the DR. In 
chronic liver disease, these signaling pathways can affect liver inflammation, regeneration, HSC 
activation, and collagen deposition by regulating corresponding target gene expression. Several 
molecular inhibitors and modulators are being considered for anti-fibrotic treatment during NASH. 
While the specific mechanisms for these signaling pathways require more exploration, NASH treatment 
looks promising in near future.
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