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Abstract
The Src homology 2B (SH2B) family members (SH2B1, 
SH2B2 and SH2B3) are adaptor signaling proteins con-
taining characteristic SH2 and PH domains. SH2B1 (also 
called SH2-B and PSM) and SH2B2 (also called APS) are 
able to form homo- or hetero-dimers via  their N-terminal 
dimerization domains. Their C-terminal SH2 domains 
bind to tyrosyl phosphorylated proteins, including Ja-
nus kinase 2 (JAK2), TrkA, insulin receptors, insulin-like 
growth factor-1 receptors, insulin receptor substrate-1 
(IRS1), and IRS2. SH2B1 enhances leptin signaling by 
both stimulating JAK2 activity and assembling a JAK2/
IRS1/2 signaling complex. SH2B1 promotes insulin sig-
naling by both enhancing insulin receptor catalytic ac-
tivity and protecting against dephosphorylation of IRS 
proteins. Accordingly, genetic deletion of SH2B1 results 
in severe leptin resistance, insulin resistance, hyper-
phagia, obesity, and type 2 diabetes in mice. Neuron-
specific overexpression of SH2B1β transgenes protects 
against diet-induced obesity and insulin resistance. 
SH2B1 in pancreatic β cells promotes β cell expansion 
and insulin secretion to counteract insulin resistance in 
obesity. Moreover, numerous SH2B1 mutations are ge-
netically linked to leptin resistance, insulin resistance, 
obesity, and type 2 diabetes in humans. Unlike SH2B1, 

SH2B2 and SH2B3 are not required for the mainte-
nance of normal energy and glucose homeostasis. The 
metabolic function of the SH2B family is conserved 
from insects to humans.
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Core tip: The Src homology 2B (SH2B) family mem-
bers mediate cell signaling in response to a variety of 
hormones, cytokines, and growth factors. In the brain, 
SH2B1 enhances leptin signaling and leptin’s anti-
obesity action. In peripheral tissues, SH2B1 cell-auton-
omously enhances insulin signaling. In pancreatic islets, 
SH2B1 is required for compensatory β cell expansion in 
response to insulin resistance and β cell stress. SH2B1-
deficiency results in severe leptin resistance, energy 
imbalance, obesity, and type 2 diabetes. SH2B1 muta-
tions are linked to leptin resistance, insulin resistance, 
obesity, and type 2 diabetes in humans. Thus, SH2B1 
is a critical metabolic regulator in mammals.
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INTRODUCTION
The Src homology 2B (SH2B) family contains three 
members (SH2B1, SH2B2 and SH2B3) in mammals. 
All members contain a characteristic pleckstrin homol-
ogy (PH) domain and SH2 domain. SH2B1 (also called 
SH2-B and PSM) was initially identified as a high affinity 
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immunoglobin E receptor (Fc RI) binding protein in the 
yeast tribrid screen in 1995[1]. SH2B2 (also called APS) 
was identified as a c-Kit-binding protein by the yeast two-
hybrid system in 1997[2]. SH2B3 (also called Lnk) was 
identified as a SH2 domain-containing, tyrosyl phosphor-
ylated protein in rat lymph node lymphocytes in 1995[3]. 
The SH2B family is evolutionarily conserved from insects 
through humans. Unlike mammals, insects have only one 
SH2B gene (also called Lnk)[4,5]. Deletion of  SH2B1, but 
not SH2B2 or SH2B3, results in obesity and metabolic 
diseases in mice, whereas deletion of  either SH2B2 or 
SH2B3, but not SH2B1, impairs immune function[6-11]. 
Therefore, individual SH2B1 family members have dis-
tinct function in mammals. In this review, I will mainly 
discuss mammalian SH2B1 and SH2B2.

METABOLIC FUNCTION OF SH2B1
Structure, subcellular localization, posttranslational 
modification, and tissue distribution of SH2B1
The SH2B1 gene generates four SH2B1 isoforms (α, β, γ, 
and δ) through mRNA alternative splicing[1,12-14]. All iso-
forms have an identical N-terminal region (amino acids 
1-632), but differ at their C-termini after the SH2 domain 
(Figure 1).

SH2B1 structure: All four isoforms have identical di-
merization (DD), PH, and SH2 domains (Figure 1). The 
DD domain mediates SH2B1 homodimerization or its 
heterodimerization with SH2B2[15-17]. The SH2 domain 
binds to the phospho-tyrosine motifs of  its binding part-
ners (e.g., JAK2 and insulin receptors)[12,18]. The function 
of  the central PH domain remains unclear.

SH2B1 subcellular localization: SH2B1 is located mainly 
in the cytoplasm, but a subset shuttles between the cyto-
plasm and the nucleus[19]. SH2B1 contains a nuclear local-
ization sequence (NLS) (KLK150KR) which is required for 
its nuclear translocation[20]. SH2B1 also contains a nuclear 
export sequence (NES) (GERWTHRFERL231RLSR) 
(Figure 1), and replacement of  the conserved Leu231 and 
Leu233 with Ala increases its nuclear localization[19]. SH2 
domain-defective SH2B1β(R555E) mutant is also ex-
cluded from the nucleus[20]. Therefore, the NLS, NES, and 
SH2 domain all are involved in the regulation of  SH2B1 

trafficking between the cytoplasmic and nuclear compart-
ments. SH2B1 is also translocated to the plasma mem-
brane[21]. A N-terminal polybasic region (S145KPKLKKRF), 
which overlaps the NLS, is required, but not sufficient, for 
SH2B1β translocation to the plasma membrane[22].

SH2B1 posttranslational modification: SH2B1α and 
SH2B1β contain nine Tyr residues, and SH2B1γ and 
SH2B1δ have eight (Figure 1). Tyr439 and Tyr494 are con-
served in all four isoforms, and are able to be phosphory-
lated by JAK1 and JAK2[23]. Src tyrosine kinases also 
phosphorylate all four isoforms[24]. Additionally, insulin, 
insulin-like growth factor (IGF-1), and nerve growth fac-
tor (NGF) also stimulate tyrosine phosphorylation of  
SH2B1 via their cognate receptor tyrosine kinases[14,18,25].

SH2B1 contains numerous Ser and Thr residues. NGF 
stimulates SH2B1 phosphorylation on multiple Ser/Thr 
residues[21]. Mitogen-activated protein kinase (MAPK) di-
rectly phosphorylates Ser96[21], and protein kinase C phos-
phorylates both Ser161 and Ser165 residues[22,26]. However, 
the physiological consequence of  SH2B1 phosphorylation 
remains unknown.

SH2B1 tissue distribution: SH2B1 is ubiquitously ex-
pressed in both peripheral tissues and the central ner-
vous system, including adipose tissue, skeletal muscle, 
liver, pancreas, heart, spleen, hypothalamus, and other 
brain areas[27]. SH2B1 expression is regulated by neuro-
nal, hormonal, and nutritional signals. The mRNA levels 
of  hypothalamic SH2B1 are 20-fold higher in fed mice 
than in fasted mice[28]. The expression of  hypothalamic 
SH2B1 in rats is downregulated by high fat diet (HFD) 
feeding[29]. Chronic overexpression of  bovine growth 
hormone (GH) increases the levels of  hepatic SH2B1 
protein in GH transgenic mice[30]. The molecular steps, 
which control the activity of  the SH2B1 promoter and 
the stability of  SH2B1 mRNA and protein, remain com-
pletely unknown.

SH2B1 regulates cell signaling in response to multiple 
hormones, growth factors, and cytokines 
In cultured cells, SH2B1 acts as an adaptor to couple up-
stream activators to downstream effectors, to assemble 
a multiple-protein signaling complex, and/or to enhance 
the catalytic activity of  its bound enzymes. 

SH2B1 mediates/modulates leptin signaling: Leptin 
is an adipose hormone identified by Friedman and his 
colleagues using positional cloning[31]. Leptin deficiency 
results in morbid obesity in ob/ob mice[31], and recombi-
nant leptin fully corrects obesity and metabolic disorders 
in ob/ob mice[32-34]. Leptin exerts its biological action by 
binding to and activating its long form receptors (called 
LEPRb)[35-38]. LEPRb binds to JAK2, a cytoplasmic tyro-
sine kinase which also mediates GH, prolactin, erythro-
poietin (EPO), and other cytokine signaling[39,40]. Leptin 
stimulates tyrosine phosphorylation and activation of  
JAK2 which activates multiple downstream signaling 
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Figure 1  A schematic representation of SH2B1 isoforms. DD: Dimerization 
domain; PH: PH domain; SH2: SH2 domain; Y: Tyrosine; Numbers: Amino acid 
numbers. 



pathways, including the signal transducer and activator 
of  transcription 3 (STAT3) and the PI 3-kinase path-
ways[39,40]. Both the STAT3 and the PI 3-kinase pathways 
are required for leptin’s anti-obesity action[39,40]. Impaired 
leptin signaling and action (leptin resistance) are believed 
to be the primary risk factor for obesity[39,40].

We reported that leptin stimulates activation of  JAK2 
which subsequently autophosphorylates on Tyr813[41]. 
SH2B1 binds via its SH2 domain to phospho-Tyr813[41]. 
This physical interaction markedly increases JAK2 cata-
lytic activity, thus enhancing activation of  leptin signal-
ing pathways downstream of  JAK2[41-43]. In agreement, 
leptin-stimulated activation of  hypothalamic JAK2 is dra-
matically attenuated in SH2B1 knockout mice[10]. Leptin 
sensitivity has been well documented to be negatively 
regulated by protein tyrosine phosphatase 1B (PTP1B) 
and SOCS3[39,40]. Overexpression of  SH2B1 reverses PT-
P1B-induced inhibition of  leptin stimulation of  tyrosine 
phosphorylation of  STAT3[10]. Therefore, cellular leptin 
sensitivity is likely to be determined, at least in part, by 
the ability of  endogenous SH2B1 to counteract negative 
regulators such as PTP1B and SOCS3.

Leptin stimulates tyrosine phosphorylation of  insulin 
receptor substrate-1 (IRS1) and IRS2, and IRS proteins 
subsequently bind to the p85 regulatory submit of  PI 
3-kinase and activate the PI 3-kinase pathway[39,40,44]. Ge-
netic deletion of  IRS2 in LEPR-expressing cells results 
in leptin resistance and obesity in mice[45]. SH2B1 directly 
binds to both IRS1 and IRS2 in addition to JAK2[46]. In 
response to leptin, SH2B1 recruits IRS proteins to JAK2, 
thus allowing JAK2 to phosphorylate IRS proteins on ty-
rosine residues[46]. Accordingly, in SH2B1 knockout mice, 
leptin is unable to stimulate tyrosine phosphorylation of  
hypothalamic IRS2[10]. SH2B1 is likely to mediate leptin 
stimulation of  the PI 3-kinase pathway by coupling JAK2 
to IRS proteins (Figure 2).

SH2B1 C-terminal SH2 domain binds to phospho-
Tyr813 in JAK2 as discussed above; in contrast, its N-ter-
minal region binds to different sites on JAK2 in a tyrosine 
phosphorylation-independent manner[43]. Similarly, SH2B1 
binds to phospho-tyrosine(s) of  IRS1 or IRS2 via its SH2 
domain, and binds to other sites on IRS proteins via its 
PH domain-containing regions in a tyrosine phosphoryla-
tion-independent fashion[46]. SH2B1 forms homodimers 
or oligomers via its N-terminal domains[15-17]. Each indi-
vidual SH2B1 molecule is able to bind to JAK2 and/or 
IRS proteins; therefore, SH2B1 dimers or oligomers are 
predicted to assemble a large signaling complex contain-
ing multiple copies of  JAK2 and IRS proteins (Figure 2). 
Physical proximity allows JAK2 to transphosphorylate 
and activate each other in this complex, contributing to 
SH2B1 stimulation of  JAK2 activation and leptin signal-
ing. Additionally, this highly-organized SH2B1/JAK2/IRS 
complex may also provide a permissive condition for 
JAK2 to efficiently phosphorylate IRS proteins and acti-
vate the PI 3-kinase pathway in response to leptin. 

SH2B1 enhances insulin and IGF-1 signaling: SH2B1 
was reported to bind to insulin receptors (IRs) via its SH2 
domain[18]. Insulin stimulates the binding of  SH2B1α 
to phospho-Tyr1158, Tyr1162 and/or Tyr1163 within the IR 
activation loop, and IRs subsequently tyrosyl phosphory-
late SH2B1α[13,47]. Overexpression of  SH2B1β mark-
edly enhances the ability of  insulin to stimulate tyro-
sine phosphorylation of  IRS1 and IRS2[9]. In contrast, 
SH2B1β(R555E), which has a defective SH2 domain, acts 
as a dominant negative mutant to inhibit insulin signal-
ing[9]. Moreover, deletion of  SH2B1 impairs insulin sig-
naling in the skeletal muscle, adipose tissue, and livers of  
SH2B1 knockout mice[9]. 

Mechanistically, SH2B1-IR interaction markedly 
increases IR catalytic activity and IR-mediated tyrosine 
phosphorylation of  IRS proteins[48]. Replacement of  
IR Tyr1158 with Phe disrupts IR binding to SH2B1, and 
completely blocks the ability of  SH2B1β to stimulate IR 
kinase activity[48]. SH2B1α similarly increases IR catalytic 
activity[49]. Additionally, SH2B1β directly binds to tyrosyl 
phosphorylated IRS1 and IRS2 and protects IRS proteins 
against dephosphoarylation, thus prolonging the ability 
of  IRS proteins to activate their downstream pathways[48]. 
Accordingly, overexpression of  SH2B1α delays dephos-
phorylation of  IRS proteins in cells[50]. SH2B1 homodi-
mers and oligomers are predicted to simultaneously bind 
to both IRs and IRS proteins and assemble a large, high-
ly-organized signaling complex, thereby increasing insulin 
signaling specificity and efficiency.

SH2B1 also binds via its SH2 domain to IGF-1 recep-
tors[14], and is predicted to promote IGF-1 signaling in a 
similar fashion.

SH2B1 enhances TrkA, TrkB and TrkC signaling: 
Amino acid sequence analysis reveals that like IRs, Trk 
family members (TrkA, TrkB and TrkC) contain potential 
SH2B1-binding site(s) within their activation loops. NGF 
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Figure 2 A model of Src homology 2B1 regulation of leptin signaling. 
The Src homology 2B1 (SH2B1) homodimers bind to JAK2, IRS1, and/or 
IRS2. SH2B1-JAK2 interaction increases JAK2 kinase activity, thus globally 
enhancing leptin signaling. JAK2 phosphorylates STAT3 which subsequently 
homodimerizes, translocates into the nucleus, and activates its target genes. 
SH2B1-IRS1/2 interaction allows JAK2 to phosphorylate IRS proteins which 
subsequently activate the PI 3-kinase pathway. Both the STAT3 and the PI 
3-kinase pathways are required for leptin to control energy balance and body 
weight. JAK2: Janus kinase 2; IRS1: Insulin receptor substrate-1; STAT3: Sig-
nal transducer and activator of transcription 3.
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signaling: SH2B1 binds via its SH2 domain to tyrosyl 
phosphorylated platelet-derived growth factor (PDGF) 
receptors in response to PDGF-BB stimulation[62]. PD
GF-BB stimulates phosphorylation of  SH2B1 on Tyr/
Ser/Thr residues[62]. PDGF-BB is able to stimulate tyro-
sine phosphorylation of  all four isoforms of  SH2B1[14]. 
PDGF receptors directly phosphorylate SH2B1 on Tyr439 
residue[23].

Glial cell line-derived neurotrophic factor (GDNF) 
stimulates the binding of  SH2B1β to GDNF receptor 
RET through SH2B1β SH2 domain and RET phospho-
Tyr981 motifs[63,64]. This interaction increases RET kinase 
activity, RET autophosphorylation, and RET-mediated 
tyrosine phosphorylation of  STAT3[64].

SH2B1 directly interacts with fibroblast growth fac-
tor receptor 3 (FGFR3) and is tyrosyl phosphorylated by 
FGFR3[65]. The SH2 domain of  SH2B1 binds to phos-
pho-Tyr724 and phospho-Tyr760 of  FGFR3, and the inter-
action increases the ability of  FGFR3 to phosphorylate 
and activate STAT5[65].

SH2B1 regulates multiple cellular responses
In cultured cells, SH2B1 has been demonstrated to regu-
late multiple cellular processes, including migration, pro-
liferation, and differentiation.

SH2B1 regulates actin cytoskeletal reorganization 
and cell motility: SH2B1 is able to regulate cell mor-
phology, adhesion, and motility through modifying actin 
cytoskeletal reorganization in cultured cells. SH2B1β is 
detected in membrane ruffles, filopodia, and focal adhe-
sions[26,59], and is colocalizated with filamentous actin (F-
actin) in membrane ruffles[66]. SH2B1β binds via both 
its N-terminal (amino acids 150-200) and C-terminal 
regions (amino acids 615-670) to F-actin, and promotes 
actin filament cross-link[59]. SH2B1 directly binds via its 
amino acids 200-260 to the actin-binding protein fila-
min A[67]. Additionally, SH2B1 binds via its amino acids 
85-106 to Rac, a critical regulator of  actin cytoskeletal 
reorganization[68].

SH2B1 mediates GH regulation of  cell adhesion 
and migration. GH increases the cycling of  SH2B1 into 
and out of  focal adhesions[26], and promotes SH2B1 
colocalization with F-actin in membrane ruffles[66]. Over-
expression of  SH2B1β, but not SH2 domain-defective 
SH2B1β(R555E), enhances the ability of  GH to stimu-
late both membrane ruffles in 3T3-F442A fibroblasts[59,66] 
and macrophage migration[56]. In fact, SH2B1β(R555E) 
blocks GH-induced lamellipodia dynamics in 3T3-F442A 
cells[68]. Both the N-terminal region (amino acids 85-106) 
and the SH2 domain of  SH2B1β are required for GH 
stimulation of  cell motility[68]. Additionally, SH2B1β mu-
tants lacking Tyr439 and Tyr494 phosphorylation sites are 
unable to enhance GH-stimulated membrane ruffling in 
3T3-F442A fibroblasts[23] and GH-stimulated motility of  
RAW264.7 macrophages[56]. SH2B1-Rac interaction is 
involved in mediating GH-promoted actin cytoskeletal 
reorganization and cell motility[68].

stimulates both the binding of  SH2B1 to NGF receptor 
TrkA and phosphorylation of  SH2B1 on Tyr/Ser/Thr 
residues in PC12 cells[21,25]. NGF also stimulates the bind-
ing of  TrkA to both SH2B1 and SH2B2 in primary neu-
rons[51]. SH2B1-TrkA interaction is mediated by the SH2 
domain of  SH2B1 and phospho-Tyr679, -Tyr683 and/or 
-Tyr684 within TrkA activation loop[21,25,51]. Additionally, 
SH2B1α binds via its proline rich regions (amino acids 
394-504 between the PH and SH2 domains) to Grb2, 
contributing to NGF-stimulated activation of  the MAPK 
pathway[51]. Overexpression of  SH2B1β also enhances 
NGF-stimulated activation of  Akt in PC12 cells[52]. 

Brain-derived neurotrophic factor (BDNF) or neu-
rotrophin-3 (NT-3) similarly stimulates the binding of  
SH2B1 to TrkB or TrkC, respectively, and they also stim-
ulate tyrosine phosphorylation of  SH2B1[51,53,54]. Unlike 
JAK2 and IRs, TrkB kinase activity is not enhanced by 
SH2B1[53]. 

SH2B1 regulates GH, prolactin, and EPO signal-
ing: JAK2 binds to GH receptors and mediates GH 
signaling[55]. GH stimulates the binding of  SH2B1 to 
JAK2 and robust tyrosine phosphorylation of  SH2B1 by 
JAK2 in 3T3-F442A fibroblasts[12]. GH stimulates JAK2-
mediated phosphorylation of  SH2B1 on Tyr439 and Tyr494 
residues[56]. Like leptin, GH stimulates phosphorylation 
of  JAK2 on Tyr813 which binds to the SH2 domain of  
SH2B1[57]. SH2 domain-phospho-Tyr813 interaction mark-
edly increases JAK2 activity, thus enhancing GH signaling 
(e.g., phosphorylation and activation of  STAT5B)[42,43]. 

JAK2 also mediates prolactin signaling[58]. Like GH, pro-
lactin stimulates tyrosine phosphorylation of  SH2B1[59]. 
Overexpression of  SH2B1β enhances prolactin signaling, 
including tyrosine phosphorylation of  JAK2[59].

Unlike GH, EPO stimulates the binding of  SH2B1 to 
EPO receptors rather than to JAK2[60]. SH2B1 constitu-
tively binds to unphosphorylated EPO receptors under 
basal conditions, and EPO stimulates phosphorylation of  
EPO receptors on Tyr343 and Tyr401 which subsequently 
bind to the SH2 domain of  SH2B1[60]. EPO rapidly stim-
ulates phosphorylation of  SH2B1 on Ser/Thr residues[60]. 
Knockdown of  SH2B1 increases EPO-stimulated ty-
rosine phosphorylation of  EPO receptors, JAK2, and 
ERK1/2, raising the possibility that SH2B1 may nega-
tively regulate EPO signaling[60]. 

SH2B1 binds to JAK1, JAK2 and JAK3, but it only 
stimulates JAK2, but not JAK1 and JAK3, kinase activ-
ity[61]. Both JAK1 and JAK2 are able to phosphorylate 
SH2B1 on Tyr439 and Tyr494, but Tyr439/Tyr494 phosphory-
lation does not affect the ability of  SH2B1 to stimulate 
JAK2[23]. The JAK family members mediate cell signal-
ing and action in response to numerous hormones and 
cytokines in addition to GH, prolactin, and EPO, so it is 
conceivable that SH2B1 may mediate or modulate cel-
lular responses to these hormones and cytokines through 
interacting with JAK family members.

SH2B1 regulates additional receptor tyrosine kinase 
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Overexpression of  SH2B1β similarly enhances pro-
lactin-stimulated membrane ruffling[59]. SH2B1 directly 
binds to filamin A, which appears to mediate prolactin 
stimulation of  membrane ruffling and cell motility[67]. 

SH2B1 promotes neuronal survival and neuronal dif-
ferentiation: Overexpression of  SH2B1β markedly en-
hances the ability of  NGF to stimulate neurite outgrowth 
in PC12 cells[25], and both SH2B1α and SH2B2 are able to 
promote NGF/TrkA-induced neuronal differentiation[51]. 
In contrast, overexpression of  SH2 domain-defective 
SH2B1(R555E) blocks NGF-induced neuronal differen-
tiation of  PC12 cells[25]. SH2B1β mutants lacking either 
the NES or the NLS also are unable to enhance NGF-
induced neuronal differentiation[19,20]. Overexpression of  a 
N-terminal (amino acids 1-499) truncated SH2B1 mutant, 
which lacks both NES and NLS, induces axon degenera-
tion in NGF-treated primary sympathetic neurons[51]. 
Moreover, neutralization of  endogenous SH2B1 with an-
ti-SH2B1 antibody decreases the survival of  primary sym-
pathetic neurons[51]. These observations suggest that the 
SH2 domain, NES, and NLS all are required for SH2B1 
to mediate NGF stimulation of  neuronal differentiation 
and survival.

SH2B1β also enhances GDNF/RET-induced neuro-
nal differentiation of  PC12 cells[63,64]. However, the mo-
lecular mechanisms, by which SH2B1 promotes neuronal 
survival, differentiation, and neurite outgrowth, remain 
largely unknown.

SH2B1 promotes mitogenesis and transformation: 
All four SH2B1 isoforms are able to increase the mito-
genic response to epidermal growth factor, IGF-1, and 
PDGF-BB[14,69]. SH2B1 increases the ability of  RET to 
promote transformation of  NIH 3T3 cells[64]. SH2B1 
is abnormally expressed in non-small cell lung cancer 
(NSCLC) tissues and NSCLC cell lines[70]. SH2B1 overex-
pression is associated with increased tumor grade, tumor 
size, lymph node metastasis in NSCLC patients[70].

Neuronal SH2B1 regulates body weight and nutrient 
metabolism in mice 
We reported that genetic deletion of  SH2B1 results in 
severe obesity and type 2 diabetes in mice[9,10].

Central SH2B1 regulates energy balance and body 
weight: We disrupt the SH2B1 gene to generate SH2B1 
knockout (KO) mice by DNA homologous recombina-
tion[9]. Exons 1-6, which encode the N-terminal region 
of  all four isoforms of  SH2B1, are replaced by a neo cas-
sette[9]. SH2B1-null mice are hyperphagic and morbidly 
obese[10]. Both SH2B1 KO males and females gain more 
body weights than wild type (WT) littermates after 7 wk 
of  age[10,71]. White adipose tissue mass and fat content are 
much higher in SH2B1 KO mice in either C57BL/6 or 
129Sv/C57BL mixed congenic background, and the size 
of  individual white adipocytes is also larger in SH2B1 
KO mice[10].

SH2B1 KO mice are extremely hyperphagic, causing 
obesity[10]. Surprisingly, energy expenditure, as estimated 
by O2 consumption and CO2 production, is also higher in 
SH2B1 KO mice than in WT littermates[10]. Accordingly, 
in the pair-feeding paradigm in which each individually-
housed mouse is fed the identical amount of  food daily, 
SH2B1 KO mice gain less body weights and become 
leaner than WT littermates[10].

Food intake is controlled largely by the brain, par-
ticularly the hypothalamus[72], so we generate SH2B1 
transgenic (Tg) mice in which a rat SH2B1β transgene 
is expressed specifically in neurons under the control of  
neuron-specific enolase promoter[27]. SH2B1β Tg mice 
are crossed with SH2B1 KO mice to generate TgKO 
mice which lack endogenous SH2B1 in all cell types but 
express recombinant SH2B1β specifically in neurons[27]. 
Neuron-specific restoration of  SH2B1β into SH2B1 
KO mice fully rescues the hyperphagic and obese phe-
notypes in TgKO mice[27]. Energy expenditure, which 
is abnormally higher in SH2B1 KO mice, is normal in 
TgKO mice[27]. Furthermore, SH2B1β Tg mice, which 
contain homozygous SH2B1β transgenes and overex-
press recombinant SH2B1β in the brain, resist HFD-
induced obesity[27]. These observations indicate that 
central SH2B1 is a key regulator of  energy balance and 
body weight. Multiple brain areas and neural circuits are 
involved in the control of  energy metabolism and body 
weight[72]; however, SH2B1 target neural circuits remain 
unknown.

Surprisingly, Ohtsuka et al[11] reported that disruption 
of  SH2B1 did not cause obesity, insulin resistance, and 
glucose intolerance; however, their subsequent studies 
show that their SH2B1 KO mice indeed display insulin 
resistance and glucose intolerance as we observed in our 
SH2B1 KO mice[9,73]. Since SH2B1 KO mice have high 
energy expenditure[10], a slight disturbance of  food intake 
is expected to lead to reduction in body weight. Thus, 
variations in house conditions and other environmental 
factors may contribute to body weight discrepancy be-
tween these studies.

SH2B1 KO mice have relatively normal somatic 
growth, indicating that SH2B1 is not required for GH 
stimulation of  body growth[9,11,71]. Nonetheless, it is still 
possible that SH2B1 may modulate GH regulation of  me-
tabolism and/or other physiological processes. 

Central SH2B1 regulates glucose and lipid metabo-
lism: Obesity is the primary risk factor for insulin resis-
tance and type 2 diabetes[39]. As expected, obese SH2B1 
KO mice develop hyperglycemia, hyperinsulinemia, glu-
cose intolerance, and insulin resistance[9,71]. Insulin signal-
ing is impaired in the skeletal muscle, adipose tissue, and 
livers of  SH2B1 KO mice[9]. SH2B1 KO male mice dis-
play frank type 2 diabetes after 7 mo of  age[9]. Moreover, 
SH2B1 haploinsuffiency predisposes to HFD-induced 
insulin resistance[9]. SH2B1 KO mice develop the symp-
toms of  metabolic syndrome, including hyperlipidemia, 
hepatic steatosis, and lipid accumulation in skeletal mus-
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cle[10]. Moreover, neuron-specific restoration of  SH2B1β 
reveres obesity, type 2 diabetes, and metabolic syndrome 
in TgKO mice[27]. These observations indicate that cen-
tral SH2B1 is absolutely required for the maintenance of  
normal glucose and lipid homeostasis in mice.

Central insulin and leptin are able to regulate systemic 
glucose and lipid metabolism independently of  their ac-
tion on energy balance and body weight[39,40,74-77]. SH2B1 
positively regulates both leptin and insulin signaling, so 
central SH2B1 may regulate peripheral glucose and lipid 
metabolism independently of  its action on energy bal-
ance and body weight.

Central SH2B1 positively regulates hypothalamic 
leptin sensitivity: Central SH2B1 controls food intake 
and body weight at least in part by enhancing leptin 
sensitivity in the brain. SH2B1 cell-autonomously en-
hances leptin signaling by promoting JAK2 activity and 
activation of  pathways downstream of  JAK2[41]. SH2B1 
also mediates leptin-stimulated activation of  the PI 
3-kinase pathway by binding to IRS1/2 and recruiting 
IRS proteins to JAK2[46]. SH2B1 KO mice display se-
vere hyperleptinemia, a hallmark of  leptin resistance[10]. 
Hyperleptinemia develops prior to the onset of  obesity, 
suggesting that leptin resistance is a causal factor for 
obesity progression in SH2B1 KO mice[10]. In agreement, 
exogenous leptin is unable to suppress food intake and 
weight gain in SH2B1 KO mice, and has reduced abil-
ity to stimulate phosphorylation of  hypothalamic JAK2, 
STAT3 and IRS2 in these mice[10]. Furthermore, neuron-
specific expression of  recombinant SH2B1β in SH2B1-
null mice reverses hyperleptinemia, leptin resistance, 
hyperphagia, and obesity in TgKO mice[27]. However, 
neuron-specific expression of  SH2B1β(R555E) is unable 
to rescue leptin resistant, hyperphagic, and obese phe-
notypes in SH2B1-null mice[78], suggesting that the SH2 
domain of  SH2B1 is required for its anti-obesity action. 
Like SH2B1 KO mice, SH2B1β(R555E) transgenic mice 
develop obesity, insulin resistance, hyperglycemia, and 
glucose intolerance[78], suggesting that SH2B1β(R555E) 
blocks the action of  endogenous SH2B1 as a dominant 
negative mutant. 

Orexigenic agouti-related protein (AgRP) neurons 
and anorexigenic proopiomelanocortin (POMC) neurons 
in the arcuate nucleus are key leptin targets[39]. Leptin 
suppresses the expression of  AgRP and neuropeptide Y 
(NPY) but stimulates POMC expression[72]. The expres-
sion of  hypothalamic AgRP and NPY is higher in SH2B1 
KO mice[10], and neuron-specific expression of  SH2B1β 
in SH2B1 KO mice normalizes AgRP and NPY expres-
sion[27]. By contrast, the expression of  hypothalamic 
POMC is normal in SH2B1 KO mice[10]. Since SH2B1 
KO mice develop severe hyperleptinemia[10], leptin-
stimulated expression of  POMC may still be impaired in 
SH2B1-null mice. 

Leptin promotes energy expenditure[39]; therefore, 
increased energy expenditure in SH2B1 KO mice cannot 
be explained by leptin resistance. It is likely that central 

SH2B1 regulates energy metabolism by an additional 
leptin-independent mechanism. SH2B1 is able to mediate 
or modulate cell signaling in response to multiple factors 
as described above. These pathways may be involved in 
central regulation of  energy balance and body weight. 
For instance, SH2B1 enhances BDNF signaling[51,54]. Cen-
tral administration of  BDNF suppresses food intake and 
weight gain; conversely, haploinsufficiency of  BDNF or 
TrkB leads to hyperphagia and obesity in mice[79-83]. Muta-
tions in either BDNF or TrkB are associated with obesity 
in humans[82,84]. Therefore, neuronal SH2B1 may regulate 
energy metabolism and body weight by enhancing TrkB 
signaling in addition to LEPRb signaling in the brain. 

Peripheral SH2B1 regulates glucose and lipid 
metabolism in mice 
SH2B1 is expressed in both central and peripheral tis-
sues[27], and peripheral SH2B1 also regulates nutrient me-
tabolism.

Peripheral SH2B1 regulates insulin sensitivity and 
glucose metabolism: TgKO mice, which lack endog-
enous SH2B1 in all tissues but express SH2B1β trans-
genes in the brain, have relatively normal blood glucose, 
plasma insulin, and glucose tolerance[27]. These observa-
tions suggest that peripheral SH2B1 is not required for 
the maintenance of  insulin sensitivity and glucose me-
tabolism in mice fed a normal chow diet. We feed TgKO 
mice a HFD for 16 wk to induce metabolic stress. TgKO 
mice develop more severe HFD-induced hyperglycemia, 
hyperinsulinemia, insulin resistance, and glucose intoler-
ance, even though they have similar body weight and fat 
content as WT mice[48]. Insulin signaling in skeletal mus-
cle, adipose tissue, and the liver is impaired to a greater 
extent in HFD-fed TgKO mice[48], and these mice display 
more severe hepatic steatosis[85]. Thus, peripheral SH2B1 
promotes insulin signaling and glucose and lipid metabo-
lism under obesity conditions.

SH2B1 in pancreatic β cells promotes β cell expansion 
and insulin secretion: Pancreatic β cells express high lev-
els of  several SH2B1 isoforms[86]. To examine the role of  
β cell SH2B1, we generate pancreas-specific SH2B1 KO 
(PKO) mice, using the Pdx1-cre/loxp system[86]. PKO mice 
have normal body weight, blood glucose, insulin sensitiv-
ity, and glucose tolerance; however, they develop more 
severe HFD-induced glucose intolerance[86]. Pancreatic 
insulin content, β cell mass, and glucose-stimulated insu-
lin secretion are significantly lower in PKO than control 
mice fed a HFD, and PKO islets have more apoptotic 
cells and less mitotic cells[86]. These observations indicate 
that SH2B1 in β cells is required for HFD-induced com-
pensatory β cell expansion to counteract insulin resis-
tance in obesity. 

SH2B1 appears to directly promote β cell expansion 
by both promoting proliferation and inhibiting apop-
tosis[86]. In a rat INS-1 832/13 β cell line, silencing of  
SH2B1 decreases, whereas overexpression of  SH2B1β 
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increases, β cell toxin streptozotocin (STZ)-induced 
apoptosis[86]. In line with these findings, PKO mice are 
more susceptible to STZ-induced β cell destruction, insu-
lin deficiency, and glucose intolerance[86]. Mechanistically, 
SH2B1 directly enhances insulin and IGF-1 signaling in 
β cells[86], and both insulin and IGF-1 potently increase 
β cell survival and proliferation[87-91]. Therefore, β cell 
SH2B1 cell-autonomously promotes β cell survival, pro-
liferation, and expansion under stress conditions at least 
in part by enhancing insulin and IGF-1 signaling in β 
cells. 

Hepatic SH2B1 regulates liver triacylglycerol content 
and very low-density lipoprotein secretion: SH2B1 
is also highly expressed in the liver[27], so we generate 
hepatocyte-specific SH2B1 KO (HKO) mice using the 
albumin-cre/loxP system[85]. Surprisingly, somatic growth, 
body weight, insulin sensitivity, and glucose metabolism 
are similar between HKO and control mice fed either a 
normal chow diet or a HFD[85]. Adult-onset deletion of  
SH2B1 in the liver also does not alter insulin sensitivity 
and glucose metabolism in mice fed a HFD[85]. These 
data indicate that hepatic SH2B1 is dispensable for the 
maintenance of  systemic insulin sensitivity and glucose 
metabolism in mice. However, adult-onset deletion of  
liver SH2B1 decreases liver triacylglycerol content in mice 
fed a HFD[85], suggesting that hepatic SH2B1 regulates 
hepatocyte lipid metabolism. Liver-specific deletion of  
SH2B1 alone does not alter very low-density lipoprotein 
(VLDL) secretion; however, deletion of  liver SH2B1 
in SH2B2 knockout mice decreases VLDL secretion[85]. 
These observations suggest that liver SH2B1 and SH2B2 
act redundantly to promote VLDL secretion. 

SH2B1 regulates reproduction in mice
SH2B1 is highly expressed in testes and ovaries, and 
systemic deletion of  SH2B1 severely impairs fertility in 
both male and female mice[11]. Ovary size and follicle 
number are lower in SH2B1 KO females; similarly, testis 
size and sperm number are also lower in SH2B1 KO 
males[11]. SH2B1 deficiency impairs both follicle-stimu-
lating hormone and IGF-1 signal transduction in ovaries, 
which may contribute to impaired fertility in SH2B1 KO 
mice[11].

Metabolic function of SH2B1 in humans
SH2B1 rs7498665, the first human SH2B1 single nucleo-
tide polymorphism (SNP), was reported in 2007[92]. It is 
associated with hyperleptinemia, increased body weight, 
increased total fat, and increased waist circumference in a 
United Kingdom white female cohort[92].

Human SH2B1 is a candidate obesity gene: In 2009, 
two groups independently reported that SH2B1 rs7498665 
is genetically linked to human obesity in genome-wide 
association studies (GWAS) on large populations[93,94]. 
Since then, SH2B1 rs7498665 has been reported to be 
associated with human obesity in Swedish adults[95], Bel-

gian adults[96], children of  European ancestry[97], Chinese 
women[98], Hong Kong Chinese[99], Japanese adults[100], 
the MONIKA/KORA cohort[101], a Mexican cohort[102], 
and a African-American cohort[103]. SH2B1 rs7498665 
risk allele is associated with increased visceral adiposity in 
Japanese[104] and German[105]. SH2B1 rs7498665 is also as-
sociated with increased fat intake in Dutch females[106].

Several additional SH2B1 SNPs have been described 
since 2009. In GWAS, SH2B1 rs7359397 is associated 
with obesity in 249796 adult individuals of  European 
ancestry[107] and in Danish adults[108]. SH2B1 rs4788102 
is associated with obesity in Chinese girls[109] and in Japa-
nese populations[100]. SH2B1 rs4788099 is associated with 
increased body mass index (BMI) in individuals of  Euro-
pean ancestry[110], and is linked to more servings of  dairy 
products[111]. SH2B1 rs8055982 is associated with severe 
obesity in children of  European ancestry[97].

Aside from SH2B1 SNPs, chromosomal 16p11.2 
deletion is associated with severe obesity in European co-
horts[112-115]. The deleted region contains the SH2B1 gene. 
In contrast, chromosomal 16p11.2 duplication is associ-
ated with underweight in humans[116].

Several SH2B1 non-synonymous variants have been 
identified. SH2B1 rs7498665 risk allele encodes a non-
synonymous substitution of  Thr484Ala[92]. However, 
Thr484Ala substitution alone is not sufficient to cause 
obesity[117], raising the possibility that other unidentified 
SH2B1 mutations, which co-segregate with rs7498665, 
may increase risk for obesity. Several SH2B1 missense 
mutations (P90H, T175N, P322S and F344LfsX20) were 
reported to be genetically linked to obesity and insulin 
resistance in mixed European descents[118]. F344LfsX20A 
mutation causes a frameshift, resulting in production of  
a C-terminally-truncated SH2B1 variant lacking the entire 
SH2 domain[118]. A separate study reported that SH2B1 
g.9483(C/T) missense mutation, but not Thr175Asp 
non-synonymous variant (rs147094247), is linked to 
obesity[119]. SH2B1 g.9483(C/T) mutation results in 
generation of  non-synonymous SH2B1β(Thr656Ile) 
and SH2B1γ(Pro674Ser) variants[119]. Four additional 
rare non-synonymous variants (G131S, V209I, L293R, 
M465T, and W649G) have been identified in Chinese 
populations[120]. V209I and M465T variants are detected 
in obese children, whereas G131S, L293R and W649G 
variants are observed in lean children[120].

None of  the above human SH2B1 variants has been 
verified in animal models to be a causal factor for obesity 
or obesity-associated metabolic syndrome. We reported 
that neuron-specific expression of  SH2 domain-defec-
tive SH2B1β(R555E), which is functionally similar to 
F344LfsX20A variant, is sufficient to cause obesity and 
insulin resistance in mice[78]. These findings raise the pos-
sibility that F344LfsX20A non-synonymous variant may 
be a causal factor for obesity in humans. 

SH2B1 mutations increase risk for type 2 Diabetes in 
humans: Obesity is the primary risk factor for insulin 
resistance and type 2 diabetes[39], so SH2B1 risk alleles 
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are expected to be associated with type 2 diabetes in hu-
mans. SH2B1 rs7498665 is associated with type 2 diabetes 
in both United Kingdom[92] and French populations[121]. 
Heterozygous carriers of  a P90H, T175N, P322S, or 
F344LfsX20 non-synonymous variant develop severe 
early-onset obesity as well as insulin resistance and type 2 
diabetes[118].

We reported that peripheral SH2B1 regulates insulin 
sensitivity and glucose metabolism independently of  its 
action on body weight in mice[48]. SH2B1 in pancreatic β 
cells directly promotes β cell expansion and insulin secre-
tion in mice[86]. Hepatic SH2B1 regulates liver lipid levels 
and VLDL secretion[85]. In agreement, SH2B1 rs4788102 
is associated with type 2 diabetes after adjustment for 
BMI in Japanese[100]. SH2B1 rs7498665 is associated with 
increased risk for type 2 diabetes independently of  BMI 
in middle aged Danes[122]. SH2B1 rs7359397 is associated 
with insulin resistance after adjustment of  BMI in Swe-
den men at 71 years of  age[123]. Thus, SH2B1 also regu-
lates nutrient metabolism by a body weight-independent 
mechanism.

SH2B1 may regulate multiple physiological processes 
in humans: Chromosomal 16p11.2 deletion, which results 
in loss of  SH2B1, is associated with cognitive deficits, 
developmental delays[112-115], and autism[115]. Chromosomal 
16p11.2 deletion is also linked to abnormal renal and en-
teric development in humans[124]. SH2B1 rs4788102 (G/A) 
is associated with increased circulating triacylglycerol lev-
els in the Northern Swedish Population Health Study co-
hort[125], and is linked to myocardial infarction[126]. SH2B1 
rs7498665 G allele is linked to increased bone mineral 
density in Japanese women[127]. However, none of  these 
potential functions have been verified in animal models.

Metabolic function of SH2B1 is evolutionarily conserved 
We reported that insulin stimulates the binding of  Dro-
sophila SH2B (also called Lnk) to Chico, a homologue of  
mammalian IRS proteins[5]. Almudi et al[128] showed that 
Drosophila SH2B binds to both Chico and insulin recep-
tors in Drosophila cells. SH2B-deficient flies display de-
fects in insulin/IGF signaling, developmental delay, small 
size, and female sterility[4,5]. Like SH2B1 null mice, SH2B-
deficient flies accumulate abnormally-high levels of  lipids 
in their fat bodies[4,5,129].

Interestingly, loss of  SH2B increases resistance to 
oxidative stress as well as lifespan in flies, suggesting that 
SH2B may regulate aging and longevity[5,129]. However, 
SH2B1-null mice have a shorter lifespan compared with 
WT littermates[5]. Obesity and obesity-associated diseases 

may contribute to early death of  SH2B1-null mice. Thus, 
the role of  mammalian SH2B family members in aging 
remains unclear. 

METABOLIC FUNCTION OF SH2B2
SH2B2 was originally identified in 1997[2], and the amino 
acids of  its SH2 and PH domains are 78% and 63% iden-
tical to that of  SH2B1, respectively. 

SH2B2 structure
Crystal structure analysis reveals that the N-terminal 
region of  SH2B2 mediates its homodimerization via a 
Phe zipper[15]. The C-terminal SH2 domain is also able 
to form a dimer[130]. SH2B2 dimerization is predicted to 
induce and/or stabilize dimerization of  its binding pro-
teins, including JAK2, insulin receptors, or IGF-1 recep-
tors, thus promoting activation of  these kinases[15,130].

The SH2B2 gene also generates an additional C-ter-
minally-truncated isoform (named SH2B2β) through 
alternative mRNA splicing[131]. SH2B2β contains N-ter-
minal DD and PH domains but lacks C-terminal SH2 
domain (Figure 3). SH2B2β binds to both SH2B1 and 
SH2B2 via its DD domain and acts as an endogenous 
dominant negative variant to inhibit SH2B1 and SH2B2 
signaling[131].

SH2B2 regulates insulin signaling and glucose 
metabolism
Like SH2B1, SH2B2 binds via its SH2 domain to 
phospho-Tyr1158 in the activation loop of  insulin recep-
tors[130,132,133]. Insulin stimulates phosphorylation of  
SH2B2 on Tyr618 residue in adipocytes[132-134]. Insulin stim-
ulates tyrosine phosphorylation of  SH2B2 to a higher 
level than that of  SH2B1[50]. IGF-1 and IGF-Ⅱ also stim-
ulate tyrosine phosphorylation of  SH2B2[135]. Addition-
ally, insulin also stimulates Akt-mediated phosphorylation 
of  SH2B2 on Ser588 residue[136].

The role of  SH2B2 in insulin action is complex. 
SH2B2 overexpression prolongs insulin-stimulated ty-
rosine phosphorylation of  insulin receptors and IRS 
proteins[50]. Phospho-Tyr618 binds to the tyrosine kinase-
binding domain of  c-Cbl and promotes c-Cbl phos-
phorylation by insulin receptors[134,137,138]. Accordingly, 
knockdown of  SH2B2 inhibits insulin-stimulated tyrosine 
phosphorylation of  c-Cbl[139]. SH2B2 also enhances in-
sulin-stimulated phosphorylation of  Cbl-b on Tyr665 and 
Tyr709 residues[140]. SH2B2 directly binds to SHIP2 and 
increases SHIP2 activity, and SHIP2 in turn negatively 
regulates insulin-stimulated tyrosine phosphorylation of  
SH2B2 and its interaction with c-Cbl[141]. Furthermore, 
SH2B2 mediates insulin-stimulated plasma membrane 
translocation of  both c-Cbl and Cbl-b in adipocytes[140]. 
SH2B2 also binds to CAP[134,139] and mediates the activa-
tion of  the CAP/Cbl/Crk/C3G/TC10 pathway in adipo-
cytes[142]. The SH2B2/CAP/Cbl/Crk/C3G/TC10 path-
way is believed to be required for insulin stimulation of  
GLUT4 trafficking and glucose uptake in adipocytes[142]; 
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Figure 3  A schematic representation of SH2B2 isoforms. DD: Dimerization 
domain; PH: PH domain; SH2: SH2 domain; Y: Tyrosine.
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consistently, overexpression of  SH2B2(Y618F) inhib-
its insulin-stimulated GLUT4 trafficking[134]. However, 
SH2B2 also promotes c-Cbl-mediated ubiquitination and 
internalization of  insulin receptors, thus inhibiting insu-
lin signaling[138,143]. Additionally, SH2B2 binds to Asb6, a 
SOCS family member that may negatively regulate insulin 
signaling[144].

Deletion of  SH2B2 increases insulin sensitivity in 
mice[6]. We reported that deletion of  SH2B2 does not af-
fect HFD-induced insulin resistance and glucose intoler-
ance in SH2B2 KO mice in either 129Sv/C57BL mixed 
or C57BL congenic background[71]. Deletion of  SH2B2 
in SH2B1 KO mice also does not further exacerbate obe-
sity and insulin resistance in SH2B1 and SH2B2 double 
KO mice relative to SH2B1 KO mice[71]. The metabolic 
function of  SH2B2 remains unclear. 

SH2B2 regulates cytokine signaling and immune 
response 
Like SH2B1, SH2B2 binds via its SH2 domain to JAK1, 
JAK2 and JAK3, and is tyrosyl phosphorylated by these 
kinases[61,145]. SH2B2 binds via both its SH2 domain and 
non-SH2 domain regions to JAK2, and its SH2 domain 
binds to phospho-Tyr813 of  JAK2[16,146]. Unlike SH2B1, 
SH2B2 is unable to activate, or only slightly activates, 
JAK2[61,146]. Multiple cytokines, including interferon-γ, 
EPO, leukemia inhibitor factor, granulocyte-macrophage 
colony stimulating factor, interleukin-5 (IL-5) and IL-3, 
stimulate tyrosine phosphorylation of  SH2B2, presum-
ably through JAK family members[135,145,147]. Stem cell fac-
tor stimulates the binding of  SH2B2 via its SH2 domain 
to phospho-Tyr568 and -Tyr936 of  c-Kit and subsequent 
tyrosine phosphorylation of  SH2B2[2,148]. SH2B2 binds 
via its SH2 domain to phospho-Tyr343 of  EPO recep-
tors[145] , and it also binds via its phospho-Tyr618 motif  
to c-Cbl and recruits c-Cbl E3 ligase to EPO receptors, 
thereby inhibiting the JAK2/STAT5 pathway in hema-
topoietic cell lines[145]. SH2B2 is colocalized with B cell 
antigen receptors (BCRs) and negatively regulates BCR 
signaling, and it is tyrosyl phosphorylated in response to 
BCR activation[2,149,150]. 

SH2B1 and SH2B2 play different roles in regulat-
ing immune cell function. Deletion of  SH2B1 does 
not affect the development of  T and B lymphocytes 
and mast cells in mice[11]. In contrast, SH2B2-deficient 
mast cells display augmented degradulation after cross-
linking FcRI[151]. SH2B2 is expressed in B cells but not 
in T cells[150]. Overexpression of  SH2B2 in lymphocytes 
impairs BCR-induced B cell proliferation and reduces B-1 
and B-2 cell number in SH2B2 transgenic mice[150]. Con-
versely, SH2B2 KO mice have increased B-1 cell number, 
and SH2B2-deficient B cells display enhanced response 
to trinitrophenol-Ficoll, a thymus-independent type 2 
antigen[149]. SH2B2 appears to be a negative regulator of  a 
subset of  immune cells.

SH2B2 regulates multiple signaling pathways in cultured 
cells 
Like SH2B1, SH2B2 binds via its SH2 domain to phos-

pho-Tyr679, -Tyr683 and/or -Tyr684 of  TrkA in response 
to NGF[51]. BDNF and NT-3 also stimulate the bind-
ing of  SH2B2 to TrkB and TrkC, respectively[51]. NGF, 
BDNF and NT-3 stimulate tyrosine phosphoryation of  
SH2B2[51]. SH2B2 promotes NGF-induced neuronal dif-
ferentiation of  PC12 cells[51].

PDGF-BB stimulates the binding of  SH2B2 via its 
SH2 domain to phospho-Tyr1021 of  PDGFRβ, and SH2B2 
in turn inhibits PDGF-stimulated phosphorylation of  
PLC-γ by competing for phospho-Tyr1021 site with 
PLC-γ[135]. Additionally, PDGF-BB stimulates phosphor-
ylation of  SH2B2 on Tyr618 which binds to c-Cbl, which 
recruits c-Cbl E3 ligase to PDGFR complex to nega-
tively regulate PDGFR signaling and PDGFR-promoted 
mitogenesis[135].

FUTURE DIRECTION
Study of  the SH2B family is in its early stages, and many 
important questions remain unaddressed. Central SH2B1 
is required for the maintenance of  normal energy bal-
ance, body weight, and nutrient metabolism; however, 
SH2B1 target neurons and neural circuits are unknown. 
It is unclear whether and how central SH2B1 regulates 
nutrient mobilization, utilization, and metabolism by a 
body weight-independent mechanism, and whether and 
how SH2B1 regulates neuronal activity by a leptin- and 
insulin-independent mechanism. Numerous SH2B1 mu-
tations are associated with obesity and type 2 diabetes in 
humans; however, it is unclear whether these mutations 
are causal factors for the diseases. Does central SH2B1 
regulate higher brain function independently of  its action 
on body weight and metabolism? Do posttranslational 
modifications affect SH2B1 function? Do SH2B2 and 
SH2B3 play a role in nutrient metabolism? Can we treat 
obesity and type 2 diabetes by targeting SH2B family 
members?
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