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Abstract
Intestinal flora plays a key role in nutrient absorption, metabolism and immune 
defense, and is considered to be the cornerstone of maintaining the health of 
human hosts. Bile acids synthesized in the liver can not only promote the 
absorption of fat-soluble substances in the intestine, but also directly or indirectly 
affect the structure and function of intestinal flora. Under the action of intestinal 
flora, bile acids can be converted into secondary bile acids, which can be reab-
sorbed back to the liver through the enterohepatic circulation. The complex 
dialogue mechanism between intestinal flora and bile acids is involved in the 
development of intestinal inflammation such as inflammatory bowel disease 
(IBD). In this review, the effects of intestinal flora, bile acids and their interactions 
on IBD and the progress of treatment were reviewed.

Key Words: Intestinal flora; Bile acids; Inflammatory bowel disease; Fecal microbiota 
transplantation; Prebiotics

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: With the increase of economic level and the improvement of people's living 
standard, the incidence of inflammatory bowel disease (IBD) in China is gradually 
increasing, causing a heavy burden to the society. The pathogenesis of IBD is related to 
genetics, environment, intestinal microecology and immunity, but the specific biological 
mechanism is still unclear. As an important part of intestinal microecology, intestinal 
flora can directly affect intestinal environmental homeostasis and participate in bile acid 
(BA) metabolism, while the abnormal BA metabolism also affects the quality and 
quantity of intestinal flora, and both of them are involved in the occurrence and 
development of intestinal inflammation.
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INTRODUCTION
Inflammatory bowel disease (IBD) is a chronic relapsing disease, including Crohn's disease (CD) and 
ulcerative colitis (UC), which has become a public health problem worldwide. With changes in diet and 
lifestyle, the incidence of IBD is rising rapidly worldwide. The composition of intestinal flora is 
considered to be the main driver of intestinal immune dysfunction in IBD, but this concept has not been 
fully proven[1]. Bile acids (BAs) are steroid molecules produced by interaction between the host and gut 
flora. It is one of the largest bioactive substances found in mammals and acts on the G protein and 
nuclear receptor families[2]. In this review, we reviewed the effects of intestinal flora, BA receptors and 
their interactions on IBD and the progress of its treatment.

INTESTINAL FLORA AND IBD
IBD patients were found to have intestinal microbiota imbalance, which was mainly characterized by 
decreased intestinal microbiota diversity. The anti-inflammatory bacteria in feces of IBD patients, such 
as Faecalibacterium prausnitzii and Roseburia, have decreased. In the intestinal mucus layer, Roseburia can 
convert acetate to butyrate and produce secondary BAs, which may have anti-inflammatory effects[3]. 
The proportion of Bacteroides Fragilis in IBD patients also decreased significantly. The polysaccharide A 
produced by The bacterium induces the development of CD4+ T cells and the anti-inflammatory 
function of regulatory T cells (Treg)[4]. A recent study found that the use of short-term antibiotics at an 
early age increased the susceptibility of mice to colitis induced by Dextran sulfate sodium (DSS), 
suggesting that the imbalance of intestinal flora is closely related to the incidence of IBD[5].

The intestinal flora metabolizes to produce many bioactive molecules that interact with the host. The 
typical representatives are short chain fatty acids, which mainly include acetic acid, propionic acid and 
butyric acid. These bioactive molecules not only serve as energy for intestinal epithelial cells, but also 
increase the secretion of anti-inflammatory cytokines such as interleukin (IL-10) and the number of Treg 
cells by activating the G protein-coupled receptor 5 (TGR5) on intestinal cells and immune cells[6]. It can 
reduce tissue inflammation and maintain the stability of intestinal mucosal barrier function. Studies 
have shown that butyrate can promote the recovery of intestinal barrier function and accelerate the 
repair of intestinal epithelial cell injury through synaptopoptin, while the loss of bacterial flora blocks 
the expression of synaptopoptin and increases the sensitivity to colitis and intestinal permeability in 
mice[7].

Dietary tryptophan can be metabolized by intestinal flora into metabolites such as indoleacetic acid, 
indole3-acetaldehyde, indole3-aldehydes, indole3-acrylics and indole3-propionic acid, thus acting as 
ligands of aromatic hydrocarbon receptors, which are closely related to the pathogenesis of IBD[8].

Indoles, indoles propionic acid and indoles acrylic acid bind to progesterone X receptors, thereby 
reducing intestinal permeability and affecting mucosal homeostasis[9]. Indoleformaldehyde secretes IL-
22 by activating aromatic hydrocarbon receptors on intestinal immune cells. Indole-3-propionic acid 
protects mice from DSS-induced colitis by binding to aromatic hydrocarbon receptors to produce IL-10
[10]. Therefore, intestinal flora disorder can disrupt immune regulation and promote inflammation 
through its metabolites.

BA METABOLISM
BA is an important compound and structural component in human and animal Bile, and the liver is the 
main site of BA formation[11]. BA synthesis by the great influence of diet, the body from free cholic acid 
(CA), the primary BAs combined with secondary free CA and BA composition, type of free BA is by 
chenodeoxycholic acid (CDCA) and CA, primary BA combination type of cows sulfonated goose 
deoxycholic acid (DCA) and ammonia goose DCA, taurocholic acid as well as the composition of gca, 
Secondary free CA consists of CA and DCA[12]. BAs are a kind of important host-derived compounds, 
which have many important physiological functions and effects on the host and its intestinal flora. BAs 
are metabolites of cholesterol, and the transformation of BAs requires the help of intestinal microflora
[13]. The classical pathway and the alternative pathway are two pathways of BA synthesis. It is 
regulated by cholesterol 7α-hydroxylase (CYP7A1), sterol 12α-hydroxylase (CYP8B1), cholesterol 27α-
hydroxylase (CYP27A1) and other enzymes related to BA synthesis[14]. It has been confirmed that in 

https://www.wjgnet.com/2307-8960/full/v10/i30/10823.htm
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the classical pathway of BA synthesis, cholesterol in human liver is catalyzed by CYP7A1 to produce 7α-
hydroxyl cholesterol, and then is catalyzed by 3β-hydroxyl-δ 5-C27-steroid dehydrogenase (3β-HSD), 
CYP8B1 and CYP27A1. 7α-hydroxyl cholesterol is catalyzed to produce primary BAs, free CA and goose 
DCA (CDCA)[15].

In the alternative pathway, cholesterol is catalyzed by CYP27A1 to produce 27α-hydroxyl cholesterol, 
followed by DCA in response to CYP7B1[16]. The free CA then binds to glycine and taurine by its own 
amide bond to form conjugated BAs which enter the intestinal tract of the body[17]. Taurocholic acid 
forms DCA after hydroxy release by intestinal bacteria. In the metabolism of goose DCA, goose DCA is 
a combination of glycine and goose DCA[18]. The intestinal bacteria of the body hydrolyze goose DCA 
and dehydroxyl to form stone CA[19]. Goose DCA can also react with taurine to form taurocholic acid. 
CYP7A1 is a rate-limiting enzyme of BA synthesis in the body, and its activity can regulate the rate of 
BA synthesis in the process of BA synthesis, which has been proved in an experimental study[20]. Rats 
in the experimental group were fed BA, and the activity of 7α-hydroxylase was decreased and the rate 
of BA synthesis was also significantly decreased in the experimental group compared with normal rats
[21]. After BA synthesis by bile salt export pump into the gall bladder stores, when the body after 
eating, in the gallbladder bile into the intestine to help the body absorb the lipid in food, the BA level in 
the body is not fixed, it is in the steady state environment, in the terminal ileum 95% BA enterohepatic 
circulation will be absorbed by weight, over 5% of conjugated BA eduction of excrement and urine, 
Limited BAs are reused through the enterohepatic circulatory system[22]. This process, called BA 
enterohepatic circulation, occurs about six times a day in the body. Most BAs are reabsorbed at the 
terminal ileum via the apical membrane sodium-dependent bile salt transporter (ASBT) of intestinal 
cells, where bile salts are transported from the intestinal epithelial cells to the basal outer membrane 
side into the blood with the help of intestinal BA proteins[23].

BA AND IBD
Repeated stimulation of intestinal epithelial cells with high concentration of BAs is an important risk 
factor for the pathogenesis of IBD, which will destroy host material metabolism and signal transduction
[24]. In rats with colitis induced by Trinitrobenzenesulfonic acid, apical sodium-dependent BA 
transporter, ASBT expression decreased. When intestinal inflammation occurs, the intestinal barrier is 
damaged, which leads to the reduction of ASBT expression, and finally the destruction of enterohepatic 
circulation leads to the accumulation of BAs in the intestinal mucosa, and the intestinal inflammation is 
aggravated. In IBD patients, ileal inflammation blocks hepatoenteric circulation of BAs, leading to 
reduced ileal reabsorption, which may be due to inhibition of ASBT promoter expression by inflam-
matory cytokines, thus increasing fecal BAs[25].

Hepatic BA synthesis is regulated by the Farnesoid X receptor (FXR)-FGF15/19 signaling pathway. 
Activation of this signaling pathway reduces the expression of enzymes related to hepatic BA synthesis 
and reduces BA synthesis[26]. Activation of FXR can improve colon inflammation, protect intestinal 
inflammation, reduce intestinal permeability, and reduce goblet cell extinction. The activation of FXR 
can also inhibit the secretion of tumor necrosis factor-α (TNF-α), interferon (IFN)-γ, IL-17 and other 
inflammatory cytokines in the mucosal cells of IBD patients, and up-regulate the expression of anti-
inflammatory factor IL-10 in the intestinal tract[27]. Therefore, compared with the healthy control 
group, the enterohepatic circulation of IBD patients is blocked, the negative regulatory pathway of 
intrahepatic BA synthesis is reduced, and the total amount of BAs in the intestinal lumen is increased, 
leading to intestinal inflammation[28].

BA-ACTIVATED RECEPTORS IN IBD
BA receptors mainly consist of TGR5, FXR, and pregnane X receptor (PXR), Constitutive Androstane 
receptor (CAR), Vitamin D receptor (VDR), PXR. It has the functions of regulating BA metabolism, 
glucose utilization, fatty acid synthesis and oxidation, energy homeostasis balance, immune cell 
function, nerve activity and so on.

TGR5 and IBD
TGR5 is a membrane receptor containing seven transmembrane regions. TGR5 mRNA expression was 
found in almost all human and rodent tissues, especially in gallbladder, ileum and colon[29]. Lithocholic 
acid (LCA) was the most effective in TGR5 stimulation. The rest were DCA, CDCA and CA. Activation 
of TGR5 can trigger the elevation of cyclic adenosine monophosphate (C-AMP) or epidermal factor 
growth. The activation of receptor (EGFR)-sarcoma (SRC) kinase affects the physiological state of cells
[30].

IBD is caused by an overactive immune response to intestinal antigens. TGR5 deletion has been found 
to exacerbate intestinal inflammation in DSS-induced colitis mice[31]. There was no significant 
difference in TGR5 expression in colonic mucosa between patients with UC and the control group[32]. 
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However, a recent study showed that TGR5 expression was significantly elevated in the colonic mucosa 
of children with UC, and was concentrated in lamina propria phagocytes[33]. TGR5-specific activation 
of macrophages isolated from the intestines of patients with CD significantly inhibited the production of 
TNF-α in macrophages, suggesting that the TGR5 signaling pathway may play an immunomodulatory 
role in IBD[34].

TGR5 is highly expressed in mononuclear macrophages, and intestinal macrophages, as the main 
source of cytokines, play an important role in immune homeostasis[35]. Polarization of macrophages is 
generally divided into two types, M1, which promotes inflammation, and M2, which suppresses inflam-
mation. Rather than inducing macrophage activation to either phenotype alone, BA-activated TGR5 
induces "mixed phenotype" macrophages, where an elevated IL-10/IL-12 ratio indicates the dominance 
of the immunosuppressive M2 phenotype[36]. TGR5 specific activation can reduce the production of 
pro-inflammatory cytokines such as IL-6, IL-1β and TNF-α in THP1 cells, and TGR5 activation can 
inhibit the secretion of inflammatory cytokines in intestinal macrophages in a dose-dependent manner
[37]. In terms of mechanism, TGR5 activates C-AMP and EGFR-SRC kinase pathways in response to 
BAs. On the one hand, BA-activated TGR5 mediated the activation of C-AMP, which further activated 
PKA, up-regulated the expression and activity of C-AMP binding element, and finally inhibited the 
translocation of NF-κB into the nucleus through a series of steps[38]. Meanwhile, the expression of anti-
inflammatory factor IL-10 was significantly increased after the activation of C-AMP binding element
[39]. On the other hand, in M1-type macrophages, TGR5-dependent EGFR trans-activated SRC kinase 
activation leads to NF-κB activation through downstream protein kinase C, and increased expression of 
pro-inflammatory cytokines IL-1β, IL-6, and TNF-α[40]. In summary, BA-TGR5 signal transduction 
regulates a complex balance between pro-inflammatory and anti-inflammatory cytokines in the gut.

FXR and IBD
A nuclear receptor superfamily member, FXR, with BA ligand activity was first identified in a 1995 
study of rat liver C DNA[41]. FXR mainly exists in the intestine, liver and kidney, especially in the 
ileum, colon and liver, and is involved in the regulation of a large number of physiological activities of 
the human body. In addition to regulating BA metabolism and transport, FXR also plays a key role in 
regulating lipid and glucose homeostasis, inflammatory response, and barrier function[42].

BAs can be classified according to their affinity for binding FXR in vitro. CDCA has the highest 
excitatory effect on FXR, followed by CA, DCA and LCA[43]. Compared with their natural forms, the 
sugar-taurosulfo-conjugated forms of CDCA, DCA and LCA are more effective agonists. Among the 
synthesized FXR agonists, GW4064 selectively excites FXR with high affinity, which is widely used in 
experimental studies[44].

FXR plays an important role in the development and progression of IBD. Early colon cell tests 
showed that FXR gene knockout mice were more likely to develop severe intestinal inflammation than 
wild-type mice, suggesting that intestinal FXR could reduce intestinal inflammation[45]. It has been 
found that activation of intestinal FXR can inhibit NF-κB activation and reduce intestinal inflammation 
through multiple pathways[46]. FXR attenuates the translocation of NF-κB subunit P65, thereby 
inhibiting NF-κB transcription, reducing the gene expression of pro-inflammatory factor IL-8, and 
alleviating intestinal inflammation[47]. Activation of intestinal FXR expression can inhibit intestinal toll-
like receptor 4-myeloid differentiation factor 88 signaling pathway, thereby down-regulating NF-κB 
expression and alleviating intestinal inflammation[48]. In addition, activation of FXR can up-regulate 
the expression of IL-10, an anti-inflammatory factor in the intestinal tract, thus exerting an anti-inflam-
matory effect. It is concluded that activation of intestinal FXR can reduce intestinal inflammation and 
play a protective role in IBD intestine, and FXR is expected to become a drug target for IBD treatment
[49]. It is important to note that FXR has different functions in different tissues, and currently there are 
no intestinal FXR specific agonists. Therefore, when FXR is used as a treatment for IBD, it may activate 
hepatic FXR and cause adverse reactions[50].

Intestinal BA accumulation can cause the proliferation and apoptosis of intestinal epithelial cells, 
leading to IBD. FXR can regulate BA synthesis and reabsorption to maintain intestinal BA homeostasis
[51]. On the one hand, FXR can regulate the expression of fibroblast growth factor (FGF), thereby 
inhibiting the expression of CYP7A1 and reducing BA synthesis[52]. On the other hand, intestinal FXR 
also promotes the expression of organic solute transporter alpha-beta (OSTα/β), Inhibit the expression 
of ASBT in ileum, thus promoting the excretion of intestinal BA and alleviating the injury of intestinal 
BA[53]. Therefore, intestinal FXR has a protective effect on the intestinal tract of IBD and can be used as 
a therapeutic target for IBD. As a synthetic FXR agonist, GS-9674 alleviates cholestatic intestinal injury 
by activating FXR in intestinal epithelial cells to up-regulate FGF19 expression[54]. Based on 6-alpha-
ethyl-chenodeoxycholic acid (6-ECDCA), which is mainly used for the treatment of cholestatic diseases, 
the 6-ECDCA can activate FXR, regulate the expression of OSTα/β and ASBT, and improve the 
intestinal cholestasis[55]. However, there is no clinical trial of 6-ECDCA as a treatment for IBD, but with 
the deepening of basic research, it is expected to become a treatment for IBD targeting FXR.

PXR and IBD
PXR is an important member of the nuclear receptor superfamily and is mainly expressed in colon and 
liver. Studies have shown that PXR plays an important role in maintaining intestinal homeostasis, and 
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its gene deletion leads to an increased risk of IBD[56]. Moreover, PXR not only participates in intestinal 
immune response by regulating inflammatory signaling pathways, but also can receive endogenous 
signals to regulate intestinal homeostasis, so it is expected to become a new therapeutic target.

Excessive inflammatory response is the most prominent feature of IBD. NF-κB is the most classic 
inflammatory signaling pathway, and when activated, it releases a large number of inflammatory 
factors, exacerbating IBD[57]. The nuclear receptor PXR is an upstream regulatory factor of NF-κB, and 
can regulate NF-κB through PXR to reduce intestinal inflammation. We found that compared with wild-
type mice, NF-κB was activated in the colon of PXR knockout mice, resulting in the release of a large 
number of inflammatory factors (such as TNF-α, IL-6, etc.), and increased intestinal inflammation[58]. It 
is speculated that PXR gene deletion may activate NF-κB pathway and increase intestinal inflammation. 
Activation of PXR receptor can inhibit NF-κB expression in the intestinal tract, thereby reducing the 
level of downstream inflammatory factors and reducing intestinal inflammation[59]. PXR protects the 
intestine by regulating NF-κB signaling. In addition, PXR also regulates non-classical inflammatory 
pathways, such as transforming growth factor (TGF-β1) expression, which plays a role in reducing 
intestinal inflammation. Therefore, PXR is considered as one of the most promising targets for IBD 
treatment[60].

Intestinal mucosal barrier is an important physical barrier to prevent toxic substances from invading 
the intestine, maintaining intestinal mucosal homeostasis and avoiding intestinal injury. When the 
intestinal permeability is increased, the intestinal mucosal barrier function is reduced, which can 
directly lead to the occurrence or exacerbation of IBD symptoms. Increased intestinal permeability in 
IBD patients is closely related to the abnormal expression of Myosin light-chain kinase (MLCK) and C-
Jun n-terminal kinase 1/2 (JNK1/2)[61]. However, nuclear receptor PXR can reduce intestinal 
permeability by down-regulating the expression of MLCK and JNK1/2, and play a role in maintaining 
intestinal mucosal barrier function. It was found that MLCK expression and myosin Ⅱ light chain 
phosphorylation level in colon tissue of IBD patients were significantly increased, and intestinal 
permeability was increased[62]. Pregnenolone 16-alpha carbonitrile (PCN), a PXR agonist, can inhibit 
MLCK and myosin Ⅱ light chain phosphorylation, reduce the permeability of the intestinal barrier, and 
avoid intestinal injury. The up-regulation of JNK1/2 expression in intestinal cells of IBD patients 
increases intestinal permeability, while PCN can down-regulate intestinal JNK1/2 expression by 
inducing GADD45β protein transcription, reducing intestinal permeability and avoiding toxin invasion
[63]. Therefore, PXR can maintain intestinal mucosal barrier function, and its ligand can be used to treat 
IBD. However, PXR receptor agonist PCN is only used in animal experimental studies, and has not been 
used for clinical treatment. The study of intestinal protective mechanism of PXR will promote the 
application of PXR agonists in clinical treatment[64].

In human body, metabolic enzymes and transporters are highly expressed in the intestine, among 
which metabolic enzymes are mainly involved in the detoxification process of intestinal toxic 
substances, such as CYP3A4 and CYP3A11[65]. Transporters are mainly involved in the excretion of 
intestinal cytotoxic substances, such as P-glycoprotein (P-GP)[66]. Studies have shown that the reduced 
expression of metabolic enzymes and transporters involved in the metabolism of heterogenic substances 
in the intestine of IBD patients leads to the accumulation of intestinal toxins, and PXR is an upstream 
regulatory factor of multiple metabolic enzymes and transporters, which can regulate their expression 
to play a detoxification role[67]. Activation of PXR can significantly up-regulate the expression of 
CYP3A4 gene in wild-type mice, thus improving the symptoms of abdominal pain and diarrhea. The 
expression level of P-GP in colon tissues of IBD mice prepared by DSS was down-regulated, and the 
poison was accumulated in intestine. PXR could reduce the accumulation of poison by regulating the 
expression of P-GP[68]. PXR can up-regulate the expression of drug metabolism enzymes and trans-
porters to eliminate intestinal toxicity, and has a protective effect on IBD intestinal tract. Tanshinone Ⅱ 
A, the active ingredient of Salvia miltiorrhiza in labiaceae, is A highly active PXR agonist, which mainly 
upregulates the expression of PXR to increase the expression of downstream metabolic enzymes and 
transporters, thereby promoting intestinal toxin metabolism and efflux, and improving the symptoms of 
IBD[69]. PXR agonists speed up the metabolism of other drugs in the body, reducing the potential for 
adverse reactions to these drugs. However, large-scale activation of PXR can up-regulate the expression 
of metabolic enzymes and transporters, and then affect the metabolism of other drugs, leading to 
decreased efficacy and even induced drug interactions, which may limit the clinical application of PXR 
agonists in the treatment of IBD[70]. It can be seen from the above that the protective effect of PXR on 
the intestinal tract of IBD has been preliminarily confirmed. Based on its protective mechanism, PXR can 
be used as a target for drug therapy of IBD, providing a new perspective for innovative drug research 
and IBD treatment.

CAR and IBD
CAR is a nuclear receptor for steroidal hormones, which is mostly expressed in intestinal epithelial cells. 
Although the protective mechanism of CAR against IBD is not fully understood, there is increasing 
evidence that it also plays a key role in regulating intestinal inflammation and protecting the intestinal 
mucosal barrier[71]. Biopsies of the intestinal mucosa of IBD patients showed that CAR gene expression 
was strongly associated with intestinal inflammation levels. In IBD mice, intestinal mucosal barrier was 
disrupted, and the activation of p38MAP kinase by CAR agonist CITCO enhanced IEC cell migration 
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and accelerated intestinal mucosal healing[72]. In addition, CAR significantly regulates metabolic 
enzymes and transporters located in the intestine, and protects the intestine from toxic interference by 
inducing the expression of metabolic enzymes and transporters[73]. These results suggest that CAR, like 
PXR and FXR, can play a protective role in IBD by reducing intestinal inflammation and maintaining 
intestinal mucosal homeostasis, but the specific mechanism remains to be studied[74]. In conclusion, 
CAR is also a promising drug target for IBD treatment, and further study of its protective mechanism 
against IBD can provide reference for drug development targeting CAR.

VDR and IBD
VDR is a member of the nuclear hormone receptor superfamily, which exists in all the target tissues of 
vitamin D3, such as intestinal tract and liver[75]. VDR, as an important nuclear transcription factor, 
intervenes in many downstream genes through specific binding with ligands. Studies have confirmed 
that VDR gene polymorphism is associated with the risk of IBD, and there are differences in VDR 
genotypes among different genders and populations[76]. Human proteomics shows that VDR is highly 
expressed in the normal small intestine and colon, but reduced intestinal VDR expression and impaired 
VD/VDR signaling pathway were observed in patients with CD and UC[77]. Therefore, intestinal VDR 
plays an important role in the occurrence and development of IBD.

Loss of VDR in intestinal epithelial cells leads to activation of NF-κB signaling, which promotes 
production of pro-inflammatory cytokines[78]. A genome-wide association analysis showed that VDR 
binds to 42 disease-associated single nucleotide polymorphisms, of which one-third significantly affect 
transcription factor NF-κB binding and gene regulation. Immunoprecipitation results suggested that 
VDR had a protein-protein interaction with IKKβ upstream of NF-κB[79]. VDR inhibited ser-177 
phosphorylation of IKKβ by binding to IKKβ, thereby inhibiting NF-κB activation and IL-6 elevation 
induced by TNF-α, and improving intestinal inflammation[80].

A meta-analysis shows that variations in the VDR gene significantly affect the human gut microbiome
[81]. It was found that the protective effect of probiotics on IBD depends on the epithelial VDR signaling 
pathway. In the normal intestinal flora of mice, the distribution and abundance of bacteria in the 
intestinal epithelium after VDR knockout were significantly changed, mainly manifested as increased 
abundance of Bacteroides fragilis in mice with VDR deletion[82]. In addition, intestinal epithelial VDR 
deletion exacerbated the intestinal inflammatory damage caused by sodium glucan sulfate modeling in 
mice, while the intestinal epithelial VDR deletion mice and wild-type control mice were reared in the 
same cage for modeling, this difference in intestinal inflammation caused by different genotypes 
disappeared[83]. This indicates that VDR deficiency causes intestinal flora disorder and aggravates the 
occurrence and development of IBD. Another study showed that defective VDR expression in intestinal 
Panth cells leads to reduced lysozyme secretion, impaired antimicrobial activity of pathogenic bacteria, 
and thus increased inflammatory response[84]. Other studies have found that lack of VD in the diet of 
mice can cause intestinal microflora disorder, mainly manifested in increased abundance of Helicobacter 
hepaticus and decreased abundance of probiotics Akkermansia Muciniphila[85]. Therefore, VDR genes 
may play an important role in homeostasis and signal transduction between the microbiome and host in 
intestinal inflammation.

Some studies have speculated that metabolites of intestinal flora regulate intestinal immune 
responses in a VDR dependent manner[86]. Butyrate is a short-chain fatty acid produced by intestinal 
microorganisms. 2% sodium butyrate in drinking water increased intestinal VDR expression and 
inhibited inflammation in mice with colitis[87]. In addition, secondary BAs and shicholic acids 
produced by intestinal flora metabolism inhibit Th cell immune response by activating VDR of CD4+Th 
cells, thereby reducing IFN-γ and IL-2 production in intestinal inflammation[88]. In conclusion, VDR 
related basic studies provide many new ideas and explanations for the mechanism of intestinal flora in 
IBD.

Sphingosin1-phosphate receptor 2 and IBD
Sphingosine-1 (S1P) is an active sphingosine-1 that participates in the regulation of various cell 
functions under physiological and pathological conditions[89]. S1P can function directly as intracellular 
signaling molecules or extracellular by activating 5 G protein-coupled receptors (GPCRs). S1P has been 
shown to be a key regulator of proliferation, migration, and survival of many cell types. The expression 
of 5 S1PRs was different in different tissues or organs. All five S1PRs were detected in the human 
intestine, but the expression levels of S1PRs were different[90]. It has been reported that S1P regulates 
the expression of e-cadherin by activating S1PR2 to enhance intestinal epithelial cell barrier function. It 
has also been reported that S1P reduces intestinal epithelial cell apoptosis through the Akt dependent 
pathway[91,92]. These studies suggest that S1P and its receptor can promote intestinal epithelial cell 
proliferation and enhance epithelial cell barrier function, and play a protective role in intestinal mucosal 
barrier.

Retinoid-related orphan receptor gammar and IBD
Retinoid-related orphan receptor gammar (RORγ T) is a specific transcription factor controlling Th17 
cell differentiation. Treg cells are from the same source as Th17 cells, and they are closely related[93]. 
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Treg cells play an important role in maintaining the body's immune tolerance state and the stability of 
internal environment, and preventing the occurrence of autoimmune diseases. Th17 cells, a new type of 
CD4+ cell subpopulation discovered in 2003, play a pro-inflammatory role mainly by secreting 
cytokines such as IL-17, IL-22 and IL-21[94]. RORγ T is a transcriptional activator that plays a key role in 
the differentiation of Th17 cells. Inhibition of RORγ T expression can inhibit the differentiation of non-
sensitized T cells into Th17 cells[95]. It has been found that RORγ T directs the differentiation of 
proinflammatory Th17 cells and regulates the production of IL-17 in peripheral blood[96]. Therefore, it 
is reasonable to believe that RORγ T can be used as an important target for the treatment of autoim-
mune and inflammatory diseases. Treg cells are newly discovered T cell subsets that negatively regulate 
the body's immune response, and their immune regulatory function is closely related to the continuous 
expression of Foxp3[97]. Foxp3 is considered to be a key transcription factor and specific marker of Treg 
cells, which can regulate the expression and function of multiple genes after binding to chromosomes, 
thus controlling the development and function of Treg cells[98]. In vitro studies have shown that TGF-β 
can inhibit RORγt function and promote Treg differentiation by inducing Foxp3 expression, and the 
full-length Foxp3 subtype can bind to RORγ T to inhibit RORγ T function[99]. In the presence of pro-
inflammatory cytokines, Foxp3 levels decreased and RORγ T levels increased, ultimately promoting 
Th17 cell differentiation. In a mouse model of colitis, RORγ T binding reduced IL-17 production and 
Th17 cell count and reduced intestinal inflammation[100]. Studies have shown that Th17 lymphocytes 
are involved in the pathogenesis of CD and UC. Increased IL-17 expression in mucosa and serum of IBD 
patients was associated with increased RORγ T expression and Th17 cell number[101]. Therefore, Th17 
and Treg cells antagonize each other functionally and are closely related in differentiation. Under 
normal circumstances, they maintain a relative balance, which is beneficial to maintain the immune 
stability of the body[102]. At present, the relationship between Th17/Treg cell imbalance and disease 
occurrence and development has become the focus of people's attention.

INTERACTION BETWEEN INTESTINAL FLORA AND BAS
Intestinal flora and BA synthesis
Intestinal flora can further modify the synthetic BAs to form a series of intestinal BA metabolites. These 
metabolites can act as important signaling molecules to regulate cholesterol metabolism and energy 
balance of the host through BA receptors[103]. The involvement of intestinal flora in the synthesis of 
BAs increases the diversity of BAs and the hydrophobicity of BA pools, which is conducive to BA 
excretion[104]. The modification of BAs by intestinal flora mainly includes early uncoupling, dehydro-
genation, dehydroxylation and differential isomerization of BAs. Bile salt-hydrolases (BSHs) produced 
by intestinal bacteria catalyze BSHs, and then uncouple bile c-24 with n-acetyl amino bonds bound to 
amino acids to form free BAs[105]. Studies have found that there are many bacteria in the intestinal tract 
of the organism that can produce BA salinase, such as bifidobacterium, Lactobacillus, Bacteroides, 
Listeria and Clostridium have BA salinase activity[106]. 7α-hydroxyl dehydrogenation occurs in free 
BAs under the catalytic action of Clostridium and Clostridium, and hydroxyl steroid dehydrogenase 
(HSDH) produced by intestinal microflora such as Clostridium, Eubacter, Ruminococcus, Bacteroidetes 
and Digestive streptococcus dehydrogenases at the positions of C-3, C-7 and C-12. Secondary BAs DCA 
and shicholic acid (LCA) were then produced, as shown in Figure 1. Increased LEVELS of DCA have 
been associated with obesity and cancer in mice, further supporting the important role of BA conversion 
in the intestinal flora in host metabolism[107].

Metabolome study found that in C57BL/6 mice, under the action of intestinal microflora on BA 
dehydroxylation and decoupling, the primary BA gradually decreased and the secondary BA gradually 
increased during the continuation process from small intestine to large intestine[108]. Compared with 
specific pathogen-free (SPF) mice fed a normal rich-diet diet, the changes of BA components in feces of 
SPF mice fed with minimal chemical diet and germ free (GF) mice fed with normal diet were detected 
by mass spectrometry. Levels of liver-derived taurine conjugated primary BAs in the intestinal tract of 
the minimal pathogen-free mice were significantly decreased compared with those in the RICH-diet SPF 
mice, while they were increased in the RICH-diet GF mice[109]. The results indicate that diet can 
directly control the hepatic synthesis of BAs, and the intestinal flora mainly controls the modification 
process of BAs in the intestine.

As a potential regulator of gut microbiota composition and host metabolism, microbial HSDH may 
open up new pathways for how the microbiota regulates signaling pathways in the host.

THE EFFECT INTESTINAL FLORA ON BAS VIA FXR
Study method of alcohol receptor in closely related to the metabolism of BA synthesis of highly 
expressed in the organs, such as the liver, small intestine, BA synthesis of organisms play a regulatory 
role of BA in the BA, goose DCA and LCA and DCA is liver alcohol receptor agonist, CYP7A1 is the 
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Figure 1 Synthesis and metabolism of bile acids. DCA: Deoxycholic acid; LCA: Lithocholic acid; CA: Cholic acid; CDCA: Chenodeoxycholic acid.

promoter of BA synthesis[110]. In the liver, BA-activated FXR induces the expression of a small 
heterodimer partner (SHP) that binds to liver receptor homologous protein-1, thereby inhibiting Cyp7a1 
gene expression. In addition to local effects in the liver, FXR is also activated by BAs in the distal ileum. 
FXR induces expression of FGF15 (FGF19 in humans) in the ileum. So farnesol receptor-FGF15/19 
signaling pathway plays an important role in BA synthesis. In the study of lactobacillus rhamnosus GG 
(LGG) on BDL mice, it was found that compared with the sham operation group, In BDL mice, the 
content of DCA (deoxycholic acid is a strong agonist of FXR) and the concentration of T-αMCA and T-β
MCA (MCA is an antagonist of FXR) were decreased, and the mRNA expression of CYP7A1 and FGF15 
in BDL mice were increased[111]. The BA content and the size of total BA pool in liver were significantly 
increased, and the BA content and total BA pool size were significantly decreased after LGG treatment. 
At the same time, it was found that the mRNA expression level of FXR target gene SHP and FGF15 were 
significantly decreased in the ileum of BDL mice, while LGG could inhibit the decrease of FGF15 protein 
level[112].

This confirms that in BDL mice, LGG treatment-mediated reduction in BA synthesis is achieved 
through upregulation of the intestinal FXR-FGF15 signaling pathway[113]. Other studies confirm the BA 
levels of traditional breeding mice, and the germ-free mice raised in BA levels, may be due to the 
traditional breeding mice intestinal microbial flora make mice reduced levels of MCA, activation of FXR, 
make FGF15 higher expression, thus inhibiting the activity of CYP7A1 to inhibit the synthesis of BA 
[114].

It was found that after fecal microbiota transplanta-tion (FMT) of sterile mice received FMT, the 
expression of FXR in intestinal epithelium was up-regulated, and FXR further induced the expression of 
FGF15, thereby inhibiting the activities of CYP7A1, CYP8B1 and other enzymes. Thus inhibiting the 
synthesis of BAs[115]. The expression of FGF15 in ileum was inhibited by antibiotics, and the expression 
level and activity of CYP7A1 in liver increased significantly, resulting in BA synthesis. Parabacteroides 
distasonis was used to treat obese mice. It was found that Parabacteroides distasonis can hydrolyse a 
variety of conjugated BAs, convert primary BAs into secondary BAs (LCA, UDCA, etc.), and produce a 
large amount of succinic acid[116]. LCA and other secondary CAs increased the level of FGF15 in serum 
and colon, and decreased the level of CYP7A1 in liver by activating the intestinal FXR signaling 
pathway. UDCA can repair intestinal wall integrity and succinic acid can improve host sugar 
metabolism disorder[117].

TGR5 can also be activated by intestinal flora to inhibit BA synthesis. TGR5 is a GPCR, and it has 
been found that compared with WT mice, the BA pool size of mice lacking the TGR5 gene in a high-fat 
diet decreased by 21% to 25%, and body fat accumulation increased, and body mass increased[118]. 
Intestinal bacteria can also induce the expression of cardiac transcription factor 4 in intestinal epithelial 
cells by stimulating them continuously, and inhibit the expression of ABST, resulting in reduced BA 
reabsorption in the terminal ileum[119].

In conclusion, intestinal flora not only participates in the processes of BA decoupling, dehydro-
genation and dehydroxylation, but also negatively regulates BA synthesis through the FXR-FGF15/19 
pathway.
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INTESTINAL FLORA PARTICIPATES IN THE REGULATION OF NORMAL METABOLISM 
OF BAS
The metabolism of BAs in the body is mediated by intestinal flora. The whole metabolic process of BAs 
synthesized in liver cells is regulated by intestinal flora. The intestinal flora in patients with gallstones is 
unbalanced and the metabolism of BAs is also in disorder, which may be because the imbalance of 
intestinal flora in the body affects the hepatoenteric circulation of BAs in the body and causes the 
metabolic disorder of BAs and cholesterol. BSHs produced by bifidobacterium, Clostridium, Lactobacillus, 
Listeria, enterococcus, bacteroidetes and other bacteria in the intestinal tract of the body can reduce the 
production of cholesterol in serum[120]. BSHs is mainly involved in the uncoupling of conjugated BAs 
to form free BAs in the body. When intestinal flora in the body is unbalanced, BSH activity increases 
and free BA content increases, which then activates the NEGATIVE feedback regulation system of FXR-
FGF15/19 BA, resulting in reduced BA synthesis content and over-saturated cholesterol[121]. If it is not 
dissolved effectively by BAs, it will remain as a deposit, slowly turning into a stone state. In addition, 
lactobacillus and bifidobacterium in intestinal flora also has the ability of removing cholesterol, mainly 
through the intake to the cholesterol assimilation or binding to the cell or and BA form coprecipitation
[122], some intestinal bacteria also can produce cholesterol reductase, catalytic cholesterol into insoluble 
prostaglandins, and turn it into the feces. Other studies have confirmed that intestinal flora mediates 
normal metabolism of BAs. In the study of liver cancer, antibiotics can increase the Natural kilkR T cell 
(NKT) in mouse liver, and CXCL16, a chemokine expressed by hepatic sinusoid endothelial cells, can 
inhibit the growth of liver tumors by regulating hepatic NKT cells[123]. The primary BAs in liver can 
promote the expression of CXCL16, while the secondary BAs can inhibit the expression of CXCL16. 
When mice were treated with vancomycin (an antibiotic), vancomycin eliminated gram-positive bacteria 
(including those involved in primary BA conversion) from their intestines and induced the accumu-
lation of hepatic NKT cells, thereby inhibiting the development of liver cancer[124]. At the same time, 
vancomycin-treated mice were fed with secondary BAs or clostridium bacteria that colonized and 
transformed primary BAs, and the accumulation of NKT cells in the liver was reduced and the anti-
tumor effect was reduced[125].

Studies have shown that in patients with UC, the levels of secondary BAs (deoxycholic acid and stone 
CA) in the intestinal tract are reduced, and rumen bacteria and other bacteria that convert primary BAs 
into secondary BAs are also reduced[126]. Supplementation of secondary BAs with G-protein-coupled 
receptor for BAs (TGR5) improved intestinal inflammation in mice with colitis.In the enterohepatic 
circulation with normal enteral nutrition, BAs activate the enterofarnicol receptor (FXR), triggering the 
release of FGF19 into the portal vein circulation[127]. FGF19 regulates the synthesis of intrahepatic BAs 
through enteral nutrition. This signaling pathway is impaired in patients with total venous nutrition 
(TPN), and studies have shown a decrease in serum FGF19 levels in subjects receiving TPN. Due to 
intestinal dysfunction, the intestinal microbiota in TPN patients is severely altered. Changes in intestinal 
flora can affect patients' immune response and promote endotoxin secretion, thus negatively affecting 
liver function, suggesting that intestinal flora affects the related BA signaling pathway in the treatment 
of TPN[128].

BAS AFFECT THE COMPOSITION OF INTESTINAL FLORA
The regulation between intestinal flora and BA metabolism is bidirectional, intestinal flora can 
participate in the synthesis and normal metabolism of BA, and BA can in turn regulate the composition 
of intestinal flora. The effects of BAs on intestinal flora include damage to bacterial cell membrane, 
destruction of bacterial amino acids, nucleotides and carbohydrate metabolism, activation of innate 
immune genes in the small intestine to change the composition of intestinal flora and affect body 
metabolism[129]. The size and diversity of BA pools can affect the intestinal flora of the body. Studies on 
colorectal cancer (CRC) patients found higher concentrations of Clostridium 7α-dehydroxy in feces, 
which can promote the production of secondary BAs. High levels of clostridium 7α-dehydroxy increase 
the content of secondary BAs in the intestinal tract, leading to an imbalance of intestinal microflora that 
promotes the development of CRC[130]. High-fat diet can cause the imbalance of intestinal flora in mice. 
When adding ursodeoxycholic acid into the diet of high-fat diet mice, it was found that the intestinal 
flora in mice restored to the similar level as normal mice (for example, the contents of Faecalis and 
Ackmanniella increased, while the contents of Spironella and ruminococcus decreased)[131]. The effects of 
BAs on the composition of intestinal flora can also be mediated by FXR. When mice were fed a high-fat 
diet, the levels of T-βMCA in FXR deficient mice increased and the abundance of Firmicutes increased 
while the abundance of Bacteroidetes decreased compared with the control mice. It is possible that the 
FXR-mediated high-fat diet altered the BA pool in mice, leading to changes in gut microbiota[132].

BAs can also change the composition of intestinal flora by inhibiting the growth of intestinal bacteria, 
and the antimicrobial activity of non-conjugated BAs is stronger than conjugated BAs, and the 
sensitivity of gram-positive bacteria to BAs is stronger than gram-negative bacteria[133]. It was found 
that the synthesis of BA in rats with liver cirrhosis was lower than that in healthy rats, and the total 
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bacterial content in ileum and bacterial translocation rate were increased[134]. After BA injection, the 
bacterial quantity in ileum of cirrhotic rats returned to healthy level and the bacterial translocation rate 
decreased. Obeccholic acid (OCA) is a BA derivative that activates FXR to inhibit endogenous BA 
synthesis. When healthy subjects were given doses of OCA, they found increased levels of gram-
positive bacteria in their small intestines, such as Lactococcus lactis, Lactobacillus casei and Streptococcus 
thermophilus, while normal levels of BA inhibited the growth of these bacteria. When healthy mice were 
fed OCA, the BA content in their small intestine decreased, while the content of firmicide bacteria, 
mainly gram-positive bacteria, increased, suggesting that OCA can inhibit BA synthesis through 
activation of FXR and thus alter the intestinal microflora[135-137].

INTESTINAL FLORA, BA METABOLISM AND IBD
Probiotics and prebiotics
Exogenous supplementation of probiotics to regulate BAs to prevent or treat diseases has been 
demonstrated in metabolic diseases, such as hypercholesterolemia or obesity[138]. Probiotics can relieve 
the clinical symptoms of IBD patients to different degrees. Probiotic mixture VSL#3 can significantly 
reduce cryptitis, and Clostridium butyricum MIYAIRI is also better than placebo in clinical efficacy, but its 
exact efficacy needs to be further studied[139]. BAs levels are reduced in IBD patients and experimental 
enteritis animals[130]. However, the improvement of enteritis symptoms by exogenous Clostridium 
scindens supplementation has only been demonstrated in animals, and clinical studies on strains that 
regulate BSH or 7α dehydroxylase in a targeted way are lacking[140].

Fecal microbiota transplantion
FMT is a process in which feces from healthy people are transferred to patients, and it was first used to 
treat patients with recurrent Clostridium difficile infection. Recent studies have shown that FMT can 
significantly improve the composition of BAs in the gut of patients with C. difficile, increase the content 
of secondary BAs and prevent C. difficile colonization[141]. Because of its apparent efficacy in treating 
recurrent C. difficile infection, it has been applied to other intestinal diseases, such as IBD, IBS, and 
pancreatitis. In IBD studies, FMT has shown significant efficacy in inducing remission of UC. A study of 
UC in children showed that the gut microbiota and metabolome of FMT responders were significantly 
more similar to those of healthy people[141].

Antibiotics
Studies have found that antibiotics on DCA induced inflammation of the intestinal protective, may 
significantly reduced intestinal flora diversity and broad-spectrum antibiotics, reduced intestinal tract 
has 7 alpha to hydroxylation enzyme bacteria, lead to waste source of primary BA dominate in the host, 
and the source of intestinal flora secondary BA decreased[140]. However, the choice of antibiotics is also 
important. In a 12-wk clinical study, the nonabsorbable antibiotic rifaximin showed higher remission 
rates in patients with active CD. Given that different antibiotics have different effects on BA concen-
tration and composition as well as IBD, antibiotic and patient selection will be important in evaluating 
antibiotic efficacy against IBD in the future[141].

CONCLUSION
Changes in lifestyle and diet have contributed to the increasing incidence of IBD. High fat diet not only 
changes the characteristics of intestinal flora, but also affects the metabolism of BAs in intestinal lumen. 
Therefore, studies focusing on BAs and gut microbiota have attracted much attention in digestive 
diseases. Characteristic changes in the gut microbiota in IBD patients affect the composition of the BA 
pool. Secondary BAs, as anti-inflammatory factors, may be non-invasive biomarkers in mucosal healing. 
The emergence of novel metabolomics has revealed the bacterial species that transform BAs and the 
mechanism of signaling pathways that regulate the development of IBD disease. The interaction 
between gut microbiota and BAs represents a promising new therapeutic approach for IBD. Some 
animal studies have shown the important value of the gut microbial-BA axis. However, there is no clear 
evidence of a similar effect in clinical practice, and further clinical studies are needed to verify it.
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