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Abstract
Protein kinase C-β (PKCβ), a member of the lipid-
activated serine/threonine PKC family, has been impli-
cated in a wide range of important cellular processes. 
Very recently, the novel role of PKCβ in the regulation 
of triglyceride homeostasis via  regulating mitochondrial 
function has been explored. In this review, I aim to 
provide an overview of PKCβ regarding regulation by 
lipids and recently gained knowledge on its role in en-
ergy homeostasis. Alterations in adipose PKCβ expres-
sion have been shown to be crucial for diet-induced 
obesity and related metabolic abnormalities. High-fat 
diet is shown to induce PKCβ expression in white adi-
pose tissue in an isoform- and tissue-specific manner. 
Genetically manipulated mice devoid of PKCβ are lean 
with increased oxygen consumption and are resistant 
to high-fat diet-induced obesity and hepatic steatosis 
with improved insulin sensitivity. Available data support 
the model in which PKCβ functions as a “diet-sensitive” 
metabolic sensor whose induction in adipose tissue by 
high-fat diet is among the initiating event disrupting mi-
tochondrial homeostasis via  intersecting with p66Shc sig-
naling to amplify adipose dysfunction and have systemic 
consequences. Alterations in PKCβ expression and/or 

function may have important implications in health and 
disease and warrants a detailed investigation into the 
downstream target genes and the underlying mecha-
nisms involved. Development of drugs that target the 
PKCβ pathway and identification of miRs specifically 
controlling PKCβ expression may lead to novel thera-
peutic options for treating age-related metabolic dis-
ease including fatty liver, obesity and type 2 diabetes.
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Core tip: Nutrition has important long-term conseque
nces for health. It is one of the lifestyle factors that 
contribute to the development and progression of obe-
sity (increased fat accumulation), diabetes, and cardio-
vascular diseases. In fact, obesity rates are increasing 
dramatically worldwide and obesity amplifies the risk of 
developing various age-related chronic diseases, such 
as type 2 diabetes and cardiovascular disease. The pre-
vention or management of chronic diseases is a global 
priority since they constitute a serious strain on health 
care systems and account for more than half of the 
deaths worldwide. Although correct lifestyle remains 
the mainstream solution to this problem, pharmacologi-
cal strategies are also being actively seeked. Current 
antiobesity strategies have not controlled increasing 
epidemic of obesity and obesity-related disorders. We 
hope that a better knowledge of the molecular play-
ers and biochemical mechanism linking dietary fat to 
fat accumulation and development of glucose intoler-
ance are critically needed. This review examines a way 
of metabolizing dietary fat into heat instead of storing 
them as fat, and the possibility that the “browning” of 
white fat is regulated by a diet-inducible kinase Protein 
kinase C-β (PKCβ) may help us explore new transla-
tional approaches to combat obesity, improve insulin 
sensitivity and potentially increase longevity. Finally, 
attenuation of inflammation in fat by PKCβ inhibition 
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could have profound clinical consequences because of 
the large size of the fat organ and its central metabolic 
role.
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INTRODUCTION
Protein kinase C (PKC) family is the largest serine/thre-
onine-specific kinase family known to comprise approxi-
mately 2% of  the human kinome[1]. PKCs are broadly 
conserved in eukaryotes, ranging in complexity from a 
single isoform in budding yeast (Saccharomyces cerevi-
siae) to 5 isoforms in Drosophila melanogaste and 12 in 
mammals[2,3]. Three distinct subfamilies can be identified 
according to their dependency on three combinations of  
activators: conventional (α, βⅠ, βⅡ, γ) require phospha-
tidylserine, diacylglycerol, and Ca2+; novel (δ, ε, η, θ) need 
phosphatidylserine (PS) and DAG but not Ca2+; atypical 
PKCs (λ/l, ζ) are insensitive to both DAG and Ca2+. PKC 
isoforms differ in primary structure, tissue distribution, 
subcellular localization, in vitro mode of  action, response 
to extracellular signals, and substrate specificity. The role 
of  individual PKC isoform is thought to be determined 
through sub isoform-specific activation processes or iso-
form-specific substrates in the region downstream of  the 
PKC pathway[4]. Specific role of  each isoform is begin-
ning to be understood using isoform-specific transgenic 
and knockout mouse models. PKCs have been extensively 
discussed in the literature, and the aim of  this review is to 
focus on the functions of  PKCβ in the context of  obesity 
and related metabolic syndromes.

REGULATION OF PKCβ ACTIVITY AND 
EXPRESSION BY LIPIDS
PKCβ is unique among all PKC isoforms in that a single 
gene locus encodes two proteins, PKCβⅠ and PKCβⅡ, 
which are generated by alternative splicing of  C-terminal 
exons and are shown to be physiologically relevant[5]. 
The difference between these two isoforms resides in the 
C-terminal V5 domains, which still exhibit a moderate 
homology (45%) at their amino acid sequences[6,7]. PKCβ 
is highly expressed in the brain and adipose tissue, and 
widely expressed at a lower level in multiple tissues in-
cluding liver, kidney, and skeletal muscle. Analysis of  the 
primary structure of  PKCβ reveals the presence of  four 
domains conserved across PKC isoforms (C1-C4) and 
five variable domains that are divergent (V1-V5). Two 
functional domains have been described: an amino ter-
minal regulatory domain and a carboxyl terminal catalytic 
domain. The regulatory domain (V1-V3) contains the so-
called pseudosubstrate site which is thought to interact 

with the catalytic domain to retain PKCβ in an inactive 
conformation. The regulatory domain also contains sites 
for the interaction of  PKC with PS, DAG/phorbol ester, 
and Ca2+. The Ca2+ dependency is mediated by the C2 
region, while phorbol-ester binding requires the presence 
of  two cysteine-rich zinc finger regions within the C1 
domain. The catalytic domain contains two conserved 
regions, C3 and C4, which are essential for the kinase 
activity and the binding of  adenosine-5’-triphosphate 
(ATP)/substrate (Figure 1).

In addition to the above specific inputs, other regu-
latory processes influence the function of  PKCβ, in-
cluding phosphorylation and interaction with specific 
binding partners. PKCβ is processed by three distinct 
phosphorylation events before it is competent to re-
spond to the coactivators and is phosphorylated at three 
conserved serine/threonine residues in the C-terminal 
domain[8]. Phosphorylation at the activation loop (Thr500) 
is generally proposed to be first and to be followed by 
two ordered phosphorylations at the C-terminal tail, the 
turn motif  (Thr641 in PKCβⅡ) and then the hydropho-
bic motif  (Ser660 in PKCβⅡ). The phosphorylation of  
the turn motif  depends on the mTORC2 complex; this 
phosphorylation triggers autophosphorylation of  the hy-
drophobic motif[9,10]. The fully-phosphorylated “mature” 
PKCβ is in a closed conformation in which the pseu-
dosubstrate occupies the substrate-binding cavity, thus 
autoinhibiting the kinase. Signals that cause hydrolysis 
of  phosphatidylinositol-4,5-bisphosphate result in trans-
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Figure 1  Domain composition of protein kinase C-β and its regulation at 
the transcriptional and posttranscriptional levels. A: Membrane-targeting 
modules (C1 and C2), pleckstrin homology domain, the pseudosubstrate re-
gion, the kinase core and the C-terminal tail; B: Schematic representation of 
promoter structure of protein kinase C-β gene. Approximate locations of known 
regulatory regions are indicated. ATP: Adenosine-5’-triphosphate; PHLPP: PH 
domain and leucine rich repeat protein phosphatases; PDK-1: 3-phosphoinosit-
ide-dependent protein kinase 1.



location of  PKCβ to the membrane by a low-affinity 
interaction where it binds DAG via the C1 domain. En-
gaging both the C1 and C2 domains on the membrane 
results in a high-affinity membrane interaction that 
results in release of  the pseudosubstrate, allowing down-
stream signaling. The membrane-bound conformation 
is highly phosphatase-sensitive, so that prolonged mem-
brane binding results in dephosphorylation of  PKCβ 
by pleckstrin homology domain Leucine-rich repeat 
protein phosphatase and PP2A, and subsequent degra-
dation[11]. Binding of  Hsp70 to the dephosphorylated 
turn motif  on the C-terminus stabilizes PKCβ, allowing 
it to become rephosphorylated and reenter the pool of  
signaling-competent PKC. PKCβ that is not rescued by 
hsp70 is ubiquitinated by E3 ligases such as the recently 
discovered RINCK and degraded[12].

PKCβ is also responsive to oxidative stress[13-15]. Why 
is PKCβ sensitive to oxidative stress? In the PKCβ struc-
ture, two pairs of  zinc fingers are found within the regu-
latory domain. They are sites of  DAG and phorbol ester 
binding. Each zinc finger is formed by a structure that is 
composed of  six cysteine residues and two zinc atoms. 
The high level of  cysteine residues renders the regulatory 
domain susceptible to redox regulation[16,17]. The oxidant 
destroys the zinc finger conformation, and the autoinhi-
bition is relieved, resulting in a PKCβ form that is cata-
lytically active in the absence of  Ca2+ or phospholipids[18].

Besides the lipid activation at the post-transcriptional 
level, PKCβ expression also fluctuates in response to 
high-fat diet intake. It is shown that feeding high-fat diet 
(HFD) for 12 wk induces adipose PKCβ expression in 
an isoform and tissue-specific manner[19]. The molecular 
mechanism(s) underlying transcription induction have 
yet to be elucidated but previous studies have cloned and 
sequenced PKCβ promoter[20-22]. A putative 5’-promoter 
region for PKCβ is identified and suggested that there is 
heterogeneity in the active promoter region dependent 
upon the cellular context. Analysis of  the 5’-promoter 
of  PRKCB revealed that a region between -110 bp and 
-48 bp contains two Sp1 binding sites which are im-
portant for basal expression of  PKCβ gene. In addition 
two PROX1 sites are also present 3’ to Sp1 sites and are 
involved in inhibiting Sp1-mediated basal transcription 
of  PKCβ promoter[23]. In fact, an inverse relationship be-
tween PROX1 and PKCβ levels exist in colon cancer cell 
lines. It was also found that treatment with a demethylat-
ing agent, 5-aza-2’-deoxycytidine, restored PKCβ mRNA 
expression in PROX1-expressing cells, suggesting that 
the 5’-promoter of  PKCβ is methylated in these cells[23]. 
Actually, a CpG island in this region, in particular a CpG 
site within the distal Sp1 site is identified in this study, 
leading to downregulation of  PKCβ transcription. Hy-
permethylation of  PROX1 sites inhibits direct Sp1 bind-
ing to this region in PROX1 overexpressing cells. Finally, 
previous studies have also identified a repressor region 
located upstream of  -110 bp in the PKCβ promoter and 
the identity of  the nuclear factor(s) binding to this region 
has not been characterized.

NOVEL ROLE OF PKCβ IN LIPID 
HOMEOSTASIS
A significant conceptual advance in our understanding of  
the importance of  PKCβ signaling in obesity has come 
from realization that mice deficient in PKCβ express 
higher levels of  genes that regulate fatty acid oxidation 
and proteins involved in energy dissipation, highlighting 
its role as a corepressor and in controlling the balance 
between energy consumption and energy expenditure[24]. 
On the contrary, genes involved in FA synthesis and glu-
coneogenesis seem to be downregulated in the absence 
of  PKCβ[25,26]. As a consequence, PKCβ mice are lean, 
with a significant reduction of  body fat and body weight 
compared to WT mice and are resistant to HFD-induced 
obesity and hepatic steatosis so that these mice maintain 
their insulin sensitivity[19]. Moreover, PKCβ levels are 
shown to be elevated in adipose tissue of  leptin-deficient 
(ob/ob) mice and deletion of  PKCβ in ob/ob mice at-
tenuates obesity syndrome of  these mice[26]. An impor-
tant mechanistic insight is the revelation that in PKCβ-
deficient mice white adipose tissue (WAT) express genes 
characteristic of  BAT including peroxisome proliferator-
activated receptor-gamma coactivator-1alpha (PGC-1α), 
fatty acid transporter carnitine palmitoyltransferase, and 
uncoupling protein-1 (UCP-1). Targeted disruption in 
mice of  several genes directly involved in energy metabo-
lism and fat accumulation also leads to lean phenotype 
with a marked increase in UCP-1 expression in adipo-
cytes, particularly in white fat depots[27-29]. Thus total en-
ergy consumption is increased significantly in PKCβ-null 
mice, presumably as a consequence of  energy dissipation 
in WAT resulting from the expression of  UCP-1 and 
increased mitochondrial activity. The ability of  white and 
brown adipocytes in each depot to reversibly switch into 
one another has been reported, but the extent to which 
this occurs and the precise mechanisms involved are not 
fully understood. The search for regulators that could 
mediate conversion of  white adipocytes (energy storing) 
into brown adipocytes (energy consuming) has led to the 
identification of  PGC-1α, FOXC2 and positive regula-
tory domain-containing 16 as transcriptional regulators 
that have been found to promote a brown fat genetic 
program, while retinoblastoma protein and RIP140 have 
been described to favor a white adipose phenotype[27-30]. 
Another important aspect of  these studies relates to 
possible connection between PKCβ and β-adrenergic 
receptor levels in WAT. Results presented argue strongly 
in favor of  an inverse relationship between PKCβ and 
β3-adrenergic receptor expression[26]. The proposed re-
lationship is consistent with earlier reports showing that 
sustained PKC activation suppressed β-ARs expression 
at the transcriptional level[31-33]. The net consequence of  
PKCβ-mediated adipose dysfunction could have pro-
found clinical consequences because of  the large size of  
the fat organ and its central metabolic role. Interestingly, 
in agreement with the above animal studies, adipose 
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diabetes and cardiovascular diseases[47]. Moreover, oxida-
tive stress induced by ROS stimulates fat tissue develop-
ment both in vitro and in vivo. H2O2-induced oxidative 
stress is shown to facilitate the differentiation of  preadi-
pocytes into adipocytes by accelerating mitotic clonal ex-
pansion[48]. Antioxidants such as flavonoids and N-acetyl-
cysteine inhibit both adipogenic transcription factors 
C/EBP-β and PPAR-γ expression, as well as adipogenic 
differentiation in 3T3-L1 preadipocytes[49,50]. N-acetyl cys-
teine (NAC) was also shown to reduce ROS levels and fat 
accumulation in a concentration-dependent manner[50]. 
Moreover, animals on a HFD with the antioxidant NAC 
exhibited lower visceral fat and body weight[51]. Finally, 
ROS scavenging is associated with fat reduction in obese 
Zucker rats[52].

Recent studies have highlighted a novel, unexpected 
signaling pathway bridging the oxidative challenge of  
a cell to the activation of  PKCβ/p66Shc-controlled mi-
tochondrial lifespan[53,54]. PKCβ activated by oxidative 
stress is shown to be required for phosphorylation of  
the Ser36 of  p66Shc and the effect of  PKCβ overexpres-
sion on mitochondrial Ca2+ signaling was not observed 
in p66Shc-/- cells. Importantly, the mitochondrial conse-
quences of  hydrogen peroxide are blocked by hispidine, 
a specific PKCβ inhibitor. The pathway emerging from 
these studies is the following: during oxidative stress 
PKCβ is activated and induces p66Shc phosphorylation, 
thus allowing p66Shc to be recognized by Pin1, isomer-
ised and imported into mitochondria after dephosphory-
lation by type 2 protein serine/threonine phosphatase. 
The p66Shc protein translocated into the appropriate cell 
domain, can exert the oxidoreductase activity, generating 
H2O2 and inducing the opening of  MPTP. This event in 
turn perturbs mitochondria structure and function. Iden-
tification of  a novel signaling mechanism, which is op-
erative in the pathophysiological condition of  oxidative 
stress, may open new possibilities for pharmacologically 
addressing the process of  organ deterioration during 
aging. The above studies are among the first to dissect 
the downstream target genes and regulatory properties 
of  the PKCβ protein, and therefore make an important 
contribution to our understanding of  the molecular 
basis to the lean phenotype exhibited by PKCβ-/- mice. 
Based on a very recent demonstration that PKCβ/p66Shc 
mitochondrial axis inhibits autophagy[55] and the evolv-
ing role of  autophagy in energy homeostasis[56-61], it is 
possible that a combination of  adipose PKCβ activation, 
mitochondrial dysfunction and insufficient autophagy 
may contribute to the development of  diet-induced 
obesity. In addition to mitochondrial effects, PKCβ is 
an upstream regulator of  NOX but this signaling axis 
actively produces superoxide across the membranes of  
neutrophils and phagosomes[62-65]. Accumulating data so 
far implicates mitochondria as the main source for regu-
lation of  autophagy by ROS production in adipocytes[66], 
whereas NOX contributes to activation of  selective, bac-
terial autophagy[67] (Figure 2).

Although biological function of  PKCβ in energy 

PKCβ activation is subsequently linked to obese side ef-
fects of  antipsychotic drugs in humans[34]. Moreover, in 
agreement with its role in energy homeostasis, PKCβ 
is shown to be required for adipocyte differentiation[35], 
PKCβ inhibition promotes insulin signaling in adipo-
cytes[36,37], and PKCβ promoter polymorphism is associ-
ated with insulin resistance in humans[38].

The role of  PKCβ in obesity is further supported by 
its potential involvement in angiogenesis. To ensure a suf-
ficient supply of  nutrients and oxygen and to transport 
fatty acids and adipokines, an extended microvasculature 
is mandatory for adipose tissue. Adipogenesis and angio-
genesis are two closely related processes during adipose 
tissue enlargement, as shown in animal studies and in 
vitro models[39,40]. As adipocyte hypertrophy endures, local 
adipose tissue hypoxia may occur due to hypoperfusion 
since the diameter of  fat cells overgrows the diffusion 
limit of  oxygen. As a result, hypoxia-inducible transcrip-
tion factors are expressed triggering the expression of  
angiogenic factors [vasuclar endothelial growth factor 
(VEGF), hepatocyte growth factor, plasminogen activa-
tor inhibitor-1]. In view of  role of  PKCβ/HuR in regu-
lating VEGF expression at the post-transcriptional level, 
simultaneous induction of  PKCβ is expected to promote 
VEGF expression[41,42].

Finally, specific overexpression of  a constitutively 
active PKCβⅡ mutant in mouse skeletal muscle demon-
strated that this splice variant of  PKCβ not only induces 
insulin resistance, but also affects the levels of  several 
genes involved in lipid metabolism[43]. Thus impairment 
in the expression of  PGC-1α, acyl CoA oxidase and 
hormone-sensitive lipase, but enhanced expression of  the 
lipogenic transcription factor sterol response element-
binding protein 1c in skeletal muscle, were associated 
with decreased lipid oxidation and increased intra-myo-
cellular lipid deposition. In addition to these direct effects 
in muscle, these animals showed defects in insulin action 
in the liver and brain, as well as hepatic lipid accumula-
tion similar to that seen in fat-fed animals.

POTENTIAL ROLE OF PKCβ IN 
MITOCHONDRIAL FUNCTION
Several studies have emphasized the association between 
enhanced mitochondria-derived H2O2 and insulin resis-
tance, particularly in the context of  excessive nutrient 
intake that results in metabolic imbalance[44-47]. Oxidative 
stress has also been described clinically, as well as in WAT 
of  many additional mouse models of  obesity, such as the 
KKAy and db/db mice. Systemic markers of  oxidative 
stress increase with adiposity, consistent with the role of  
reactive oxygen species (ROS) in the development of  
obesity-induced insulin resistance. Available data suggest 
that an increase in ROS significantly affects WAT biol-
ogy and leads to deregulated expression of  inflammatory 
cytokines such as tumor necrosis factor-α, interleukin-6, 
and macrophage chemoattractant protein-1, and insulin 
resistance, which could contribute to obesity-associated 
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homeostasis appears to be mostly linked with events 
occurring at the mitochondria, however, increasing 
evidence has implied a role for this kinase in nuclear 
functions, suggesting this may be a pathway to com-
municate signals generated at the plasma membrane to 
the nucleus. For example, Goss et al[68] first showed that 
PKCβ translocates to the nucleus at G2/M, concomitant 
with the phosphorylation of  lamin B1. Subsequently, 
a considerable number of  nuclear proteins have been 
identified which are in vivo and/or in vitro substrates 
for PKCβ. These proteins include: histone H3, DNA 
topoisomerase Ⅰ and Ⅱa, DNA polymerase α and β, cy-
clic AMP-response element-binding protein, retinoblasto-
ma protein, and vitamin D receptor[69-73]. It has even been 
shown that PKCβⅠ co-localizes with androgen receptor 
and lysine-specific demethylase 1 on target gene promot-
ers and phosphorylation of  histone H3 at threonine 6 
by PKCβⅠ is the key event that prevents lysine-specific 
demethylase 1 from demethylating histone H3 lysine 4[69]. 
Finally, activated PKCβ indirectly can affect other signal-
ing cascades, including PI3-kinase/Akt pathway, extracel-
lular signal-regulated kinase, and p38 pathway which can 
impact nuclear events[74-79]. It is thus clear that character-
ization of  PKCβ downstream signaling in the nucleus 
and its relevance to energy homeostasis is another facets 
that requires in-depth investigation.

The above findings are applicable to the pathogenesis 
of  obesity and type 2 diabetes since mitochondrial loss 
in WAT correlates with the development of  obesity and 
type 2 diabetes[80,81]. Indeed, mitochondrial DNA copy 
number, mitochondrial mass, and mitochondrial activity 
are all decreased in the white adipose tissue of  mouse 
models of  obesity, such as ob/ob and db/db mice[82,83]. 
Similarly in patients with insulin resistance, type 2 diabe-
tes, and severe obesity, the abundance of  mitochondria 
and the expression of  key genes pertinent to mitochon-
drial function are significantly reduced in white adipose 
tissue, in concert with decreased adipocyte oxygen con-
sumption rates and ATP production[84,85]. The mitochon-
drial dysfunction, which could impair substrate oxidation 

in adipose tissue, is thought to participate in metabolic 
impairment capacity, thereby accentuating the develop-
ment of  obesity and associated pathologies, such as type 
2 diabete. As a result, WAT mitochondria are emerging as 
highly attractive organelles for therapeutic interventions 
with the potential to impact upon systemic metabolism. 
Interestingly, the insulin-sensitizing effects of  thiazoli-
dinediones are closely matched by robust increases in 
adipose tissue mitochondrial biogenesis[86].

CONCLUSION
We have reviewed recent advances pertaining to the po-
tential role of  PKCβ in regulating energy homeostasis 
and contribution to the development of  metabolic syn-
drome. Evidence gathered recently point to an essential 
role for PKCβ in diet-induced obesity. As a signaling 
pathway, PKCβ is highly sensitive to changes in environ-
ment and fluctuations in lipid supply activate adipose 
PKCβ, which in turn appears to promote fat accumu-
lation via modulating mitochondrial function. A posi-
tive loop between oxidative stress and PKCβ/p66Shc is 
promising and may be the major mechanism underlying 
contribution of  PKCβ activation in generating oxidative 
stress observed in the obese state. The main gap in our 
understanding today lies in the specific, molecular and 
chemical mechanisms of  PKCβ-mediated energy homeo-
stasis. What are the mitochondrial and nuclear targets of  
PKCβ physiologically relevant to energy homeostasis? 
How is the dietary lipid signals transmitted to the PKCβ 
promoter? Is PKCβ regulatory signaling network dysreg-
ulated in metabolic disease states? Can PKCβ inhibition 
be adopted to prevent human obesity? These important 
questions should be the target of  future studies. The 
manipulation of  PKCβ levels, activity, or signaling might 
represent a therapeutic approach to combat obesity and 
associated metabolic disorders.
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