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Abstract
Murry et al  in 1986 discovered the intrinsic mechanism 
of profound protection called ischemic preconditioning. 
The complex cellular signaling cascades underlying this 
phenomenon remain controversial and are only partially 
understood. However, evidence suggests that adenos-
ine, released during the initial ischemic insult, activates 
a variety of G protein-coupled agonists, such as opi-
oids, bradykinin, and catecholamines, resulting in the 
activation of protein kinases, especially protein kinase C 
(PKC). This leads to the translocation of PKC from the 
cytoplasm to the sarcolemma, where it stimulates the 
opening of the ATP-sensitive K+ channel, which con-
fers resistance to ischemia. It is known that a range of 
different hypoglycemic agents that activate the same 
signaling cascades at various cellular levels can inter-
fere with protection from ischemic preconditioning. This 
review examines the effects of several hypoglycemic 
agents on myocardial ischemic preconditioning in ani-
mal studies and clinical trials.
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INTRODUCTION
In the last 3 decades, the prevalence of  diabetes mel-
litus in adults 18 years and older has increased 2-fold[1]. 
Approximately 50%-60% of  patients with diabetes die 
from cardiovascular disease (CVD)[2]. Among various 
CVDs, acute myocardial infarction (AMI) has a high rate 
of  mortality, and infarct size is a primary determinant of  
prognosis in these patients[3-5]. Furthermore, patients with 
diabetes are more likely than patients without diabetes to 
develop heart failure after AMI[6]. Thus, the development 
of  new cardioprotective strategies capable of  protecting 
the myocardium are imperative in order to improve clini-
cal outcomes in diabetic patients with coronary heart dis-
ease. Moreover, hyperglycemia is an important risk factor 
for coronary artery disease and death; however, the use 
of  some medications to achieve glycemic control is con-
troversial, as their use has not consistently been shown 
to reduce mortality. The University Group Diabetes Pro-
gram (UGDP) in 1970 showed that the administration of  
tolbutamide, a first-generation sulfonylurea, may increase 
the risk of  cardiovascular death[7].

As a cardioprotective strategy, ischemic precondition-
ing (IPC) has received much attention for its powerful 
infarct size-limiting effect. This intrinsic mechanism of  
profound protection was suggested by Murry et al[8] in 
1986 who found in a canine model that 4 consecutive pe-
riods of  coronary occlusion of  5 min were able to reduce 
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the infarct size by as much as 75%, after induction by a 
subsequent period of  occlusion for 40 min. For the first 
time, it was demonstrated that limitation of  infarct size 
was theoretically possible.

IPC causes 2 phases of  protection: “early” or “first 
window” and “second window of  protection” (SWOP). 
The first window protects the heart for about 2 h and 
then wanes; the SWOP appears 24 h after the initiation 
of  the IPC protocol and can last for 3 d (Figure 1)[9].

Although IPC was initially referred to as the ability 
of  short periods of  ischemia to limit infarct size, some 
investigators extended this definition to include a benefi-
cial effect on reperfusion-induced arrhythmias[10] and on 
myocardial stunning[11].

Experimental findings on IPC cannot be directly 
extrapolated to humans, because of  obvious ethical re-
strictions and because its mechanisms are different from 
those of  other animal species. IPC in human hearts has 
been demonstrated by results of  in vitro experiments using 
human ventricular myocytes[12] and atrial trabeculae[13]. In 
addition, surrogate clinical endpoints have also been used, 
including contractile function, electrocardiographic isch-
emic changes, or biochemical evidence of  cell damage.

CELLULAR MECHANISMS OF CLASSICAL 
PRECONDITIONING
The cellular mechanisms that confer resistance to isch-
emia have been extensively studied. However, these 
pathways remain controversial and are only partially un-
derstood[14,15]. It has been proposed that endogenous ade-
nosine released during the brief  ischemia of  the IPC pro-
tocol enhances the release of  G-protein coupled receptor 
(GPCR) agonists, such as opioids, adenosine, bradykinin, 
or catecholamines[16-18]. These GPCR agonists appear to 
work simultaneously and in parallel to provide redun-
dancy to the preconditioning stimulus. Although these 3 
receptors trigger signaling through divergent pathways, 
this signaling activates prosurvival kinase or reperfusion 
injury salvage kinase paths, including phosphatidylinositol 

3-kinase, protein kinase B, and protein kinase C[14,15]. In 
turn, it leads to the translocation of  protein kinases from 
the cytoplasm to sarcolemmal receptors[19] and mitochon-
drial membranes[20], where it phosphorylates a substrate 
protein, the ATP-sensitive K+ (KATP) channel[21]. Mari-
novic et al[22] demonstrated in mouse cardiac myocyte cells 
that the opening of  the sarcolemmal KATP channels 
plays an important role in the prevention of  cardiomyo-
cyte apoptosis during metabolic stress, and may interact 
with mitochondrial channels. Thus, opening of  KATP 
channels are strongly involved in the protection provided 
by preconditioning[23-26].

Due to the growing knowledge about the cellular 
pathways of  this important protective mechanism, we 
must consider whether IPC can be applied as a cardio-
protective therapy in ischemic heart disease patients.

PHARMACOLOGICAL INTERACTIONS
Pharmacological agents have the capacity to either in-
terfere with signaling or trigger protection. The use of  
agents capable of  mimicking the protective effects of  
preconditioning, besides brief  ischemia, may offer a more 
benign approach for eliciting cardioprotection. Agents 
commonly used in coronary disease may interfere with 
the protection of  IPC pathways. Penson et al[27] demon-
strated in rat-isolated atria and ventricles that activation 
of  beta-adrenoceptors mimics preconditioning. However, 
β-adrenoceptor blockers impair cardioprotection in ani-
mals[28]. Other agents such as Ca2+ channel blockers[29] 
and nonsteroidal anti-inflammatories may interfere with 
protection by IPC pathways[30,31]. Liu et al[16] reported 
that an adenosine receptor antagonist could block IPC 
protection and that adenosine or the A1-selective agonist 
adenosine, instead of  brief  ischemia, could duplicate IPC 
protection. Other potential candidates currently in clinical 
use include nicorandil or diazoxide[32,33]. These drugs have 
been shown to open KATP channels in ischemic cardio-
myocytes, and might act as pharmacological imitators of  
the preconditioning phenomenon.

HYPOGLYCEMIC DRUGS AND IPC
Hyperglycemia is an important risk factor for coronary 
artery disease and death. However, the use of  some hy-
poglycemic medications is controversial, because they 
have not been shown to reduce mortality. Indeed, physi-
cians face challenges regarding the use of  new agents in 
patients with diabetes who are at high cardiovascular risk. 
Several factors contribute to this concern, and among 
these is IPC. As described above, the UGDP raised con-
cerns that the administration of  tolbutamide may increase 
the risk of  cardiovascular death, but this result remained 
unexplained until data were reported suggesting deleteri-
ous effects of  some sulfonylureas (glyburide), specifically 
in the mechanisms of  IPC[23,24].

Insulin secretagogues stimulate insulin secretion by 
the shutdown of  the KATP channel in pancreatic β 
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Figure 1  Diagrammatic representation of the temporal nature of the 2 
windows of preconditioning (adapted from Baxter et al [9]). SWOP: Second 
window of protection.



cells[34]. KATP channels are composed of  2 types of  sub-
units, inwardly rectifying K+ channels (Kir6.x) and sulfo-
nylurea receptors (SURx), arranged as tetradimeric com-
plexes (Kir6.x/SURx)[35]. Closure of  the KATP channel 
results in membrane depolarization and influx of  calcium 
(Ca2+) into the β cell. The increase in intracellular Ca2+ 
causes release of  insulin from β cell secretory granules. 
KATP channels are also abundant in both cardiomyo-
cytes[36,37] and arterial smooth muscle cells[38].

The β cell and cardiac muscle KATP channels have 
been shown to possess a common pore-forming subunit 
(Kir6.2) but different sulfonylurea receptor subunits 
(SUR1 and SUR2A, respectively). Although the roles of  
KATP channel in extrapancreatic tissues are less well 
characterized, it is likely that they open in response to 
metabolic stress, such as during cardiac ischemia[39]. Thus, 
the ideal sulfonylurea for treatment of  type 2 diabetes 
would be one that interacts only with the β cell KATP 
channel.

EFFECT OF SULFONYLUREAS ON IPC
There is concern about the effect of  sulfonylureas on 
preconditioning protection. Unfortunately, little is known 
about the ability of  the clinically used insulin secreta-
gogues to interfere with IPC. To evaluate studies on the 
effects of  sulfonylureas on IPC, it is important to assess 
their selectivity for SUR receptor subtypes. These drugs 
have a range of  affinities for KATP channels with differ-
ent SUR isoform composition, resulting in different abili-
ties to stimulate the KATP channel activity. Tolbutamide 
has a high affinity for SUR 1 receptors in β cells, but a 
very low affinity for SUR 2A receptors in the myocardi-
um[40,41]. Glibenclamide (glyburide) inhibits cardiac as well 
as pancreatic receptors with high affinity[42,43]. Glimepiride 
has affinity for pancreatic and cardiac SUR comparable 
to glibenclamide, thereby, does not differentiate between 
B cells, cardiac muscle, or smooth muscle KATP chan-
nels[43,44]. In contrast, preliminary studies reported that 
glimepiride had less cardiovascular activity than gliben-
clamide had[45-48]. Several reasons seem to correlate with 
this finding and, among them, highlight the difference 
in selectivity for SUR between in vitro and in vivo studies, 
and different effects of  doses utilized in most studies and 
in treatment of  patients with type 2 diabetes mellitus. In 
addition, gliclazide, a second generation sulfonylurea, is 
distinguished by having a higher selectivity for pancreatic 
SUR receptors[43,49].

Numerous studies using animal models support the 
hypothesis that IPC is impaired by glibenclamide[23,47,50,51]. 
Studies using human hearts analyzed IPC in isolated 
human atrial muscle trabeculae, obtained from type 2 
diabetic patients treated with sulfonylureas before coro-
nary artery surgery, and noted that IPC was abolished in 
patients receiving sulfonylureas[52]. Tomai et al[53] evaluated 
IPC in 20 patients pretreated with either glibenclamide or 
placebo. They recorded ST-segment changes on ECGs 
during 2 subsequent episodes of  intracoronary balloon 
inflation. They concluded that human IPC during brief  

repeated coronary occlusions was completely abolished 
by pretreatment with glibenclamide. Similar results were 
shown when the effects of  glibenclamide and glimepiride 
were compared during balloon inflation in percutaneous 
transluminal coronary angioplasty[45,54].

Tomai et al[55] investigated the effects of  glibenclamide 
on the “warm up phenomenon”, which is a clinical 
model of  IPC. It refers to an increased tolerance to 
myocardial ischemia during the second of  2 consecutive 
exercise tests. In this study, glibenclamide abolished the 
improvement in ischemic threshold during the second ex-
ercise test, compared with placebo[55]. Ovünç[56], in a simi-
lar study reported concordant results and suggested that 
glibenclamide should be used with caution in patients 
with coronary heart disease and diabetes mellitus, be-
cause this agent leads to a decrease in ischemic threshold 
and exercise capacity. Ferreira et al[57], in a study in which 
IPC was evaluated by 2 consecutive exercise tests, also 
investigated the effects of  chronic treatment with gliben-
clamide. Forty patients with angina pectoris were allocat-
ed into 3 groups: 20 nondiabetic patients, 10 diabetic pa-
tients receiving treatment with glibenclamide for at least 
6 mo, and 10 diabetic patients receiving other treatments. 
All patients underwent 2 consecutive exercise tests. The 
results suggested that IPC protection was blocked in dia-
betic patients exposed to long-term treatment with glib-
enclamide. In a recent study, Bilinska et al[58] evaluated 64 
men, 17 nondiabetic and 47 diabetic, aged 54 ± 5 years. 
Diabetic patients were allocated into 3 groups: one treat-
ed with glibenclamide, one with gliclazide, and the other 
with diet. All patients performed 2 consecutive exercise 
tests, with 30 min between them. The authors compared 
the improvement in ischemic parameters among these 
groups of  patients and concluded that the warm-up ef-
fect was preserved in diabetic patients treated with diet, 
partially preserved in patients treated with gliclazide, and 
abolished in patients treated with glibenclamide. In con-
trast, other studies reported no effect of  treatment with 
glibenclamide on the electrocardiographic shifts of  the 
ST-segment during consecutive exercise tests[59,60].

In summary, most studies with glibenclamide (glybu-
ride) reported deleterious effects on IPC, suggesting cau-
tion with the use of  this agent in patients at high risk for 
myocardial ischemia.

In animal studies, glimepiride treatment facilitated the 
cardioprotective effect elicited by IPC[47,48,61-63]. Indeed, 
data from clinical studies is of  great interest. Experimen-
tal findings on IPC cannot be directly extrapolated to 
humans, because in humans its mechanisms are differ-
ent from those in other animal species. Thus, Klepzig et 
al[45] compared the effects of  glibenclamide, glimepiride, 
and placebo administration on ST-segment shifts during 
balloon inflation in percutaneous transluminal coronary 
angioplasty. They concluded that IPC was maintained 
after glimepiride administration and prevented after 
glibenclamide. Lee et al[46], studied the impact of  gliben-
clamide or glimepiride administration on cardioprotective 
effects in patients with and without diabetes undergoing 
coronary angioplasty. The results demonstrated that the 
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effect of  glinides on type 2 diabetic patients with coro-
nary artery disease would be of  great interest for both 
therapeutic and scientific reasons.

EFFECT OF INCRETINS ON IPC
Incretins are gut-derived peptides secreted in response 
to meals, specifically in the presence and absorption of  
nutrients in the intestinal lumen. The major incretins are 
glucagon-like peptide-1 (GLP-1) and glucose-dependent 
insulinotropic peptide. Incretin is mainly represented by 
GLP-1. The half-life of  GLP-1(7-36) in circulation is 
very brief  (1 to 2 min), as it is rapidly degraded by the en-
zyme dipeptidyl peptidase-Ⅳ (DPP-Ⅳ) to the metabolite 
GLP-1(9-36), which does not act on the GLP-1 receptor. 
GLP-1 receptors are expressed in pancreatic islet cells 
and in the kidney, lung, brain, gastrointestinal tract, and 
heart[67]. The incretin modulator class includes the GLP-1 
analogues or mimetics, which are functional agonists of  
the GLP-1 receptor. In addition, oral inhibitors of  DPP-
Ⅳ, in essence, increase the plasma concentrations of  
the biologically active form of  endogenously secreted 
incretins[68]. Bose et al[69] observed in an isolated rat heart 
model that GLP-1(7-36) is protective against myocardial 
ischemia-reperfusion injury when given either as a pre-
conditioning mimetic or at reperfusion. Although several 
investigators have reported the cardioprotective effect of  
GLP-1, there is a lack of  studies about its effects on IPC. 
Our research group compared the actions of  the DPP-Ⅳ 
inhibitor (vildagliptin) and repaglinide using an IPC pro-
tocol. The results showed that vildagliptin preserved IPC 
in 72% of  54 patients, while repaglinide maintained the 
cardioprotective response in only 17% of  42 patients[70]. 
Our group demonstrated 2 effects of  hypoglycemic 
drugs on IPC. These findings support the importance 
of  identifying underlying mechanisms of  endogenous 
myocardial protection to improve the protective effect of  
pharmacological therapy (Table 1).

EFFECTS OF GLITAZONES ON IPC
The glitazones or thiazolidinediones offer the first thera-
peutic option specifically directed at reversing the basic 
problem of  type 2 diabetes, which is resistance to insu-
lin. These drugs act on tissues such as liver and skeletal 
muscle, sensitizing them to insulin action, and thereby 
increasing glucose uptake and decreasing its hepatic out-
put. The oldest and best-studied glitazone is troglitazone, 
which was withdrawn from the market by the United 
States Food and Drug Administration (FDA) because of  
concerns about its safety. Muriglitazar, which stimulates 
both PPARγ and alpha receptors, increased adverse car-
diovascular events and was also withdrawn by its manu-
facturer after rejection by the FDA. Roziglitazone and 
pioglitazone are also drugs in the PPARγ agonist family. 
Nissen et al[71] reported in a meta-analysis a significant 
increase in the risk of  myocardial infarction with rosigli-
tazone and a trend towards increased risk of  death from 
cardiovascular causes. This information has been includ-

changes in the ST-segment and metabolic parameters 
were more severe after pretreatment with glibenclamide 
than with glimepiride, in patients with and without type 2 
diabetes.

Only a few studies[45,46] have used IPC protocols in hu-
mans to evaluate the effect of  glimepiride. To date, these 
trials have revealed beneficial effects on cardioprotective 
mechanisms.

In isolated Langendorff  perfused rat hearts, the in-
farct sizes were smaller in the group treated with glicla-
zide compared with the group treated with glibenclamide. 
However, the glimepiride group had a smaller infarct size 
than the gliclazide group[48]. In an in-vivo rat study, Mad-
dock et al[51] compared the effects of  glibenclamide and 
gliclazide on IPC and nicorandil-induced protection. The 
IPC protocol consisted of  2 cycles of  5 min of  regional 
ischemia/reperfusion preceding prolonged ischemia. Gli-
clazide had no adverse effects on IPC or on nicorandil-
induced protection. Loubani et al[64] assessed the dose-
response effect of  gliclazide and glibenclamide on IPC. 
Different doses of  glibenclamide and gliclazide were add-
ed for 10 min prior to implementation of  the IPC proto-
col. The cardioprotection was abolished by gliclazide only 
at supratherapeutic concentrations, while glibenclamide 
prevented IPC at all concentrations.

Bilinska et al[58] evaluated the effects of  diet, gliben-
clamide, or gliclazide on the warm-up phenomenon in 
type 2 diabetic patients with stable angina. They con-
cluded that the warm-up effect was partially preserved in 
the gliclazide-treated and abolished in the glibenclamide-
treated group.

The analysis of  the reported data described above 
suggests that gliclazide does not induce potentially harm-
ful IPC effects.

EFFECT OF GLINIDES ON IPC
The drugs from the glinide class are characterized as in-
sulinotropic agents with a rapid onset and short duration 
of  action. Although glinides do not have a sulfonylurea 
structure, their role as an insulin secretagogue occurs by 
binding to the Kir6.2/SUR1 complex, which leads to the 
closure of  KATP channels. 

Glinides non-selectively inhibit the pancreatic, myo-
cardial, and non-vascular smooth muscle KATP chan-
nels[65]. For these reasons, the selectivity of  glinides for 
the pancreatic compared with the cardiovascular KATP 
channels has relevance for IPC. Unfortunately, little is 
known about the ability of  the clinically used glinides 
to interfere with IPC. An original study conducted in 
our service[66], evaluated the effect of  repaglinide on the 
warm-up phenomenon. Forty-two patients with type 2 
diabetes mellitus and coronary artery disease underwent 2 
consecutive treadmill exercise tests. After 7 d of  receiving 
repaglinide, 83% of  patients no longer had myocardial 
IPC.

Due to the great difference of  in vitro selectivity ratios 
of  repaglinide and other drugs in the glinide class (miti-
glinide and nateglinide)[43,65], clinical studies assessing the 
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ed in the prescribing information for all rosiglitazone-
containing products. However, the glitazones have been 
shown to improve many of  the traditional as well as the 
emerging risk factors associated with CVD[72]. The effect 
of  the glitazones, rosiglitazone, and pioglitazone on IPC 
is still a matter of  debate in the literature, as experimental 
studies demonstrate contradictory results. Methodologi-
cal differences are one of  the reasons for that. In studies 
using rat models, pioglitazone was associated with benefi-
cial effects on cardiomyocyte injury, limiting infarct size, 
and ventricular arrhythmias[73-75]. These beneficial effects 
may be related to the opening of  mitochondrial (ATP)-
sensitive potassium channels[76] and by other kinases like 
phosphatidylinositol 3 kinase and P42/44 MAPK by 
pioglitazone[77]. On the other hand, in a porcine model, 
pioglitazone and rosiglitazone had the opposite results[78]. 
Finally, in the clinical setting, the possible actions of  the 
glitazones on IPC are still uncertain.

EFFECTS OF METFORMIN ON IPC
The cardiovascular benefits observed in diabetic patients 

with chronic coronary artery disease with the use of  
metformin[79] have also been observed in experimental 
studies, which have shown positive results of  metfor-
min in the cardiovascular system, and that includes its 
effect in IPC. It is still not completely understood how 
metformin protects IPC in the heart, but it is postulated 
that it activates some kinases involved in IPC, such as 
(AMP)-activated protein kinase[80], which increases ad-
enosine, activating cardioprotective mechanisms. Recent 
studies have also demonstrated that metformin increases 
hexokinase Ⅱ, another important kinase found in mito-
chondria, which seems to be one of  the end-effectors of  
IPC, and that ultimately protects many cell types, includ-
ing cardiomyocytes, against apoptosis and ischemic cell 
death[81]. Ischemia inhibits the loss of  hexokinase Ⅱ from 
mitochondria, consequently preventing the opening of  
the mitochondrial permeability transition pore. This pore 
is responsible for the stabilization of  the mitochondrial 
membrane potential, the prevention of  cytochrome C 
release and also the reduction in reactive oxygen spe-
cies production, which all finally lead to mitochondrial 
protection against ischemic injury[82,83]. These actions 
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Table 1  Effects of hypoglycemic drugs on ischemic preconditioning

Study Model Diabetic drug Effect

Animal studies
   Gross et al[23], 1992 Dogs Glibenclamide (glyburide) Abolished
   Toombs et al[50], 1993 Rabbits Glibenclamide Abolished
   Mocanu et al[47], 2001 Rats Glimepiride Preserved
   Maddock et al[51], 2004 Rats Glibenclamide Abolished

Glimepiride Preserved
   Hausenloy et al[61], 2013 Rats Glimepiride Preserved
   Ye et al[62], 2008 Rats Pioglitazone Preserved

Glibenclamide (glyburide) Abolished
Glimepiride Preserved

   Horimoto et al[63], 2002 Rabbits Glibenclamide Abolished
Glimepiride Preserved

   Bose et al[69], 2005 Rats Native sequenced human GLP-1 Preserved
   Zhu et al[73], 2011 Rats Pioglitazone IPC mimic
   Sasaki et al[74], 2007 Rats Pioglitazone IPC mimic
   Ahmed et al[75], 2011 Rats Pioglitazone IPC mimic
   Li et al[76], 2008 Rats Pioglitazone Preserved
   Wynne et al[77], 2005 Rats Pioglitazone IPC mimic
   Sarraf et al[78], 2012 Porcine Pioglitazone Abolished

Rosiglitazone Abolished
Human studies
   Cleveland et al[52], 1997 Atrial muscle trabeculae Glibenclamide (glyburide) Abolished
   Tomai et al[53], 1994 Human Glibenclamide Abolished
   Klepzig et al[45], 1999 Human Glibenclamide Abolished

Glimepiride Preserved
   Lee et al[54], 2002 Human Glibenclamide Abolished
   Tomai et al[55], 1999 Human Glibenclamide Abolished
   Ovünç[56], 2000 Human Glibenclamide Abolished
   Ferreira et al[57], 2005 Human Glibenclamide Abolished
   Bilinska et al[58], 2007 Human Glibenclamide Abolished

Gliclazide Partially preserved
   Bogaty et al[59], 1998 Human Glibenclamide Preserved
   Correa et al[60], 1997 Human Glibenclamide Preserved
   Loubani et al[64], 2005 Right atrial appendages Glibenclamide Abolished

Gliclazide Preserved (but abolished in supratherapeutic concentrations)
   Hueb et al[66], 2007 Human Repaglinide Abolished
   Rahmi et al[70], 2013 Human Repaglinide Abolished

Vildagliptin Preserved

GLP-1: Glucagon-like peptide-1; IPC: Ischemic preconditioning.
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associated with metabolic alterations, such as the preven-
tion of  acidosis through enhanced coupling of  glycolysis 
and glucose oxidation and inhibition of  fatty acid oxida-
tion[81], are the responsible pathways by which metformin 
protects the myocardium from ischemia, in addition to its 
well-known effects in glucose control.

CLINICAL IMPLICATIONS
Ischemic preconditioning is a complex, dynamic phe-
nomenon that can be the target of  drug activities affect-
ing the heart’s ability to adapt to ischemic stress. In the 
clinical setting, however, the literature contains conflicting 
results regarding whether the use of  conventional oral 
hypoglycemic agents affect cardiovascular mortality[84-90]. 
The findings from studies about the effects of  hypogly-
cemic drugs on IPC have implications for diabetic pa-
tients, especially for those with a high risk of  myocardial 
ischemic events, because the results infer that the myo-
cardium may or may not benefit from a cardioprotective 
response when under the influence of  such drugs. The 
most important consideration in this matter is that thera-
peutic options for diabetes treatment go beyond glucose-
lowering efficacy in populations with increased risk of  
coronary ischemic events, and further large clinical trials 
will be necessary to determine whether the interference 
with myocardial preconditioning translates into clinical 
evidence.
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