World Journal of *Clinical Cases*

World J Clin Cases 2023 January 26; 11(3): 487-718

Published by Baishideng Publishing Group Inc

W J C C World Journal of Clinical Cases

Contents

Thrice Monthly Volume 11 Number 3 January 26, 2023

MINIREVIEWS

- 487 Protective effects of combined treatment with ciprofol and mild therapeutic hypothermia during cerebral ischemia-reperfusion injury Wang YC, Wu MJ, Zhou SL, Li ZH 493 Non-pulmonary involvement in COVID-19: A systemic disease rather than a pure respiratory infection El-Kassas M, Alboraie M, Elbadry M, El Sheemy R, Abdellah M, Afify S, Madkour A, Zaghloul M, Awad A, Wifi MN, Al Balakosy A, Eltabbakh M
- 506 Progress and expectation of stem cell therapy for diabetic wound healing Xu ZH, Ma MH, Li YQ, Li LL, Liu GH
- 514 Prevention, diagnostic evaluation, management and prognostic implications of liver disease in critically ill patients with COVID-19

Valsamaki A, Xanthoudaki M, Oikonomou KG, Vlachostergios PJ, Papadogoulas A, Katsiafylloudis P, Voulgaridi I, Skoura AL, Komnos A, Papamichalis P

- 528 Exosomal miRNA in early-stage hepatocellular carcinoma Wu ZQ, Zhu YX, Jin Y, Zhan YC
- 534 Impact of multidrug resistance on the management of bacterial infections in cirrhosis Terra C, de Mattos ÂZ, Chagas MS, Torres A, Wiltgen D, Souza BM, Perez RM
- 545 Could there be an interplay between periodontal changes and pancreatic malignancies? Ungureanu BS, Gheorghe DN, Nicolae FM, Râmboiu S, Radu PA, Șurlin VM, Strâmbu VDE, Gheonea DI, Roman A, Șurlin Ρ

ORIGINAL ARTICLE

Retrospective Study

556 Qixue Shuangbu decoction and acupuncture combined with Western medicine in acute severe stroke patients

Gou LK, Li C

Successful treatment of patients with refractory idiopathic membranous nephropathy with low-dose 566 Rituximab: A single-center experience

Wang YW, Wang XH, Wang HX, Yu RH

576 Bowel inflammatory presentations on computed tomography in adult patients with severe aplastic anemia during flared inflammatory episodes

Zhao XC, Xue CJ, Song H, Gao BH, Han FS, Xiao SX

Conton	World Journal of Clinical Cases
Conten	Thrice Monthly Volume 11 Number 3 January 26, 2023
598	Clinical outcomes of AngioJet pharmacomechanical thrombectomy <i>versus</i> catheter-directed thrombolysis for the treatment of filter-related caval thrombosis
	Li JY, Liu JL, Tian X, Jia W, Jiang P, Cheng ZY, Zhang YX, Liu X, Zhou M
	Clinical Trials Study
610	Efficacy and safety of propofol target-controlled infusion combined with butorphanol for sedated colonoscopy
	Guo F, Sun DF, Feng Y, Yang L, Li JL, Sun ZL
	Observational Study
621	Application of a hospital-community-family trinity rehabilitation nursing model combined with motor imagery therapy in patients with cerebral infarction
	Li WW, Li M, Guo XJ, Liu FD
	CASE REPORT
629	Congenital biliary atresia caused by GPC1 gene mutation in Chinese siblings: A case report
	Kong YM, Yuan K, Wang CL
635	Rescuing "hopeless" avulsed teeth using autologous platelet-rich fibrin following delayed reimplantation: Two case reports
	Yang Y, Liu YL, Jia LN, Wang JJ, Zhang M
645	Acute diffuse peritonitis secondary to a seminal vesicle abscess: A case report
	Li K, Liu NB, Liu JX, Chen QN, Shi BM
655	Young thoracic vertebra diffuse idiopathic skeletal hyperostosis with Scheuermann disease: A case report
	Liu WZ, Chang ZQ, Bao ZM
662	Relapsed primary extraskeletal osteosarcoma of liver: A case report and review of literature
	Di QY, Long XD, Ning J, Chen ZH, Mao ZQ
669	Heterotopic pregnancy after assisted reproductive techniques with favorable outcome of the intrauterine pregnancy: A case report
	Wang YN, Zheng LW, Fu LL, Xu Y, Zhang XY
677	Periprosthetic knee joint infection caused by <i>Brucella melitensis</i> which was first -osteoarticular brucellosis or osteoarthrosis: A case report
	Stumpner T, Kuhn R, Hochreiter J, Ortmaier R
684	Recurrent intramuscular lipoma at extensor pollicis brevis: A case report
	Byeon JY, Hwang YS, Lee JH, Choi HJ
692	Imaging features of retinal hemangioblastoma: A case report
	Tang X, Ji HM, Li WW, Ding ZX, Ye SL

	World Journal of Clinical Cases
Conte	Thrice Monthly Volume 11 Number 3 January 26, 2023
700	Clinical and genetic diagnosis of autosomal dominant osteopetrosis type II in a Chinese family: A case report
	Gong HP, Ren Y, Zha PP, Zhang WY, Zhang J, Zhang ZW, Wang C
709	Soft tissue tuberculosis detected by next-generation sequencing: A case report and review of literature
	He YG, Huang YH, Yi XL, Qian KL, Wang Y, Cheng H, Hu J, Liu Y

Contents

Thrice Monthly Volume 11 Number 3 January 26, 2023

ABOUT COVER

Editorial Board Member of World Journal of Clinical Cases, Baharudin Abdullah, MMed, Professor, Surgeon, Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia. profbaha@gmail.com

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Current Contents®/Clinical Medicine, PubMed, PubMed Central, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 Edition of Journal Citation Reports® cites the 2021 impact factor (IF) for WJCC as 1.534; IF without journal self cites: 1.491; 5-year IF: 1.599; Journal Citation Indicator: 0.28; Ranking: 135 among 172 journals in medicine, general and internal; and Quartile category: Q4. The WJCC's CiteScore for 2021 is 1.2 and Scopus CiteScore rank 2021: General Medicine is 443/826.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Ying-Yi Yuan, Production Department Director: Xiang Li, Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL	INSTRUCTIONS TO AUTHORS
World Journal of Clinical Cases	https://www.wignet.com/bpg/gerinfo/204
ISSN	GUIDELINES FOR ETHICS DOCUMENTS
ISSN 2307-8960 (online)	https://www.wignet.com/bpg/GerInfo/287
LAUNCH DATE	GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
April 16, 2013	https://www.wignet.com/bpg/gerinfo/240
FREQUENCY	PUBLICATION ETHICS
Thrice Monthly	https://www.wignet.com/bpg/GerInfo/288
EDITORS-IN-CHIEF Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku	PUBLICATION MISCONDUCT https://www.wjgnet.com/bpg/gerinfo/208
EDITORIAL BOARD MEMBERS	ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/2307-8960/editorialboard.htm	https://www.wjgnet.com/bpg/gerinfo/242
PUBLICATION DATE	STEPS FOR SUBMITTING MANUSCRIPTS
January 26, 2023	https://www.wignet.com/bpg/GerInfo/239
COPYRIGHT	ONLINE SUBMISSION
© 2023 Baishideng Publishing Group Inc	https://www.f6publishing.com

© 2023 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

W J C C World Journal Clinical Cases

World Journal of

Submit a Manuscript: https://www.f6publishing.com

World J Clin Cases 2023 January 26; 11(3): 556-565

DOI: 10.12998/wjcc.v11.i3.556

ISSN 2307-8960 (online)

ORIGINAL ARTICLE

Retrospective Study Qixue Shuangbu decoction and acupuncture combined with Western medicine in acute severe stroke patients

Li-Kun Gou, Chun Li

Specialty type: Critical care medicine

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification

Grade A (Excellent): 0 Grade B (Very good): B Grade C (Good): C Grade D (Fair): 0 Grade E (Poor): 0

P-Reviewer: Monetta L, Canada; Scheitz JF, Germany

Received: May 6, 2022 Peer-review started: May 6, 2022 First decision: May 30, 2022 Revised: June 18, 2022 Accepted: December 21, 2022 Article in press: December 21, 2022 Published online: January 26, 2023

Li-Kun Gou, Chun Li, Department of Critical Care Medicine, Lanzhou Second People's Hospital, Lanzhou 730046, Gansu Province, China

Corresponding author: Chun Li, MD, Chief Doctor, Department of Critical Care Medicine, Lanzhou Second People's Hospital, No. 388 Jingyuan Road, Lanzhou 730046, Gansu Province, China. lanzhoulichun@126.com

Abstract

BACKGROUND

Stroke is a common and frequently occurring disease of the nervous system and one of the three major diseases leading to human death. The incidence and mortality of stroke in China increase with age. Overall, 70 % of patients with stroke have serious disability, which results in heavy burden to their families and the society.

AIM

To analyze the effects of Qixue Shuangbu decoction and acupuncture combined with Western medicine on immune indexes and digestive tract function in patients with acute severe stroke.

METHODS

A total of 68 patients with acute severe stroke admitted to Lanzhou Second People's Hospital between March 2018 and September 2021 were selected and divided into the control and observation groups according to a random number table method. The control group was administered routine Western medicine treatment, such as dehydration, lowering intracranial pressure, anticoagulation, improving cerebral blood circulation and cerebral nerve protection according to the "Guidelines for the Diagnosis and Treatment of Acute Ischemic Stroke in China." The observation group was administered Qixue Shuangbu decoction via nasal feeding tube on the basis of the routine Western medicine treatment with simultaneous acupuncture. The two groups were compared.

RESULTS

The acute physiology and chronic health evaluation II, organ dysfunction syndrome score, National Institutes of Health Stroke Scale, and traditional Chinese medicine syndrome scores of the two groups were significantly decreased compared with those measured before treatment, and the complements C3 and C4, and immunoglobulins (Ig) M and G were significantly increased

WJCC | https://www.wjgnet.com

compared with those observed before treatment (P < 0.05). After treatment, the scores of the observation group were lower than those of the control group, and the complement and Ig levels were higher than those of the control group (P < 0.05). The levels of diamine oxidase (DAO), D-lactic acid (D-LA), and calcitonin gene-related peptide (CGRP) in the two groups were significantly higher than those before treatment, while the levels of lipopolysaccharide, ubiquitin carboxyl-terminal hydrolase 1 (UCH-L1), tumor necrosis factor- α (TNF- α), interleukin (IL) -2, and IL-8 were significantly lower than those before treatment (P < 0.05). After treatment, DAO, D-LA, and CGRP were higher in the observation group than in the control group, while lipopolysaccharide, UCH-L1, TNF- α , IL-2, and IL-8 were lower than in the control group (P < 0.05). The hospitalization time of individuals in the observation group was shorter than that of the control group (P < 0.05).

CONCLUSION

Qixue Shuangbu decoction and acupuncture combined with Western medicine for the treatment of acute severe stroke can regulate intestinal flora, reduce inflammation, improve intestinal mucosal barrier function and immune function related indicators, and promote recovery.

Key Words: Qixue Shuangbu Decoction; Acupuncture; Western medicine; Acute severe stroke; Intestinal flora; Degree of inflammation; Immune function

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Severe stroke is an acute and critical disease of the nervous system, which is a group of diseases that cause brain tissue damage due to the sudden rupture of brain vessels or the failure of blood to flow into the brain due to vascular obstruction. Traditional Chinese medicine believes that the disease belongs to the category of "stroke." There is evidence that lack of multi-factor endowment, aging, and yang hyperactivity wind, or drinking of syrup, overeating fat, climate change and other incentives result in viscera dysfunction, qi and blood disturbance, disturbing the brain orifices, and channeling the meridians for stroke.

Citation: Gou LK, Li C. Qixue Shuangbu decoction and acupuncture combined with Western medicine in acute severe stroke patients. *World J Clin Cases* 2023; 11(3): 556-565 URL: https://www.wjgnet.com/2307-8960/full/v11/i3/556.htm DOI: https://dx.doi.org/10.12998/wjcc.v11.i3.556

INTRODUCTION

Severe stroke is a common disease of the nervous system with high mortality. Due to the most common sensory and motor dysfunction caused by neurological impairment, patients cannot eat independently; therefore, they require nutritional support treatment. However, long-term nutritional support treatment leads to abnormal intestinal flora, imbalance of gastrointestinal hormone secretion, and eventually systemic inflammatory response and even flora disorder[1]. The disease belongs to "apoplexy" category of traditional Chinese medicine. Because the brain is the capital of the gods, the disorder of qi and blood leads to the occurrence of apoplexy and the imbalance of qi movement in spleen and stomach. Additionally, the stagnation of intestinal dross leads to the accumulation of blood stasis and heat, which disturbs the gods. Both form a vicious circle. Therefore, traditional Chinese medicine (TCM) advocates the principle of promoting qi and activating blood, dredging the fu organs and reducing turbidity. Qi and blood Shuangbu decoction is mainly used to supplement qi and blood deficiency in patients with stroke, and acupuncture treatment focuses on regulating gastrointestinal function[2]. In this study, the effects of Qixue Shuangbu decoction and acupuncture combined with Western medicine on patients with acute severe stroke were assessed. The immune function and digestive tract function indexes were selected as the observation objects to analyze the therapeutic effect of integrated traditional Chinese and Western medicine to provide the corresponding basis for clinical practice.

Zaishideng® WJCC | https://www.wjgnet.com

MATERIALS AND METHODS

General information

A total of 68 patients with acute severe stroke admitted to Lanzhou Second People's Hospital between March 2018 and September 2021 were selected and divided into two groups according to the random number table method. A total of 34 cases were included in the control group, of whom 19 and 15 were men and women, respectively, and were aged 42–75 years (average, 60.84 ± 5.32 years). The time from onset to treatment was 0.5–6 h, with an average of 2.74 ± 0.46 h. The locations of lesions were the basal ganglia, lobe, and brainstem in 19, 10, and 5 cases, respectively. The Glasgow coma scale (GCS) was 6.25 ± 1.04 . A total of 34 cases were included in the observation group, of whom 17 were men and 17 were women, aged 41-75 years (average, 61.01 ± 5.05 years). The time from onset to treatment was 0.5-6 h, with an average of lesions were the basal ganglia, brain lobe, and brainstem in 17. The gCS score was 6.22 ± 1.01 points. General data were balanced between the two groups, with no statistical significance being observed (P > 0.05).

The inclusion criteria were as follows: (1) Stroke defined in line with the "Chinese guidelines for the diagnosis and treatment of acute ischemic stroke 2014" criteria for ischemic stroke[3]: (a) acute onset; (b) focal neurological deficit; (c) unlimited duration of symptoms or signs; (d) excluding non-vascular causes; and (e) excluding cerebral hemorrhage; (2) stroke defined in line with the "common diagnostic criteria of traditional Chinese medicine" in the Qixue deficiency syndrome standard[4], including dizziness, fatigue, insomnia, amnesia, shortness of breath, pale lips, pale tongue, weak pulse, and other syndromes; (3) \geq 40 years of age, \leq 75 years of age; (4) GCS score of \leq 8 and National Institutes of Health Stroke Scale (NIHSS) score of \geq 17; and (5) family members sign informed consent.

The exclusion criteria were as follows: (1) A history of mental illness; (2) a history of serious underlying digestive diseases or abdominal surgery; (3) complicated with severe visceral lesions; and (4) thyroid dysfunction, coagulation dysfunction, malignant tumors, or severe malnutrition.

Methods

In the control group, routine Western medicine treatment, including dehydration and intracranial pressure reduction, anticoagulation, improvement of cerebral blood circulation, and cerebral nerve protection, was adopted. Patients were administered enteral nutrition support treatment. Enteral nutrition suspension (commodity name: Nengquanli, Newdihiya Pharmaceutical Co., Ltd., Batch No. 20180318) was administered 1500–2500 mL/day with 50–100 mL/h dripping speed using a gastric tube.

In the observation group, the patients were administered with Qixue Shuangbu decoction using a nasal feeding tube and simultaneous acupuncture treatment was performed. Prescriptions of Qixue Shuangbu decoction included *Codonopsis* (15 g), *Atractylodes* (15 g), *Poria* (12 g), *Angelica* (12 g), *Paeoniae Alba* (12 g), *Rehmannia glutinosa* (15 g), *Chuanxiong* (9 g), and *Radix Glycyrrhizae* (6 g). The above drugs were decocted for 150 mL and administered using a nasal feeding tube daily for 14 d. The acupuncture points were Neiguan, Zusanli, Guanyuan, Qihai, Shangjuxu, Zhongwan, and Xiawan. One-time acupuncture was performed using the twirling small lifting insertion technique, following the use of a gas needle for 20 min. Acupuncture was performed twice a day as a continuous treatment of 14 d.

Observation indicators

Acute physiology and chronic health evaluation II (APACHE II)[5] and organ dysfunction syndrome (MODS)[6] scores were used to evaluate the overall severity of the disease and severity of organ failure. The two scores were proportional to the overall severity of the disease and severity of organ failure, respectively. NIHSS[7] was used to evaluate the degree of neurological deficit, and it was proportional to the degree of neurological deficit, and it was proportional to the degree of neurological deficit, and it was proportional to the degree of neurological deficit, and it was proportional to the degree of neurological deficit, and it was proportional to the degrees, laziness, laziness, amnesia, fatigue, insomnia, dreaminess, blurred vision, palpitations, shortness of breath, loss of appetite, slim body, and luxuriant face. The above symptoms were categorized from light to heavy using the Likert 4 grade scoring method, ranging from 0–3 points.

The incidence of gastrointestinal complications (diarrhea, constipation, gastrointestinal bleeding, vomiting), pressure sores, ventilator-associated pneumonia (VAP), offline success rate, hospitalization time, and 28-d mortality in the two groups were recorded[8].

Detection method

Fasting venous blood (3 mL) was extracted from patients and centrifuged at 2000 r/min for 30 min. Hitachi 7600i automatic biochemical analyzer was used for determination of biochemical parameters. The kit was provided by Nanjing Jiancheng Biological Products Co., Ltd. The calcitonin gene-related peptide (CGRP), ubiquitin carboxyl-terminal hydrolase 1 (UCH-L1), tumor necrosis factor- α (TNF- α), interleukin (IL)-2, IL-8, diamine oxidase (DAO), and D-lactic acid (D-LA) were estimated using enzyme-linked immunosorbent assay. The changes of the lipopolysaccharide concentration were determined using a radioimmunoassay. The changes of complement C3, complement C4, immunoglobulin (Ig) M, and IgG were detected by flow cytometry.

Zaishidena® WJCC | https://www.wjgnet.com

The patient's feces weighing 1 g were diluted with 5 mL of distilled water and inoculated in appropriate culture medium to determine the number of *Bifidobacterium*, *Lactobacillus*, *Enterococcus*, and *Enterobacter*.

Statistical analysis

The data were processed using the SPSS19.0 software. The data were assessed for normal distribution and uniform variance was described using mean \pm SD. The *t* test was used for comparison, and the number of cases (%) for enumeration data were used for description. The χ^2 test was used for comparison, and statistical significance was set at *P* < 0.05.

RESULTS

Comparison of scores between and within groups

Before treatment, APACHE II, MODS, NIHSS, and TCM syndrome scores were not significantly different between the groups (P > 0.05). Table 1 shows that APACHE II, MODS, NIHSS, and TCM syndrome scores were significantly lower than those before treatment for both groups (P < 0.05). After treatment, the scores of the observation group were lower than those of the control group (P < 0.05).

Comparison of complement and Ig system indexes between and within groups

Complement (complement C3, complement C4) and Ig system (IgM, IgG) indexes were not significantly different before treatment (P > 0.05). Table 2 shows that the complement and Ig system indexes were significantly higher than those before treatment in both groups (P < 0.05). After treatment, complement C3, complement C4, IgM, and IgG were higher in the observation group than in the control group (P < 0.05).

Comparison of intestinal mucosal barrier function indexes between groups and within groups

Before treatment, the intestinal mucosal barrier function indexes were not significantly different between the groups (P > 0.05). Table 3 shows that DAO and D-LA were significantly increased (P < 0.05), while lipopolysaccharide was significantly decreased (P < 0.05) in the two groups. After treatment, DAO and D-LA were higher in the observation group than in the control group, while lipopolysaccharide was lower than that in the control group (P < 0.05).

Comparison of CGRP, UCH-L1, TNF-α, IL-2, IL-8 between and within groups

Before treatment, CGRP, UCH-L1, TNF- α , IL-2 and IL-8 were not significantly different (P > 0.05). Table 4 shows that CGRP was significantly increased (P < 0.05), and UCH-L1, TNF- α , IL-2 and IL-8 were significantly decreased (P < 0.05) in the two groups. After treatment, CGRP was higher, while UCH-L1, TNF- α , IL-2 and IL-8 were lower in the observation group than in the control group (P < 0.05).

Comparison of intestinal flora between groups and within groups

The number of intestinal flora before treatment were not significantly different between the groups (P > 0.05). As shown in Table 5, *Bifidobacterium*, *Lactobacillus*, and *Enterococcus* numbers were significantly higher in the two groups than those before treatment (P < 0.05), while the number of *Bacteroides* was significantly lower than that before treatment (P < 0.05). After treatment, *Bifidobacterium*, *Lactobacillus*, and *Enterococcus* numbers were higher in the observation group than in the control group, while the number of *Bacteroides* was lower than in the control group (P < 0.05).

Comparison of the incidence of gastrointestinal complications and pressure ulcers between groups

There were seven cases of gastrointestinal complications and one case of pressure sore in the control group. The overall complication rate was 23.53%, which was higher than that of the observation group (8.82%); however, no statistical significance was reached (P > 0.05) (Table 6).

Comparison of VAP incidence, weaning success rate, hospital stay, and 28-d mortality between groups

The incidence of VAP and the success rate of weaning were higher in the observation group than those in the control group, while the 28-d mortality rate was lower than that in the control group; however, no statistical significance was reached (P > 0.05). The hospitalization time of the observation group was significantly shorter than that of the control group (P < 0.05) (Table 7).

WJCC | https://www.wjgnet.com

Gou LK et al. Qixue Shuangbu and acupuncture in acute severe stroke

Table 1 Comparison of scores between and within groups (mean ± SD)						
Indicators	Time	Control group (<i>n</i> = 34)	Observation group (<i>n</i> = 34)	t value	P value	
APACHE II score (points)	Before treatment	17.58 ± 3.21	17.62 ± 3.08	0.052	0.958	
	After treatment	13.25 ± 2.14^{a}	10.11 ± 1.83^{a}	6.502	0.000	
MODS score (points)	Before treatment	14.55 ± 2.53	14.48 ± 2.61	0.112	0.911	
	After treatment	9.89 ± 1.67^{a}	8.21 ± 1.43^{a}	4.456	0.000	
NIHSS score (points)	Before treatment	19.97 ± 2.07	20.01 ± 2.13	0.079	0.938	
	After treatment	10.74 ± 1.74^{a}	8.56 ± 1.55^{a}	5.455	0.000	
TCM syndrome points (points)	Before treatment	24.12 ± 2.58	23.97 ± 2.61	0.238	0.812	
	After treatment	11.41 ± 1.25 ^a	7.85 ± 1.06^{a}	12.666	0.000	

 $^{a}P < 0.05 vs$ before treatment.

APACHE II: Acute physiology and chronic health evaluation II; MODS: Organ dysfunction syndrome; NIHSS: National Institutes of Health Stroke Scale; TCM: Traditional Chinese medicine.

Table 2 Comparison of complement and immunoglobulins system indexes between and within groups (mean ± SD)

Indicators	Time	Control group (<i>n</i> = 34)	Observation group (<i>n</i> = 34)	t value	P value
Complement C3 (g/L)	Before treatment	1.04 ± 0.12	1.02 ± 0.13	0.659	0.512
	After treatment	1.28 ± 0.17^{a}	1.43 ± 0.21^{a}	3.237	0.002
Complement C4 (g/L)	Before treatment	0.22 ± 0.05	0.23 ± 0.04	0.911	0.366
	After treatment	0.31 ± 0.07^{a}	0.37 ± 0.09^{a}	3.068	0.003
IgM (g/L)	Before treatment	0.74 ± 0.11	0.73 ± 0.14	0.327	0.744
	After treatment	1.11 ± 0.15^{a}	1.36 ± 0.18^{a}	6.221	0.000
IgG (g/L)	Before treatment	9.74 ± 0.41	9.68 ± 0.38	0.626	0.534
	After treatment	10.64 ± 0.52^{a}	11.47 ± 0.61^{a}	6.038	0.000

 $^{a}P < 0.05 vs$ before treatment.

Ig: Immunoglobulins.

Table 3 Comparison of intestinal mucosal barrier function indexes between groups and within groups (mean ± SD)							
Indicators	Time	Control group (n = 34)	Observation group (<i>n</i> = 34)	t value	P value		
DAO (U/mL)	Before treatment	3.28 ± 0.34	3.31 ± 0.30	0.386	0.701		
	After treatment	4.15 ± 0.38^{a}	4.63 ± 0.45^{a}	4.752	0.000		
D-LA (mmol/L)	Before treatment	0.18 ± 0.07	0.19 ± 0.06	0.632	0.529		
	After treatment	0.27 ± 0.08^{a}	0.36 ± 0.10^{a}	4.098	0.000		
Lipopolysaccharide (ng/L)	Before treatment	17.41 ± 4.52	17.35 ± 4.67	0.054	0.957		
	After treatment	11.14 ± 2.05^{a}	8.21 ± 1.61^{a}	6.554	0.000		

 $^{a}P < 0.05 vs$ before treatment.

DAO: Diamine oxidase; D-LA: D-lactic acid.

DISCUSSION

Severe stroke refers to the brain tissue necrosis or softening caused by hypoxia and ischemia due to cerebral blood circulation disorder, which is a common cerebrovascular disease in clinic. The occurrence of patients with stroke is generally developed on the basis of atherosclerosis changes. Inflammatory reaction is one of the reasons for cell loss, which has a serious impact on life safety and physical and

Fable 4 Comparison of calcitonin gene-related peptide, ubiquitin carboxyl-terminal hydrolase 1, tumor necrosis factor-α, interleukin-2,
nterleukin-8 between and within groups (mean ± SD)

Indicators	Time	Control group (n = 34)	Observation group (<i>n</i> = 34)	t value	<i>P</i> value		
CGRP (pg/mL)	Before treatment	21.52 ± 5.36	20.97 ± 5.71	0.409	0.683		
	After treatment	28.26 ± 6.17^{a}	36.58 ± 6.78^{a}	5.292	0.000		
UCH-L1 (µg/L)	Before treatment	0.40 ± 0.18	0.41 ± 0.13	0.263	0.794		
	After treatment	0.25 ± 0.11^{a}	0.17 ± 0.10^{a}	3.138	0.003		
TNF-α (pg/mL)	Before treatment	44.52 ± 5.89	42.97 ± 6.01	1.074	0.287		
	After treatment	21.02 ± 4.15^{a}	14.63 ± 3.85^{a}	6.582	0.000		
IL-2 (pg/mL)	Before treatment	15.89 ± 2.16	15.81 ± 2.24	0.150	0.881		
	After treatment	10.13 ± 1.92^{a}	6.78 ± 1.52^{a}	7.977	0.000		
IL-8 (pg/mL)	Before treatment	5.23 ± 0.82	5.18 ± 0.91	0.238	0.813		
	After treatment	4.64 ± 0.53^{a}	3.47 ± 0.42^{a}	10.088	0.000		

 $^{a}P < 0.05 vs$ before treatment.

CGRP: Calcitonin gene-related peptide; UCH-L1: Ubiquitin carboxyl-terminal hydrolase 1; TNF-a: Tumor necrosis factor-a; IL: Interleukin.

Table 5 Comparison of intestinal flora between groups and within groups (mean \pm SD)							
Indicators	Time	Control group (n = 34)	Observation group (<i>n</i> = 34)	t value	P value		
Bifidobacterium (× 10 ⁷ CFU)	Before treatment	9.74 ± 1.14	9.67 ± 1.21	0.246	0.807		
	After treatment	11.11 ± 1.25 ^a	12.78 ± 1.34^{a}	5.314	0.000		
Lactobacillus (× 10^7 CFU)	Before treatment	9.42 ± 1.14	9.36 ± 1.08	0.223	0.824		
	After treatment	10.78 ± 1.27^{a}	12.63 ± 1.41^{a}	5.685	0.000		
Enterococcus (× 10 ⁷ CFU)	Before treatment	8.85 ± 1.14	8.79 ± 1.21	0.210	0.834		
	After treatment	9.75 ± 1.21^{a}	11.41 ± 1.37 ^a	5.296	0.000		
Bacteroides (× 10 ⁷ CFU)	Before treatment	7.96 ± 0.21	8.02 ± 0.26	1.047	0.299		
	After treatment	6.41 ± 0.17^{a}	6.02 ± 0.14^{a}	10.326	0.000		

^aP < 0.05 vs before treatment.

Table 6 Comparison of the incidence of gastrointestinal complications and pressure ulcers between groups, n (%)

Crown	Gastrointestinal complications					Total complications	
Group	Diarrhea	Constipate	Gastrointestinal bleeding	Vomit	Pressure uicer	rotal complications	
Control group ($n = 34$)	2 (5.88)	1 (2.94)	1 (2.94)	3 (8.82)	1 (2.94)	8 (23.53)	
Observation group ($n = 34$)	1 (2.94)	0 (0.00)	0 (0.00)	2 (5.88)	0 (0.00)	3 (8.82)	
χ^2 value						2.711	
<i>P</i> value						0.100	

mental health of patients[9]. Most critically ill patients experience disturbance of consciousness, swallowing dysfunction, and metabolic exuberance; therefore, they have higher nutritional needs. However, limited intake leads to high stress response, resulting in malnutrition and reduced immune function[10]. Western medicine mainly relies on intestinal nutrition support in the aspect of supplemental nutrition; however, it can cause reproduction of pathogenic bacteria and formation of flora disorder, which would eventually lead to excessive activation of systemic inflammatory response. At the same time, the loss of neurological function in patients with stroke would lead to the inactivation of gastrointestinal hormones and change in neurotransmitter secretion, affecting the function of human

Saisbideng® WJCC | https://www.wjgnet.com

Table 7 Comparison of ventilator-associated pneumonia incidence, weaning success rate, hospital stay, and 28-d mortality between groups, <i>n</i> (%)						
Group	Incidence of VAP	Offline success rate	Hospital stay (d)	28 d case fatality rate (%)		
Control group ($n = 34$)	11 (32.35)	18 (52.94)	20.56 ± 5.82	7 (20.59)		
Observation group ($n = 34$)	5 (14.71)	23 (67.65)	16.78 ± 4.53	2 (5.88)		
χ^2/t value	2.942	1.536	2.989	3.202		
<i>P</i> value	0.086	0.215	0.004	0.074		

VAP: Ventilator-associated pneumonia

intestinal mucosa and causing intestinal flora disorder.

TCM believes that stroke belongs to the category of stroke. In early stages of the disease, wind, fire, phlegm, and silt are the main factors, while in late stages, deficiency and silt are the main factors. TCM theory believes that qi is the handsome of blood, blood is the mother of qi, qi is the blood, qi is the vitality and movement, and gi deficiency is unable to promote the operation of blood, which will lead to blood stasis. This study adopts the TCM treatment method of Qixue Shuangbu decoction combined with acupuncture treatment. Qixue Shuangbu decoction consists of Sijunzi decoction and Siwu decoction. Reinforcing qi by Dangshen, strengthening healthy qi and expelling pathogenic factors, reinforcing qi by Shaoyao Ganhuayin, replenishing blood by Danggui Shudihuang and activating blood by Chuanxiong. Rhizoma Atractylodis Macrocephalae and Poria can nourish qi and blood by invigorating spleen, while stir-fried licorice can reconcile various drugs. Ginger and jujube can support spleen and stomach, give consideration to tonifying qi and blood, play the role of nourishing blood, invigorating spleen and kidney, tonifying qi and blood, and harmonizing qi and blood[11-14].

Acupuncture treatment is the external treatment of TCM. This study selected acupoints that are commonly used in the treatment of gastrointestinal diseases. Zusanli is a strong point, can strengthen the body, spleen and stomach, while Shangjuxushichangchangchangxiahe point can reconcile gastrointestinal function. Guanyuan and Qihai can strengthen the spleen and kidney, while Buyuanqi and Zhongwan can reduce adverse stomach. Xiawan is Tongzhi and Neiguan and can open the orifices to wake up the min. Therefore, the acupuncture treatment of the above acupoints helps regulate the intestinal function of patients and improve the imbalance of flora. This study found that DAO and D-LA were higher, while lipopolysaccharide was lower in the observation group than in the control group after treatment, indicating that the regulation of TCM combined therapy on intestinal flora was significant. The above indicators are commonly used for the observation of intestinal mucosal loss. There is a bidirectional regulation between the human intestinal tract and the brain. Reducing intestinal loss through combined treatment can be administered back to the brain, thereby reducing the neurological deficit symptoms of patients[15,16].

In this study, the APACHE II, MODS, NIHSS and TCM syndrome scores were significantly decreased in the two groups compared with those before treatment, and the scores in the observation group were lower than those in the control group after treatment, indicating that the combined treatment of TCM had good effects on improving the symptoms of neurological deficit and reducing the severity of patients. Chinese medicine prescriptions can improve blood flow, improve vascular reserve capacity of patients, and alleviate the corresponding clinical signs caused by stroke. In this study, the complement and Ig system indexes of the two groups were significantly improved compared with those before treatment. The complement C3, complement C4, IgM and IgG were higher in the observation group than those in the control group after treatment, indicating that the immune function of the patients was significantly improved after TCM combined treatment. TCM and acupuncture treatment can promote the secretion of IL-2, thereby promoting lymphocyte proliferation and differentiation, as well as antibody formation, and playing an important role in human immune response. In this study, the changes of inflammatory factors in patients were also analyzed. TNF-α, IL-2, and IL-8 are the commonly used cellular inflammatory factors in clinic. The increase in their concentration suggested that the inflammatory response in patients was aggravated, and it could mediate the cascade activation process of inflammatory response. UCH-L1 was mainly expressed in the brain, testis, or ovary tissue, belonging to neuron-specific protein, which was of great significance to maintain the normal function of the nervous system. CGRP was a vasodilator polypeptide substance in the peripheral and central nervous system, which could form a strong antagonistic effect on cardiovascular and cerebrovascular contraction. Therefore, the severe response of patients in this study was reduced. The decrease of vasoconstrictive substance concentration suggests the possible mechanism of TCM combined therapy [17,18].

This study also analyzed the complications. The two main complications were gastrointestinal complications and pressure sores, which could be alleviated through active treatment. In contrast, the observation group showed significantly shortened hospitalization time, indicating that the combined

WJCC | https://www.wjgnet.com

treatment of TCM used multiple ways to regulate the clinical signs and symptoms of patients helping reduce the hospitalization time of patients. In terms of the changes of bacterial flora in patients after treatment, Bifidobacterium, Lactobacillus, and Enterococcus numbers were higher in the observation group than in the control group, and the number of *Bacteroides* was lower than in the control group. Under normal conditions, beneficial and harmful bacteria in the human body were inhibited and reached a balance. The balance of bacterial flora is helpful for the digestion and absorption in the human body. Through the combined treatment of TCM, the beneficial bacteria in patients with severe stroke were increased, and the reproduction of harmful bacteria was inhibited, so as to protect the gastrointestinal function and promote the absorption of nutrients, which played an important role in maintaining the balance of bacterial flora in the human body [19,20].

In this study, patients with severe stroke were selected as the research objects, and the improvement effect of the combined treatment of TCM on patients was emphatically analyzed. At the same time, a variety of observation indexes were selected, including inflammatory factors, immune factors, intestinal flora, and other factors, which further confirmed the effect of the combined treatment of TCM and Western medicine, and could provide certain basis for the clinical comprehensive treatment of severe stroke. However, the number of cases included in this study is limited, and the cases derived from the same hospital, which may introduce a bias in case selection, and the follow-up time was relatively short. Follow-up studies should have been further confirmed by increasing the quality of life and living ability of patients outside the hospital.

CONCLUSION

In summary, Qixue Shuangbu decoction and acupuncture combined with Western medicine in the treatment of acute severe stroke can regulate intestinal flora, reduce inflammation, improve intestinal mucosal barrier function and immune function related indicators, and promote recovery.

ARTICLE HIGHLIGHTS

Research background

Stroke is a common and frequently occurring disease of the nervous system and one of the three major diseases leading to human death.

Research motivation

The effects of Qixue Shuangbu decoction and acupuncture combined with Western medicine on immune indexes and digestive tract function in patients with acute severe stroke were analyze.

Research objectives

This study aimed to observe the curative effect of Qixue Shuangbu Decoction and acupuncture combined with Western medicine on acute severe stroke, with the purpose of improving the clinical therapeutic effect.

Research methods

The observation group was administered Qixue Shuangbu decoction via nasal feeding tube on the basis of the routine Western medicine treatment with simultaneous acupuncture. The two groups were compared.

Research results

After treatment, the scores of the observation group were lower than those of the control group, and the complement and Ig levels were higher than those of the control group. The levels of diamine oxidase, Dlactic acid, and calcitonin gene-related peptide in the two groups were significantly higher than those before treatment, while the levels of lipopolysaccharide, ubiquitin carboxyl-terminal hydrolase 1, tumor necrosis factor- α , interleukin (IL) -2, and IL-8 were significantly lower than those before treatment.

Research conclusions

Qixue Shuangbu decoction and acupuncture combined with Western medicine for the treatment of acute severe stroke can regulate intestinal flora.

Research perspectives

The immune function and digestive tract function indexes were selected as the observation objects to analyze the therapeutic effect of integrated traditional Chinese and Western medicine to provide the corresponding basis for clinical practice.

FOOTNOTES

Author contributions: Gou LK and Li C design the study; Gou LK drafted the manuscript; Gou LK and Li C collected the data; Li C analyzed and interpreted data, Gou LK and Li C wrote and revised the manuscript.

Supported by Lanzhou Science and Technology Development Plan Project, No. 2020-ZD-126.

Institutional review board statement: The study was reviewed and approved by the Lanzhou Second People's Hospital Institutional Review Board.

Informed consent statement: All study participants, or their legal guardian, provided informed written consent prior to study enrollment.

Conflict-of-interest statement: The authors declare no conflict of interest.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Li-Kun Gou 0000-0003-1802-349X; Chun Li 0000-0003-3481-6131.

S-Editor: Wang JL L-Editor: A P-Editor: Wang JL

REFERENCES

- Khandelwal P, Martínez-Pías E, Bach I, Prakash T, Hillen ME, Martínez-Galdámez M, Arenillas JF. Severe Epistaxis after 1 Tissue Plasminogen Activator administration for Acute Ischemic Stroke in SARS-COV-2 Infection. Brain Circ 2021; 7: 135-138 [PMID: 34189359 DOI: 10.4103/bc.bc 17 21]
- 2 Elsaid N, Mustafa W, Saied A. Radiological predictors of hemorrhagic transformation after acute ischemic stroke: An evidence-based analysis. Neuroradiol J 2020; 33: 118-133 [PMID: 31971093 DOI: 10.1177/1971400919900275]
- 3 Riou-Comte N, Zhu F, Cherifi A, Richard S, Nace L, Audibert G, Achit H, Costalat V, Arquizan C, Beaufils O, Consoli A, Lapergue B, Loeb T, Rouchaud A, Macian F, Cailloce D, Biondi A, Moulin T, Desmettre T, Marnat G, Sibon I, Combes X, Lebedinsky AP, Vuillemet F, Kempf N, Pierot L, Moulin S, Lemmel P, Mazighi M, Blanc R, Sabben C, Schluck E, Bracard S, Anxionnat R, Guillemin F, Hossu G, Gory B; DIRECT ANGIO Investigators. Direct transfer to angiosuite for patients with severe acute stroke treated with thrombectomy: the multicentre randomised controlled DIRECT ANGIO trial protocol. *BMJ Open* 2021; **11**: e040522 [PMID: 33722864 DOI: 10.1136/bmjopen-2020-040522]
- Obayashi S, Takahashi R, Onuki M. Upper limb recovery in early acute phase stroke survivors by coupled EMG-triggered and cyclic neuromuscular electrical stimulation. NeuroRehabilitation 2020; 46: 417-422 [PMID: 32310196 DOI: 10.3233/NRE-203024]
- Forti P, Maioli F, Nativio V, Maestri L, Coveri M, Zoli M. Association of prestroke glycemic status with stroke mortality. BMJ Open Diabetes Res Care 2020; 8 [PMID: 32079614 DOI: 10.1136/bmjdrc-2019-000957]
- 6 Naito Y, Kamiya M, Morishima N, Ishikawa T. Association between out-of-bed mobilization and complications of immobility in acute phase of severe stroke: A retrospective observational study. J Stroke Cerebrovasc Dis 2020; 29: 105112 [PMID: 32912565 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105112]
- 7 Amarenco P, Denison H, Evans SR, Himmelmann A, James S, Knutsson M, Ladenvall P, Molina CA, Wang Y, Johnston SC; THALES Steering Committee and Investigatorsa. Ticagrelor Added to Aspirin in Acute Nonsevere Ischemic Stroke or Transient Ischemic Attack of Atherosclerotic Origin. Stroke 2020; 51: 3504-3513 [PMID: 33198608 DOI: 10.1161/STROKEAHA.120.032239
- Shen S, Hou N. Adverse Drug Reactions Caused by Antimicrobials Treatment for Ventilator-Associated Pneumonia. Front Pharmacol 2022; 13: 921307 [PMID: 35712710 DOI: 10.3389/fphar.2022.921307]
- Ansari S, McConnell DJ, Velat GJ, Waters MF, Levy EI, Hoh BL, Mocco J. Intracranial stents for treatment of acute 9 ischemic stroke: evolution and current status. World Neurosurg 2011; 76: S24-S34 [PMID: 22182268 DOI: 10.1016/j.wneu.2011.02.031
- 10 Moshayedi P, Liebeskind DS, Jadhav A, Jahan R, Lansberg M, Sharma L, Nogueira RG, Saver JL. Decision-Making Visual Aids for Late, Imaging-Guided Endovascular Thrombectomy for Acute Ischemic Stroke. J Stroke 2020; 22: 377-386 [PMID: 33053953 DOI: 10.5853/jos.2019.03503]
- Warach SJ, Dula AN, Milling TJ Jr. Tenecteplase Thrombolysis for Acute Ischemic Stroke. Stroke 2020; 51: 3440-3451 11 [PMID: 33045929 DOI: 10.1161/STROKEAHA.120.029749]
- Liao Z, Bu Y, Li M, Han R, Zhang N, Hao J, Jiang W. Remote ischemic conditioning improves cognition in patients with 12

subcortical ischemic vascular dementia. BMC Neurol 2019; 19: 206 [PMID: 31443692 DOI: 10.1186/s12883-019-1435-y]

- Saver JL, Adeoye O. Intravenous Thrombolysis Before Endovascular Thrombectomy for Acute Ischemic Stroke. JAMA 13 2021; 325: 229-231 [PMID: 33464293 DOI: 10.1001/jama.2020.22388]
- 14 Rioux B, Keezer MR, Gioia LC. Occult cancer diagnosed following acute ischemic stroke. CMAJ 2020; 192: E1037-E1039 [PMID: 32900764 DOI: 10.1503/cmaj.200725]
- Salwi S, Cutting S, Salgado AD, Espaillat K, Fusco MR, Froehler MT, Chitale RV, Kirshner H, Schrag M, Jasne A, Burton 15 T, Grory BM, Saad A, Jayaraman MV, Madsen TE, Dakay K, McTaggart R, Yaghi S, Khatri P, Mistry AM, Mistry EA. Mechanical Thrombectomy in Ischemic Stroke Patients with Severe Pre-Stroke Disability. J Stroke Cerebrovasc Dis 2020; 29: 104952 [PMID: 32689611 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104952]
- Yamagami H, Sakaguchi M, Furukado S, Hoshi T, Abe Y, Hougaku H, Hori M, Kitagawa K. Statin therapy increases 16 carotid plaque echogenicity in hypercholesterolemic patients. Ultrasound Med Biol 2008; 34: 1353-1359 [PMID: 18378381 DOI: 10.1016/j.ultrasmedbio.2008.01.019]
- 17 Scaravilli V, Guzzardella A, Madotto F, Beltrama V, Muscatello A, Bellani G, Monti G, Greco M, Pesenti A, Bandera A, Grasselli G. Impact of dexamethasone on the incidence of ventilator-associated pneumonia in mechanically ventilated COVID-19 patients: a propensity-matched cohort study. Crit Care 2022; 26: 176 [PMID: 35698155 DOI: 10.1186/s13054-022-04049-2]
- Ahmed Y, Bardia N, Judge C, Ahmad S, Malozzi C, Calderon E. Aerococcus urinae: A Rare Cause of Endocarditis 18 Presenting With Acute Stroke. J Med Cases 2021; 12: 65-70 [PMID: 34434432 DOI: 10.14740/jmc3612]
- Ebinger M, Siegerink B, Kunz A, Wendt M, Weber JE, Schwabauer E, Geisler F, Freitag E, Lange J, Behrens J, Erdur H, 19 Ganeshan R, Liman T, Scheitz JF, Schlemm L, Harmel P, Zieschang K, Lorenz-Meyer I, Napierkowski I, Waldschmidt C, Nolte CH, Grittner U, Wiener E, Bohner G, Nabavi DG, Schmehl I, Ekkernkamp A, Jungehulsing GJ, Mackert BM, Hartmann A, Rohmann JL, Endres M, Audebert HJ; Berlin PRehospital Or Usual Delivery in stroke care (B PROUD) study group. Association Between Dispatch of Mobile Stroke Units and Functional Outcomes Among Patients With Acute Ischemic Stroke in Berlin. JAMA 2021; 325: 454-466 [PMID: 33528537 DOI: 10.1001/jama.2020.26345]
- Ehtesham M, Mohmand M, Raj K, Hussain T, Kavita F, Kumar B. Clinical Spectrum of Hyponatremia in Patients with 20 Stroke. Cureus 2019; 11: e5310 [PMID: 31592365 DOI: 10.7759/cureus.5310]

Published by Baishideng Publishing Group Inc 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA Telephone: +1-925-3991568 E-mail: bpgoffice@wjgnet.com Help Desk: https://www.f6publishing.com/helpdesk https://www.wjgnet.com

