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Abstract
Baicalin is a natural bioactive compound derived from Scutellaria baicalensis, 
which is extensively used in traditional Chinese medicine. A literature survey 
demonstrated the broad spectrum of health benefits of baicalin such as antio-
xidant, anticancer, anti-inflammatory, antimicrobial, cardio-protective, hepatopro-
tective, renal protective, and neuroprotective properties. Baicalin is hydrolyzed to 
its metabolite baicalein by the action of gut microbiota, which is further recon-
verted to baicalin via phase 2 metabolism in the liver. Many studies have 
suggested that baicalin exhibits therapeutic potential against several types of 
hepatic disorders including hepatic fibrosis, xenobiotic-induced liver injury, fatty 
liver disease, viral hepatitis, cholestasis, ulcerative colitis, hepatocellular and 
colorectal cancer. During in vitro and in vivo examinations, it has been observed 
that baicalin showed a protective role against liver and gut-associated abno-
rmalities by modifying several signaling pathways such as nuclear factor-kappa B, 
transforming growth factor beta 1/SMAD3, sirtuin 1, p38/mitogen-activated 
protein kinase/Janus kinase, and calcium/calmodulin-dependent protein kinase 
kinaseβ/adenosine monophosphate-activated protein kinase/acetyl-coenzyme A 
carboxylase pathways. Furthermore, baicalin also regulates the expression of 
fibrotic genes such as smooth muscle actin, connective tissue growth factor, β-
catenin, and inflammatory cytokines such as interferon gamma, interleukin-6 (IL-
6), tumor necrosis factor-alpha, and IL-1β, and attenuates the production of 
apoptotic proteins such as caspase-3, caspase-9 and B-cell lymphoma 2. However, 
due to its low solubility and poor bioavailability, widespread therapeutic applic-
ations of baicalin still remain a challenge. This review summarized the hepatic 
and gastrointestinal protective attributes of baicalin with an emphasis on the 
molecular mechanisms that regulate the interaction of baicalin with the gut 
microbiota.

Key Words: Baicalin; Biotransformation; Gut microbiota; Hepatobiliary and gastroin-
testinal disorders; Signaling pathways
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Core Tip: Baicalin possesses therapeutic efficacy against hepatic and gastrointestinal diseases including 
hepatic fibrosis, xenobiotic-induced liver injury, fatty liver disease, viral hepatitis, cholestasis, ulcerative 
colitis, hepatocellular and colorectal cancer. The drug action is mediated through its interaction with the 
gut microbiota, modulation of several signaling pathways, and inflammatory factors. The limitations of 
low solubility, permeability, and bioavailability pose challenges in the therapeutic applications. The 
different modes of drug delivery used in the transport of baicalin for ready absorption have paved the way 
for its use as a pharmacological agent against hepato-intestinal disorders.
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INTRODUCTION
The liver is the largest and central digestive organ in the body, which plays a vital role in several 
physiological processes including growth, nutrition, immunity, and metabolism of xenobiotics[1-3]. The 
hepatobiliary system mainly consists of the liver, and intra-hepatic and extra-hepatic bile ducts 
including the gall bladder. The liver in association with the intestine plays an essential role in digestion 
with the help of digestive enzymes, which facilitate the breakdown of larger biomolecules into simpler 
forms such as monosaccharides, amino acids, fatty acids, and glycerol. The intestinal microbiota also 
interacts with bile and other digestive juices, aiding the process of digestion. The complex network of 
molecular pathways and signal molecules that are involved in the functioning of the hepatobiliary 
system are also part of the immune cascade[4-6]. Therefore, any disruption in the gastrointestinal (GI) 
tract or gut microbiota results in the generation of an inflammatory response. Hepatic disorders such as 
fibrosis, viral hepatitis, non-alcoholic fatty liver, cirrhosis, cholestasis, and hepatocellular carcinoma 
(HCC) can be identified by alteration in the levels of inflammatory cytokines such as tumor necrosis 
factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1β, and nuclear factor-kappa B (NF-κB)[7,8]. Researchers in 
the past two decades have found numerous natural compounds, which have the ability to interact with 
the gut microbiome and aid in the treatment of diseases of the hepatobiliary system[9,10]. Natural 
products and their derivatives form a group of compounds known as secondary metabolites produced 
by the plants. Several such metabolites such as silymarin, ellagic acid, phyllanthin, rutin, and 
glycyrrhizin have been used to treat hepatic fibrosis, viral hepatitis, fatty liver disease, and cirrhosis[11,
12].

Baicalin (5, 6-dihydroxy-7-O-glucuronide) is a flavonoid isolated predominantly from the roots of 
Scutellaria baicalensis (S. baicalensis), a Chinese medicinal herb that belongs to the family Lamiaceae and 
is widely known as Chinese skullcap[13]. The roots of S. baicalensis also contain several other significant 
bioactive molecules such as baicalein and wogonin[14]. Numerous in vitro and in vivo studies have 
indicated different pharmacological properties of baicalin, which include anti-oxidative, antiviral, anti-
inflammatory, cardioprotective, hepatoprotective, neuroprotective, and pro-apoptotic properties. These 
biological activities can be attributed to the ability of baicalin to target multiple pathways and bind with 
several signaling molecules[15-18]. In addition, baicalin possesses anti-obese, antidyslipidemia, and pro-
apoptotic effects, which help to improve hepatic function after injury, alleviate liver diseases due to 
alcohol abuse, and promote apoptosis of proliferating hepatocytes[19].

In the last two decades, there has been growing interest and research on the hepatoprotective and 
anticancer properties of baicalin indicated by the increasing number of publications on PubMed. In 
recent years (2017 to present), there has been a remarkable rise in the number of research and review 
articles on the biological potential of baicalin as shown in Figure 1. This review gives an account of the 
therapeutic effects of baicalin exerted on the hepatobiliary system and the mitigation of GI and liver-
associated disorders. The use of baicalin alone or in combination with drugs in several in vitro and in 
vivo experiments in the last two decades, impact of baicalin on the gut microbiota, its interaction with 
molecules and receptors at different molecular pathways, and the range of doses at which baicalin has 
shown maximum activity have also been discussed.

SOURCES OF BAICALIN
Baicalin is the most abundant and important bioactive ingredient obtained from the roots of the 

https://www.wjgnet.com/1007-9327/full/v28/i26/3047.htm
https://dx.doi.org/10.3748/wjg.v28.i26.3047
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Figure 1 Increasing trend of publications on “hepatoprotective and anticancer properties of baicalin” indexed by PubMed.

medicinal plant S. baicalensis[20]. The roots of S. baicalensis possess baicalin in the range of 8% to 15%. 
Baicalin is also the main component of other species of Scutellaria such as S. rivularia, S. galericulata, and 
S. lateriflora[21,22]. Baicalin, chrysin, and its glucoside derivatives have also been obtained from various 
other parts of the popular Asian medicinal plant Oroxylum indicum, belonging to the family 
Bignoniaceae[23]. Baicalin, and its aglycone baicalein, are gaining increasing importance in the pharma-
ceutical, food, and cosmetics industries due to their remarkable biological properties. Baicalin and 
baicalein, in particular, have shown anti-inflammatory effects and the potential to ameliorate 
mitochondrial dysfunction[24], and combination strategies with baicalin or baicalein as chemotherapy 
adjuncts have been shown to be effective in various cancers and associated signaling pathways[25]. Due 
to growing interest in the properties of baicalin as a potential therapeutic agent, many studies in last few 
years have focused on developing appropriate techniques for the identification and quantification of 
baicalin in raw drug formulations including simple thin layer chromatography, and different modific-
ations of the sophisticated technique of high-performance liquid chromatography[26,27].

CHEMISTRY AND BIOAVAILABILITY
Baicalin is a flavone glycoside (molecular mass = 446.4 g/moL; melting point = 202-205 ºC), which is 
hydrolyzed to its aglycone baicalein in the stomach after ingestion. Baicalin is hydrolyzed to baicalein 
immediately after administration with the help of β-glucuronidase from gut bacteria. Baicalein is 
reconverted to baicalin in the systemic circulation by uridine 5'-diphospho(UDP)-glucuronosyltrans-
ferase-glucuronosyl transferase via phase 2 metabolism[21]. It is noteworthy that the circulating baicalin 
in the system is not the parent molecule but the conjugated metabolite of baicalein. Circulating baicalin 
returns to the GI system primarily by bile excretion in the form of glucuronides. The bile excretion of 
baicalin is mainly mediated by the multidrug resistance (MDR) protein 2 transporter. When baicalin and 
baicalein are given orally, the conjugated metabolites actually contribute to the in vivo effect because the 
glucuronide/sulfate of baicalin circulates predominantly in plasma[25]. Baicalin is moderately absorbed 
in the stomach and poorly absorbed in the small and large intestines (Figure 2).

PHARMACOKINETICS OF BAICALIN IN THE GI SYSTEM
The pharmacokinetic profile of baicalin in the GI system involves hydrolysis, enterohepatic recycling, 
carrier-mediated transport, and complex routes of metabolism with the interaction of gut microbiota. 
Baicalin administration is safe and endurable, and no evidence of liver or kidney toxicity has been 
recorded. The main obstacles to the clinical use of baicalin are its low water solubility (approximately 
67.0 μg/mL) and bioavailability. Several nano-techniques such as solid nanocrystals, nanoemulsions, 
and lipid-based solid nanoparticles have been used to improve baicalin lysis, thus improving bioavail-
ability[28-30]. Incomplete absorption in the GI system has emerged as the main barrier to bioavailability
[31]. MDR protein 2 is the most important transporter of baicalin, which mediates bile outflow to 
hepatocytes[32]. In fact, biliary excretion of baicalin in rats with MDR protein 2 deficiency is 
significantly reduced with a significant increase in plasma baicalin levels[33]. Baicalin is also capable of 
crossing the blood-brain barrier and may be protective against a variety of neurodegenerative diseases
[34,35].

β-glucuronidase and UDP-glucuronosyltransferase are important metabolic enzymes involved in the 
in vivo transformation of baicalin. In fact, five bile metabolites have been identified in rat liver after 
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Figure 2 Biotransformation of baicalin after oral ingestion. Orally administered baicalin is hydrolyzed to baicalein by β-glucuronidase. Further, baicalein is 
reconverted to baicalin by uridine 5'-diphospho-glucuronosyltransferase in intestine. The major part of baicalin excretion takes place via the biliary route in the form of 
glucuronides, and a small fraction of baicalin is excreted via urine in the form of sulfated and hydroxylated compounds. UDP: Uridine 5'-diphospho.

baicalin administration. The main metabolites include baicalein 6,7diβ-glucopyranuloside and 6oβ-
glucopyranuronosyl baicalein-7 sulfate. These conjugated metabolites are hydrolyzed to baicalein in the 
GI tract by β-glucuronidase/sulfatase. Thirty-two baicalin metabolites have been reported in plasma, 
urine, and other rat tissues using more efficient approaches[36,37]. In terms of tissue distribution, liver 
and kidney contain most of the metabolites, indicating that these are the major sites of baicalin 
metabolism. Baicalin undergoes multiple chemical transformations in vivo including hydrolysis, 
methylation, hydroxylation, methoxylation, glucuronide conjugates, sulfate conjugates, and their 
combined reactions[37]. The pharmacokinetics of baicalin may help to understand its therapeutic 
implications in the liver. As a result of enterohepatic circulation, baicalin remains particularly concen-
trated in the liver and is thus beneficial in the treatment of hepatic anomalies. Baicalein also plays a 
crucial role in the treatment of hepatic diseases, indicating that the mechanism of baicalin's emphasis on 
liver-associated disorders may include the ameliorative effects of the metabolites as well. The major part 
of baicalin excretion takes place via the biliary route in the form of glucuronides, and a small fraction of 
baicalin is excreted via urine in the form of sulfated and hydroxylated compounds[38,39].

AMELIORATING EFFECTS OF BAICALIN AGAINST HEPATIC AND COLORECTAL 
DISEASES
Fatty liver syndrome
Fatty liver syndrome (FLS) occurs due to excess accumulation of non-esterified fatty acids in the 
hepatocytes. FLS accounts for approximately one-fourth of all liver-related anomalies in the world[40]. 
FLS causes several hepatic anomalies such as non-alcoholic fatty liver disease, non-alcoholic steatohep-
atitis (NASH), and advanced FLS may also lead to cirrhosis and ultimately hepatic failure[17,41]. Due to 
its antioxidant and hepatoprotective potential, baicalin is effective against FLS and associated diseases. 
Baicalin improves lipid metabolism and suppresses hepatic lipid production by inhibiting the 
calcium/calmodulin-dependent protein kinase kinase-β/adenosine monophosphate-activated protein 
kinase (AMPK)/acetyl-coenzyme A (CoA) carboxylase pathway[42,43]. Additionally, baicalin binds 
directly to carnitine palmitoyl-transferase-1α (CPT-1α) and promotes the influx of lipid into 
mitochondria, where it is oxidized[44]. Baicalin also downregulates lipid-producing genes such as fatty 
acid synthase (FASN), peroxisome proliferator-activated receptor-α (PPAR-α), and sterol regulatory 
element-binding protein-1c (SREBP-1c) to inhibit lipid accumulation in the liver[42,45]. Baicalin (200 
mg/kg) has been found to reduce the expression of TNF-α, monocyte chemoattractant protein (MCP-1) 
and IL-1β, downregulate caspase-3 to alleviate NASH induced by a methionine- and choline-deficient 
(MCD) diet. In addition, treatment with baicalin can partially lessen the accumulation of lipids induced 
by the MCD diet in the liver by modulating the expression of SREBP-1c, FASN, PPAR-α, and CPT-1α
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[46]. Moreover, baicalin (50 mg/kg) also reduces the synthesis of inflammatory cytokines including 
TNF-α, IL-6, and IL-1β, and suppresses the Toll-like receptor 4 (TLR-4) signaling pathways in MCD diet 
fed mice to inhibit fat accumulation in liver. Thus, baicalin also acts as an anti-inflammatory compound 
in the attenuation of non-alcoholic FLS[47]. In a study of high-fat diet induced FLS, it was found that 
baicalin (25-100 mg/kg) exerted a substantial ameliorating effect on FLS by activating the expression of 
hepatic PPAR-γ receptors[48]. In addition, baicalin (5 g/kg) also alleviates FLS by reducing the levels of 
serum hepatic enzymes such as aspartate aminotransferase (AST) and alanine aminotransferase (ALT), 
and inflammatory mediators such as TNF-α and MCP-1. Moreover, baicalin also inhibited the 
phosphorylation of Janus kinase (JNK), and suppressed the production of inflammatory enzyme 
cyclooxygenase-2 and pro-oxidative enzyme CYP-2E1 in the liver of a mouse model[49]. In another 
study of orotic acid-induced FLS, baicalin (12.5-50 mg/kg) downregulated SREBP-1c and upregulated 
AMPK to reduce the toxic effects of free fatty acids, subsequently inhibiting fat accumulation in the liver
[45]. In an in vitro study of palmitic acid-induced FLS in AML-12 hepatocytes, baicalin (6.25-25 μM) 
alleviated FLS by reducing endoplasmic reticulum stress and suppression of the thioredoxin-interacting 
protein/Nod-like receptor protein 3 pathway[50].

Liver injury
The liver is the most important organ for the metabolism and elimination of toxins from the human 
body. Normal liver function can be deterred with excessive hepatic injuries, which occur due to a 
variety of factors including alcohol intake, chemical contaminants, hepatocellular ischemia, and drug 
damage[50,51]. Liver damage is a complex process that can manifest extensive hepatocellular apoptosis
[52]. Baicalin (120 mg/kg) has been shown to alleviate alcohol-induced liver injury in a rat model via the 
reduced expression of inflammatory cytokines such as TNF-α, IL-6 and IL-1β and enhances the activity 
of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), 
which is further regulated by blocking the sonic-hedgehog signaling pathway[19]. Similarly, baicalin (30 
mg/kg) has been shown to produce anti-inflammatory effects by downregulating the expression of IL-
17 in a rat model with acetaminophen-induced liver injury[53]. Baicalin (80 and 200 mg/kg) activates 
heme oxygenase-1 via the nuclear respiratory factor (NRF)-2 antioxidant pathway and inhibits the 
activity of reactive oxygen species (ROS) generating enzymes in a liver injury model. Baicalin plays an 
important role in blocking the combination of NRF-2 and Kelch-like ECH-associated protein 1 (Keap-1) 
that causes phosphorylation of NRF-2, thus reversing liver damage[54,55]. Furthermore, baicalin (60 
mg/kg) also downregulates extracellular signal-regulated kinase (ERK) in acetaminophen-induced liver 
injury[56]. In addition, baicalin (100 mg/kg) downregulates caspase-3 and caspase-9 and also increases 
the expression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). This helps to significantly reduce 
NG-nitro-L-arginine methyl ester-induced liver injury in rats[57].

The therapeutic effect of baicalin on reducing liver damage via the apoptotic pathway has also been 
demonstrated via in vitro experiments (Table 1). Baicalin at 100 μmol/L regulates apoptotic proteins 
such as caspase-3, caspase-9, and Bcl-2 associated X (Bax), and has a considerable therapeutic impact on 
the hypoxic model of L02 human hepatocytes[58]. Another in vitro study with L02 hepatocytes and 
acetaldehyde-treated HepG2 cells were used to identify the adverse effects of baicalin (20-100 mmol/L) 
on progression of the epithelial-mesenchymal transition (EMT) in the liver, which is an indicator of liver 
fibrosis and inflammation. This study demonstrated that baicalin considerably suppressed the 
progression of EMT by downregulating the transforming growth factor-β (TGF-β)/Smad signaling 
pathway, thus ameliorating liver damage[59]. Studies have shown that baicalin (60 μM) can repair liver 
injury in nanosecond pulse electric field (ns-PEF)-induced damage to L02 hepatocytes by stabilizing 
mitochondrial transmembrane potential and prevent excess ROS production[60]. Furthermore, baicalin 
(5 and 25 μM) can suppress the oxidation and nitrification of the hemin/nitrite/hydrogen peroxide 
system and protect HepG2 cells by inhibiting lipid peroxidation and GSH depletion[61]. Another study 
emphasized that baicalin administration (74 mg/kg) can restore the metabolism of amino acids to 
normal, improve the tricarboxylic acid cycle and ameliorate acute lipopolysaccharide (LPS)-induced 
sepsis in mice model[62].

Liver fibrosis
Liver fibrosis occurs due to excess deposition of extracellular matrix proteins and collagen. It is charac-
terized by hepatic tissue degeneration, inflammatory cell infiltration and hepatic cell necrosis[63,64]. It 
has also been confirmed that activation of hepatic stellate cells (HSCs) plays a central role in liver 
fibrosis[65]. In the absence of appropriate treatment, advanced liver fibrosis causes chronic hepatitis 
subsequently leading to liver cancer or cirrhosis[66,67]. In a recent study, it was shown that baicalin (200 
mg/kg) decreased the expression of fibrotic genes such as α-smooth muscle actin (SMA) and connective 
tissue growth factor and inflammatory cytokines such as TNF-α, macrophage inflammatory protein-1α 
(MIP-1α), IL-1β, MIP-2, thereby effectively suppressing liver fibrosis induced by bile duct ligation (BDL) 
in mice. In addition, an in vitro study also showed the efficacy of baicalin in reducing the activation of 
HSCs and downregulating the expression of SMA, fibronectin, tissue inhibitor of metalloproteinase-1 
(TIMP1) protein andcollagen-1[68]. Similarly, baicalin (150 μM) reduced microRNA (miR)-3595 
expression and increased the activity of the enzyme long-chain fatty acid CoA ligase 4, significantly 
inhibiting the activity of HSCs leading to a reduction in fibrosis in HSCT6 hepatocyte cell lines caused 
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Table 1 In vitro hepatoprotective effects of baicalin on different cell lines

Disease/type of study Cell line Dose Mechanism/target pathways Ref.

Palmitic acid-induced fatty liver AML-12 hepatocytes 6.25-25 μM ER stress↓; TXNIP/NLRP-3 pathway
↓

[50]

Hypoxic liver injury L02 human hepatocytes 100 μmol/L Caspase-3, caspase-9, and Bax↓ [58]

Acetaldehyde induced EMT HepG2 cells 20-100 mmol/L TGF-β/Smad pathway↓ [59]

ns-PEF induced liver injury L02 hepatocytes 60 μM MTP stabilization, ROS↓ [60]

Hemin-nitrite-H2O2 induced 
liver injury

HepG2 cells 5 μM and 25 μM Lipid peroxidation↓; GSH depletion↓ [61]

PDGF-BB induced fibrosis HSCT6 hepatocytes 150 μM miR-3595↓; ACSL-4↑ [69]

BDL-induced fibrosis HSCs 67.5-270 μM Wnt pathway↓; PPAR-γ↓ [70]

LPS-induced hepatitis L20, THLE cell lines 25-100 μM TUG-1↑; p38-MAPK↓; JNK pathway↓ [82]

HuH7, HepG2 cells 75 μg/mL NF-κB pathway↓ [83]

pHBV1.2HepG2 cells 10 μM HNF-4α/HNF-1α↓ [84]

HepG2.2.15 cells 10 μg/kg HBsAg, HBeAg↓ [85]

Viral hepatitis

PBMCs 50-200 mg/mL Mitochondrial pathway↑; Caspase 3↑ [87]

HepG2-HCC 100 μmol/L ER-mediated TF-6↑; S-2P protein↑ [94]

SMMC7721-HCC cells 160 μM CD47↓ [95]

HCC

SMMC7721, HepG2-HCC cells 40 μM STAT3, IFN-γ↓; Block PDL-1/PD-1 
pathway

[96,97]

ACSL-4: Long chain fatty acid CoA ligase 4; AML: Alpha mouse liver; BDL: Bile duct ligation; EMT: Epithelial-mesenchymal transition; ER: Endoplasmic 
reticulum; GSH: Reduced glutathione; HCC: Hepatocellular carcinoma; HSCs: Hepatic stellate cells; LPS: Lipopolysaccharide; MAPK: Mitogen-activated 
protein kinase; MTP: Mitochondrial transmembrane potential; NLRP-3: Nod-like receptor protein 3; nsPEF: Nanosecond-pulse electric field; PBMCs: 
Peripheral blood mononuclear cells; PDGF-BB: Platelet-derived growth factor BB; PPAR-γ: Peroxisome proliferator-activated receptor-γ; ROS: Reactive 
oxygen species; THLE: Transformed human liver epithelial; TUG-1: Taurine upregulated-1; TXNIP: Thioredoxin-interacting protein.

by platelet-derived growth factor BB[69]. Moreover, baicalin (67.5-270 μM) helps in the reduction of 
BDL-induced activity of HSCs by inhibiting PPAR-γ via Wnt signaling, leading to alleviation of liver 
fibrosis[70]. Baicalin (100 mg/kg) attenuated carbon tetrachloride-induced hepatic fibrosis in mice by 
regulating the rise in TGF-β1, hydroxyproline, type III collagen, and hyaluronic acid laminin (Table 2). 
In addition, baicalin also attenuates liver fibrosis by suppressing the activity of antioxidant enzymes 
SOD and GSH-Px[71]. Similarly, baicalin (25-100 mg/kg) evidently reduces the level of PPAR-γ, 
suppresses the activity of HSCs, and downregulates the expression of TGF-β1, causing inhibition of 
hepatic fibrosis[72].

Cholestasis 
Cholestasis is a condition that occurs due to the obstruction or complete blockage of bile secretion 
through the intrahepatic or extrahepatic bile ducts[73]. Consequently, there is excess accumulation of 
conjugated bilirubin, bile salts, and cholesterol in the liver, which leads to hepatic injury and damage to 
the human body[74]. Baicalin plays an important role at several stages to mitigate cholestasis and 
related hepatic damage. Baicalin specifically targets nuclear factor-erythroid factor 2-related factor 2 
(NRF-2) in reversing cholestasis. Recent studies in a mouse model indicate that the interaction of 
baicalin (50 mg/kg) with NRF-2, inflammatory cytokines, and oxidative stress regulatory elements 
forms the central pathway of reducing cholestasis induced hepatic damage. Baicalin is capable of 
activating SMA, TIMP1, and collagen, resulting in amelioration of liver fibrosis due to BDL-induced 
cholestasis[68]. Another pharmacokinetic study in a rat model indicated that administration of baicalin 
(50-200 mg/kg) has therapeutic potential for cholestasis. It significantly increases bile excretion rates, 
which lead to a decline in serum levels of total bile acids as well as hepatic enzymes such as AST, ALT, 
and alkaline phosphatase in 17α-ethinyl estradiol-induced cholestasis[75,76]. In estrogen-induced 
cholestasis, it has been shown that baicalin targets NF-κB and inhibits the expression of inflammatory 
markers such as TNF-α, IL-6, and IL-1β, thereby increasing the activity of hepatic bile acid-metabolizing 
enzymes. Reports have also shown that baicalin alleviates 17α-ethinyl estradiol-induced cholestasis in 
mice by suppressing the expression of multidrug resistance protein 2 and bile salt export pump genes 
via the sirtuin 1/nuclear hepatic receptor 1α (HNF-1α)/farnesoid X receptor (FXR) pathway[77].
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Table 2 In vivo protective effects of baicalin on various hepatobiliary and colorectal disorders

Disease/type of study Dose Mechanism/target pathway Ref.

200 mg/kg TNF-α, MCP-1, IL-1β↓; Caspase-3↓; SREBP-1c, 
FASN, PPAR-α, CPT-1α↓

[46]MCD induced NASH

50 mg/kg TNF-α, IL-6, IL-1β↓; TLR-4 pathway↓ [47]

25-100 mg/kg PPAR-γ receptors↑ [48]High fat diet induced non- alcoholic FLS

5 g/kg AST, ALT↓; TNF-α, MCP-1↓; JNK-P↓; COX-2, 
CYP-2E1↓

[49]

Orotic acid induced FLS 12.5-50 mg/kg SREBP-1c↓; AMPK↑ [45]

120 mg/kg TNF-α, IL-6, IL-1β↓; SOD, GSH-Px↑; Block 
sonic-hedgehog pathway

[19]Alcohol-induced liver injury

200 mg/kg HO-1, NRF-2 pathway↑ [54]

30 mg/kg IL-17↓ [53]

80 mg/kg NRF-2, Keap-1↓ [55]

Acetaminophen-induced liver injury

60 mg/kg ERK↓ [56]

NG-nitro-L-arginine methyl ester 
induced liver injury

100 mg/kg Caspases-3 and 9↓; Bcl-2↑ [57]

LPS-induced sepsis 74 mg/kg Amino acid metabolism↑; TCA cycle↑ [62]

BDL-induced liver fibrosis 200 mg/kg SMA, CTGF↓; TNF-α, MIP-1α, IL-1β, MIP-2↓ [68]

100 mg/kg TGF-β1, hydroxyproline, type III collagen, 
hyaluronic acid laminin↑; SOD, GSH-Px↓

[71]CCl4-induced fibrosis

25-100 mg/kg PPAR-γ↓; TGF-β1↓ [72]

TBA, AST, ALT, ALP↓; TNF-α, IL-6 and IL-1β↓ [75,76]17α- ethinyl estradiol-induced cholestasis 50-200 mg/kg

Sirt1/HNF-1α/FXR pathway↓ [77]

Hepatitis B in young duck model 10 μg/kg HBsAg, HBeAg↓; HNF-4α/HNF-1α↓ [85]

Hepatitis in male BALB/c mouse model 100-200 mg/kg TNF-α, IL-6 and IFN-γ↓ [86]

Hepatitis in male Sprague-Dawley rat 
model

0.5-5.0 mg/kg ALT, AST↓ [86]

HCC 50 mg/kg RelB/p52 pathway↑ [93]

CRC in mice 100, 200 mg/kg TGF-β/Smad pathway↓ [100]

30-90 mg/kg IL-1β, TNF-α↓; Caspase 9, Bcl-2↓; 
IKK/IKB/NF-κB pathway↓

[107]

5-20 mg IL-1β, TNF-α, IL-6↓; TLR4/NF-κB pathway↓ [108]

TNBS-induced UC

30-120 mg/kg Catalase, GSH-PX, SOD↑; Bcl-2↑; MDA↓; TGF-
β, Bax↓

[109]

HTHE-induced UC 100 mg/kg NF-κB, MAPK pathways↓ [110]

50-150 mg/kg MPO, NO↓; IL-1β, TNF-α and IL-6↑ [111]DSS-induced UC

100 mg/kg TLR-4/NF-κB-p65/IL-6 pathway↓; TNF-α, IL-
6, IL-13↓

[112]

10 mg/kg MIF, MCP-1, MIP-3a↓ [113]TNBS-induced UC

20-100mg/kg Maintain Th17/Treg balance [114]

ALP: Alkaline phosphatase; ALT: Alanine transaminase; AST: Aspartate transaminase; AMPK; AMP-activated protein kinase; Bcl-2: B-cell lymphoma 2; 
CCL4: Carbon tetrachloride; COX-2: Cyclooxygenase-2; CPT-1α: Carnitine palmitoyl-transferase-1α; CRC: Colorectal cancer; CTGF: Connective tissue 
growth factor; CYP-2E1: Cytochrome P450 2E1; DSS: Dextran sulfate sodium; ERK: Extracellular signal-regulated kinase; FASN: Fatty acid synthase; FLS: 
Fatty liver syndrome; FXR: Farnesoid X receptor; GSH-Px: Glutathione peroxidase; HBsAg: Hepatitis B surface antigen; HBeAg: Hepatitis B e antigen; 
HNF: hepatic nuclear factor; HO-1: Heme oxygenase 1; HTHE: High temperature and humid environment; IL-1: Interleukin-1; JNK: c-Jun N-terminal 
kinase; Keap-1: Kelch-like ECH-associated protein 1; MCD: Methionine- and choline-deficient; MCP-1: Monocyte chemoattractant protein-1; MIP-1α: 
Macrophage inflammatory protein-1 alpha; NASH: Non-alcoholic steatohepatitis; NF-κB: Nuclear factor-kappa B; NRF2: Nuclear factor-erythroid factor 2-
related factor 2; PPAR-γ: Peroxisome proliferator-activated receptor-γ; Sirt: Sirtuin; SMA: Smooth muscle actin; SOD: Superoxide dismutase; SREBP: Sterol 
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regulatory element-binding protein; TBA: Total bile acid; TCA: Tricarboxylic acid cycle; Th17: T helper 17 cells; TLR-4: Toll-like receptor 4; TNBS: 2,4,6-
trinitrobenzenesulfonic acid; TNF-α: Tumor necrosis factor-alpha; Treg: Regulatory T cells; UC: Ulcerative colitis.

Hepatitis 
Hepatitis caused by hepatitis A virus (HAV), hepatitis B virus (HBV), and other viral hepatitis are 
prevalent infectious diseases worldwide[78,79]. Liver-specific proteins and immune complex hypersens-
itivity have multiple roles in hepatitis[80]. Subsequent studies have proven that baicalin plays a key role 
in the attenuation of hepatitis by lowering the levels of hepatitis B surface antigen (HBsAg), viral 
antigen protein hepatitis B e-antigen (HBeAg), and hepatitis B virus (HBV)-DNA, and regulating 
oxidative stress, inflammation, and apoptosis in hepatic cells[80,81]. It has been found that baicalin (25-
100 μM) significantly increases taurine upregulated 1 gene expression to suppress inflammation and 
apoptosis by downregulating the p38-mitogen activated protein kinase (MAPK) and JNK signaling 
pathways in L20 and transformed human liver epithelial cell lines to thwart LPS-induced hepatitis[82]. 
Another recent study showed that baicalin (75 μg/mL) significantly suppressed HBV replication and 
inflammation by downregulating the NF-κB signaling pathway in HepG2 and HuH7 cells[83]. 
Furthermore, it has also been confirmed that baicalin (10 μM) strongly suppresses the transcription of 
HBV by downregulating the liver-specific HNF-4α/HNF-1α axis in pHBV1.2 HepG2 cells[84]. In 
another experiment, baicalin (10 μg/kg) significantly reduced HBsAg and HBeAg levels in HepG2 cells, 
wild-type HBV cells, and young duck models infected with HBV by downregulating the HNF-4α/HNF-
1α axis[85]. In addition, baicalin pre-treatment (100-200 mg/kg) attenuated elevated levels of plasma 
cytokines such as TNF-α, IL-6, and interferon-γ (IFN-γ) in male BALB/c mouse models, resulting in 
alleviation of hepatocyte necrosis and apoptosis[86]. Similarly in an in vivo study, pre-treatment with 
baicalin (0.5-5.0 mg/kg) considerably reduced serum levels of ALT and AST and lowered hepatic 
oxidative stress in a male Sprague-Dawley rat model[86]. Another study demonstrated the pro-oxidant 
properties of baicalin (50-200 mg/mL) by upregulating the mitochondrial signaling pathway in human 
peripheral blood mononuclear cells, thereby inducing the activation of caspase-3 and apoptosis[87]. 
Furthermore, baicalin has often been co-administered with other bioactive flavonoids in combination 
studies, to yield better results at prevention of hepatitis. For instance, combination of the alkaloid 
oxymatrine (1 g/L) with baicalin showed more efficacy against HBV than oxymatrine alone[88]. Below 
31.50 μg/mL, the baicalin-phospholipid complex exhibits direct anti-duck HAV-1 activity by preventing 
the adsorption, replication, and release of duck HAV-1 and indirectly by promoting immunity in 
ducklings[89]. Baicalin (20 μg/mL) regulates the immunomodulatory effects and anti-HAV-1 
reproduction by reducing the adsorption and release of HAV-1 in duck-suppressed embryonic 
hepatocytes[90].

HCC
HCC ranks sixth amongst the most common malignant tumors worldwide, and is the fourth highest 
cause of mortality due to malignancies[91]. The present modes of treatment for HCC include radiation 
therapy, local resection therapy, surgery, and liver transplantation. However, these treatments typically 
cause several side effects and have adverse consequences[91,92]. Several studies have reported that 
baicalin can effectively ameliorate HCC by indirectly inducing autophagy in liver tumor cells. Studies 
have revealed that baicalin (50 mg/kg) promotes the polarization of tumor-related macrophages into 
M1-like macrophages, subsequently increasing autophagy in cancerous cells to make them non-prolif-
erating. Additionally, baicalin mediated anti-cancer effects may also be closely associated with 
activation of the RelB/p52 signaling pathway[93]. Similarly, baicalin (100 μmol/L) promotes apoptosis 
in HepG2-HCC cells by activating the ER-mediated TF-6 signaling cascade combined with S-2P protein
[94]. Moreover, baicalin (160 μM) suppresses cluster of differentiation 47 and activates apoptosis and 
autophagy in SMMC7721-HCC cells[95]. Although nsPEFs have been developed as a new mode of 
treatment for cancer, they also result in the elimination of normal hepatocytes. Therefore, a study was 
designed combining nsPEF and baicalin for the treatment of HCC, which revealed that baicalin 
suppresses the proliferation of HCC cells, and protects normal liver cells by increasing mitochondrial 
membrane potential and reducing ROS production[59]. In recent times, cancer immunotherapy has 
emerged as a significant line of treatment for HCC. Baicalin (40 μM) is capable of reducing the activity 
of signal transducer and activator of transcription 3 protein and IFN-γ, thereby blocking the 
programmed death-ligand 1/programmed cell death protein 1 pathway. This increases the sensitivity of 
the immune system to hepatic cancerous cells and thus further activates T cells against hepatic cancer 
cells[96,97]. Based on several in vitro and in vivo studies, the protective effect of baicalin on many hepatic 
disorders is summarized in Tables 1 and 2.

Colorectal cancer 
Colorectal cancer (CRC) is also a common malignant tumor worldwide, and is primarily due to genetic 
inheritance, colon polyps, and ulcerative colitis (UC)[98,99]. Baicalin, due to its pro-apoptotic properties, 
results in the killing of CRC cells. Researchers have used the human colon cancer cell line (HCT-166) 
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and transplanted colon tumors into mice to conduct simultaneous in vivo and in vitro experiments to 
examine the antitumor mechanism of baicalin (100 and 200 mg/kg). Baicalin induces apoptosis in colon 
tumors by inhibiting the cells at the G1 stage and arresting EMT protein expression by blocking the 
TGF-β/Smad pathway[100]. Baicalin (40 mmol/L) promotes Dickkopf protein expression, suppresses 
the expression of proteins β-catenin and c-Myc, and inhibits miR-217 expression, thereby leading to the 
apoptosis of HCT-166 cancer cells by inhibition of the Wnt signaling pathway[101]. Another similar 
study demonstrated that apoptosis of HT-29 colon cancer cells was induced by baicalin (50-200 μM) via 
inhibition of c-Myc expression and regulation of the miR-10a, miR-23a, miR-31, miR-151a, and miR-205 
mechanism[14]. Similarly, it has been reported that the antioxidant properties of baicalin (40 μM) 
increase progesterone expression in the intestine and leads to the apoptosis of HCT-116 colon cancer 
cells by activating the Ras/Raf/MEK/ERK pathways[102]. Reports have also shown that the antitumor 
activity of baicalin can be further enhanced by glycosidase pre-treatment[103]. Several studies have 
revealed that the development of CRC is closely associated with genetic mutations. In a study on colon 
cancer cells SW-480, baicalin (50-400 μg/mL) inhibited the expression of the transcription factor SP-1, 
leading to the apoptosis of cancer cells[104].

Inflammatory bowel disease 
Inflammatory bowel disease (IBD) is a collective term that refers to the chronic inflammation of GI tract. 
The two major types of IBD are Crohn’s disease (CD) and UC. CD and UC are nonspecific chronic IBDs 
that cause inflammation and ulcers on the inner lining of the large intestine[105-107]. Baicalin plays an 
important role in the treatment of IBD, as it is capable of suppressing oxidative stress, immune 
regulation, and its anti-inflammatory properties. In addition, baicalin is capable of regulating NF-κB 
activation, which modulates both autophagic and inflammatory processes in intestinal epithelial cells, 
subsequently leading to enhancement in paracellular permeability. Baicalin alleviates dextran sulfate 
sodium (DSS)-induced UC by modulating the polarization of M1 macrophages to the M2 phenotype
[107]. Dose-dependent administration of baicalin (30-90 mg/kg) has been found to largely downregulate 
the inflammatory cytokines IL-1β and TNF-α, and apoptotic genes Bcl-2 and caspase-9 in the colon 
tissue of rats affected by 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced UC. In addition, baicalin 
also inhibits the inhibitory κB (IKB) kinase (IKK)/IKB/NF-κB signaling pathway, leading to the 
alleviation of IBD[107,108]. Likewise, in another study, rats with TNBS-induced UC were given baicalin 
(5-20 mg) which resulted in the downregulation of inflammatory factors TNF-α, IL-6 and IL-1β in rat 
intestine and inhibition of the TLR4/NF-κB signaling pathway, leading to alleviation of UC[109]. 
Furthermore, baicalin (30-120 mg/kg) has also been effective in the treatment of TNBS-induced UC by 
promoting antioxidant enzymes such as catalase, SOD and GSH-PX, and reducing malondialdehyde 
(MDA). Baicalin also suppresses the regulation of apoptosis by upregulating Bcl-2 and downregulating 
TGF-β and Bax[110]. In a UC model generated by high temperature and humid environment, baicalin 
(100 mg/kg) significantly reduced the serum levels of IL-6, IL-1β, and IL-17, and inhibited SOD, GSH-
PX, and MDA. That study attributed the anti-inflammatory effect of baicalin to suppression of the NF-
κB and MAPK pathways[111]. In an in vivo study, baicalin (50-150 mg/kg) reduced myeloperoxidase 
activity, nitric oxide content, and elevated IL-1β, TNF-α and IL-6 levels in the colon of DSS-induced UC 
rats[112]. Another study revealed that baicalin (100 mg/kg) attenuated DSS-induced UC by blocking the 
TLR-4/NF-κB-p65/IL-6 signaling pathway and suppressing TNF-α, IL-6, and IL-13 mRNA expression
[113]. Furthermore, baicalin (10 mg/kg) downregulated the expression of macrophage migration 
inhibitory factor, MCP-1 and MIP-3a in the colon tissue of TNBS-induced UC rat model[114]. Several 
reports have suggested the association of T helper 16 cell (Th17)/regulatory T cell (Treg) equilibrium 
with UC. Baicalin (20-100 mg/kg) regulates the Th17/Treg balance by inhibiting the rise in ROS and 
MDA, whereas simultaneously reducing GSH and SOD levels and regulating the expression of Th17-
related factors IL-6 and IL-17 in TNBS-induced UC rats[115,116]. In a clinical study of UC patients, 
baicalin promoted the production of immune cells like CD4+ and CD29+ and induced immunomodu-
lation to alleviate UC[117] (Figure 3).

INTERACTION OF BAICALIN WITH THE INTESTINAL MICROBIOTA 
In the past decade, the intestinal microbiota has become an emerging aspect of research for the 
evaluation of several diseases. Besides playing an important role in the metabolism and breakdown of 
biomolecules into simpler molecules like fatty acids, amino acids, vitamins and bile salts, the gut 
microbiota is also capable of interacting with the host and affect the functioning of various organs 
including the liver and kidney to regulate homeostasis and disease development[5,118]. Baicalin, a 
flavonoid, exerts many therapeutic effects by modulating gut microbiota homeostasis. Intake of high fat 
diet causes imbalance of the gut microbiota, leading to several metabolic syndromes. Baicalin 
administered (200 mg/kg/d) to mice with high fat diet induced metabolic syndrome led to an increase 
in short-chain fatty acid (SCFA)-producing gut bacteria, thereby effectively reducing the metabolic 
syndrome in mice[119]. Baicalin also reduces damage to the intestinal barrier caused due to 
hypertension. A study reported that baicalin (100 mg/kg) significantly increased the number of SCFA-
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Figure 3 Mechanism of baicalin action against hepatobiliary diseases. Baicalin downregulated peroxisome proliferator-activated receptor-α and 
activated the nuclear respiratory factor-2 antioxidant pathway to reduce oxidative stress in the hepatocytes. Baicalin suppressed epithelial-mesenchymal transition 
progression by downregulating the transforming growth factor-β/Smad pathway, inhibited the inhibitory κB (IKB) kinase/IKB/nuclear factor-kappa B pathway, reduced 
the elevated levels of inflammatory factors such as tumor necrosis factor-α, interleukin-6 (IL-6) and IL-1β, and attenuated the apoptotic proteins caspase-3, caspase-
9, B-cell lymphoma 2, which led to the alleviation of liver diseases. ROS: Reactive oxygen species; STAT: Signal transducer and activator of transcription; PPAR-γ: 
Peroxisome proliferator-activated receptor-γ; IL: Interleukin; Nrf2: Nuclear respiratory factor-2; TGF-β: Transforming growth factor-β; NF-κB: Nuclear factor-kappa B; 
TNF-α: Tumor necrosis factor-alpha; Bcl-2: B-cell lymphoma 2; EMT: Epithelial-mesenchymal transition; IKK: Inhibitory κB kinase; IKB: Inhibitory κB.

producing bacteria and altered the intestinal microflora, leading to a reduction in damage of the 
intestinal barrier in rats caused by hypertension[120]. Another study revealed that baicalin (25-100 
mg/kg) helped increase SCFA-producing bacteria such as Eubacterium spp, Subdoligranulum spp, and 
Butyricimonas spp, thereby ameliorating TNBS-induced UC[114]. In some cases, the gut microbiome can 
also downregulate the therapeutic efficacy of baicalin[121]. The gut microbiota regulates hepatobiliary 
homeostasis via the gut-hepatic axis, and although it can regulate baicalin activity, baicalin can also 
modulate the gut microbiota[122]. Consequently, baicalin has the potential to exert a therapeutic role in 
liver and gut diseases by modulating FXR and TGR5-mediated crosstalk involving bile acids associated 
with the gut microbiome.

DRUG DELIVERY, CLINICAL TRIAL, AND FUTURE PROSPECTS
The clinical application of baicalin in pharmacology has been challenging, due to its low solubility and 
bioavailability. In the last decade, many researchers have designed novel delivery strategies for baicalin 
that include phospholipid complex, liposomes, solid baicalin nanocrystals, and micelle formation[123]. 
The dissolution and solubility of baicalin is considerably enhanced when administered in combination 
with other molecules in complex form. For instance, baicalin has exhibited improved oral bioavail-
ability, distribution, targeting, and therapeutic efficacy when combined with polyethylene glycol and 
folic acid in the form of liposomes. β-Cyclodextrin complex has also been used as an effective 
formulation to facilitate the effective delivery of baicalin with wide range of therapeutic outcomes[123,
124]. Moreover, baicalin is commonly used as adjuvant therapy for hepatitis. In a clinical study, single 
dose baicalin (500 mg/kg) in combination with cyclosporin A was found to be safe and well tolerated in 
adult human subjects without any severe adverse effects[125]. However, the co-administration of 
baicalin with other herbal formulations or drugs might impede baicalin’s in vivo actions and 
consequently its efficacy. Therefore, it is important to thoroughly study the clinically approved doses of 
baicalin which can be administered in combination with other compounds that help to improve the 
absorption and effectiveness of baicalin.
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CONCLUSION
GI disorders have emerged as the leading cause of mortality in the recent years across the world. 
Baicalin, a major flavone obtained from S. baicalensis, exerts protective effect against hepatobiliary and 
colorectal disorders by modulating signaling pathways. Further, novel delivery strategies that are used 
in the transport of baicalin for ready absorption including phospholipid complex, liposomes, solid 
baicalin nanocrystals, and β-cyclodextrin complex have paved way for its widespread use as a pharma-
cological alternative in hepatic and GI disorders.
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