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Abstract
Cancer incidence and mortality are increasing globally, leading to its rising status 
as a leading cause of death. The Go-Ichi-Ni-San (GINS) complex plays a crucial 
role in DNA replication and the cell cycle. The GINS complex consists of four 
subunits encoded by the GINS1, GINS2, GINS3, and GINS4 genes. Recent 
findings have shown that GINS2 expression is upregulated in many diseases, 
particularly tumors. For example, increased GINS2 expression has been found in 
cervical cancer, gastric adenocarcinoma, glioma, non-small cell lung cancer, and 
pancreatic cancer. It correlates with the clinicopathological characteristics of the 
tumors. In addition, high GINS2 expression plays a pro-carcinogenic role in tumor 
development by promoting tumor cell proliferation and migration, inhibiting 
tumor cell apoptosis, and blocking the cell cycle. This review describes the 
upregulation of GINS2 expression in most human tumors and the pathway of 
GINS2 in tumor development. GINS2 may serve as a new marker for tumor 
diagnosis and a new biological target for therapy.

Key Words: Go-Ichi-Ni-San; Go-Ichi-Ni-San 2; Cancer; Biomarker; Clinicopathological 
characteristics; Molecular mechanism
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Core Tip: The Go-Ichi-Ni-San (GINS) complex plays a crucial role in DNA replication and the cell cycle. 
The GINS complex consists of four subunits encoded by the GINS1, GINS2, GINS3, and GINS4 genes. 
This review explores the differential expression of GINS2 as a novel target in human cancers. GINS2 is 
upregulated in most tumors and can influence tumorigenesis and progression through competing 
endogenous RNA effects and signaling pathways. Therefore, GINS2 may become a new target for the 
diagnosis and treatment of many cancers.

Citation: Shan DD, Zheng QX, Chen Z. Go-Ichi-Ni-San 2: A potential biomarker and therapeutic target in human 
cancers. World J Gastrointest Oncol 2022; 14(10): 1892-1902
URL: https://www.wjgnet.com/1948-5204/full/v14/i10/1892.htm
DOI: https://dx.doi.org/10.4251/wjgo.v14.i10.1892

INTRODUCTION
Cancer ranks as the second leading cause of death worldwide, and the burden of cancer is growing, 
with approximately 9.6 million deaths due to cancer in 2018. Unfortunately, many cancer patients 
worldwide do not have access to timely, high-quality diagnosis and treatment (World Health 
Organization, https://www.who.int/cancer/en/). It is therefore crucial to more fully understand how 
cancer develops and to identify new markers for its diagnosis and new targets for its treatment.

In 2003, Takayama et al[1] described Go-Ichi-Ni-San (GINS) for the first time. The GINS complex is 
conserved in eukaryotic cells and is essential for DNA replication. When the DNA replication fork is 
opened, GINS is required to maintain the association between the microchromosome maintenance 
protein (MCM) and Cdc45 in the large replicator complex[1]. The GINS complex acts as a replicative 
helicase that unlocks the double-stranded DNA prior to the moving replication fork[2]. The GINS 
complex consists of four subunits encoded by the GINS1, GINS2, GINS3, and GINS4 genes. GINS2, also 
known as Psf2, is located in regions 2 and 4 of the long arm of chromosome 16 with a length of 1196 bp
[2], as shown in Figure 1. Recent results suggest that GINS2 expression is upregulated in many diseases, 
especially tumors, and adversely affects prognosis, such as in patients with cervical cancer (CC)[3], 
breast cancer (BC)[4,5], gastric adenocarcinoma[6], glioma[7], non-small cell lung cancer (NSCLC)[8,9], 
and pancreatic cancer[10,11].

In this review, we reviewed associated reports and searched the PubMed database from February 
2008 to April 2022 using the keywords “GINS2” and “cancer”. After excluding articles from letters, case 
reports, reviews, meta-analyses, or conference reports, 55 articles describing the expression of GINS2 in 
human cancers and its relevance to clinical features, as well as the pathways of GINS2 in tumors, were 
included for further analysis. We also cited high-quality articles in Reference Citation Analysis (
https://www.referencecitationanalysis.com). It is reasonable to assume that GINS2 may become a 
marker in cancer diagnosis and a biological target for prognosis.

EXPRESSION PROFILES OF GINS2 IN CANCERS
Numerous studies have investigated the expression levels of GINS2 in human tissues. The results show 
that GINS2 expression is increased in most tumors compared to normal tissues and correlates with 
various clinicopathological features. It has been demonstrated that GINS2 is expressed at higher levels 
in tumor tissue than in adjacent normal tissue, such as in CC[3], gastric adenocarcinoma[6], glioma[7], 
NSCLC[8,9], pancreatic cancer[10,11], and thyroid cancer (TC)[12,13]. Specifically, analysis of potential 
correlations between GINS2 expression levels and clinicopathological features has indicated that high 
GINS2 expression levels are closely associated with tumor size[6,10], tumor nodal metastasis (TNM) 
stage[6,8], pathological grade[7] and vascular permeation[10]. These conclusions imply that GINS2 may 
act as a tumor promoter. A summary of data obtained from published studies is provided in Table 1.

MOLECULAR PATHWAYS INVOLVED IN GINS2
In most tumors, elevated levels of GINS2 expression can increase malignant features such as tumor cell 
proliferation[3-7], migration[8,13,14], invasion[8,13], epithelial-mesenchymal transition (EMT)[8,10], 
anti-apoptosis effects[12-16] and cell cycle arrest[7,9,11,12], as shown in Figure 2, which are related to 
the many mechanisms GINS2 is involved in, as shown in Figure 3 and Table 2.

https://www.wjgnet.com/1948-5204/full/v14/i10/1892.htm
https://dx.doi.org/10.4251/wjgo.v14.i10.1892
https://www.who.int/cancer/en/
https://www.referencecitationanalysis.com
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Table 1 The expression and clinical significance of Go-Ichi-Ni-San 2 in cancer

Cancer types Cases Expression Clinicopathologic parameters Ref.

Cervical cancer 155 
pairs

Upregulated Pelvic lymph node metastasis, SCC-Ag, deep stromal invasion, vital status, 
recurrence

Ouyang et al
[3]

Gastric adenocar-
cinoma

123 
pairs

Upregulated Tumor size, T stage, LN metastasis Feng et al[6]

Glioma 120 
pairs

Upregulated Uathological grade Shen et al[7]

Glioma 37 pairs Upregulated / Chi et al[9]

Glioma 63 pairs Upregulated TNM stage, clinical stage Liu et al[8]

Pancreatic cancer 74 pairs Upregulated Tumor size, T stage, vascular permeation Huang et al[10]

Pancreatic cancer 46 pairs Upregulated / Bu et al[11]

Ovarian cancer 30 pairs Upregulated / Zhan et al[14]

TNM: Tumor nodal metastasis; LN: Lymph node; SCC-Ag:  Squamous cell carcinoma antigen.

BC
BC has high morbidity and mortality rates. However, there is still no cure, and patients diagnosed at a 
late stage often have a poor survival rate, and therefore it is crucial to better understand the mechanisms 
of breast cancer development[20]. Matrix metalloproteinases (MMPs) are zinc (Zn2+)-dependent 
endopeptidases involved in the remodeling of the extracellular matrix during physiopathological 
processes[21]. MMPs play an important role in development, wound healing, tissue remodeling and 
angiogenesis, with angiogenesis playing a key role in the growth and development of tumors[22]. 
MMP9 is one of these MMPs and belongs to the gelatinase family[23]. It degrades gelatine and collagen 
types IV, V, XI and XVI in tissue remodeling and has a significant impact on tumor invasion and 
metastasis[24]. Peng et al[4] found that knockdown of GINS2 in breast cancer resulted in a significant 
reduction in MMP9, and GINS2 may regulate the invasive and stem cell-like properties of breast cancer 
cells through MMP9. The above findings suggest that the expression of GINS2 may be closely related to 
the prognosis and survival of BC patients.

Bladder cancer
Bladder cancer has a high incidence of cancer of the urinary system, and 150000 people die of bladder 
cancer each year[25]. Targets for the effective diagnosis and treatment of bladder cancer are vital. Tian et 
al[26] found that GINS2 mRNA was a downstream target of miR-22-3p in bladder cancer cells and that 
knockdown of GINS2 suppressed the phenotype of tumor cells. Similar results were found in bladder 
cancer cells by Dai et al[27].

Colon cancer
The incidence and mortality rate of colon cancer remain high and pose a substantial global burden[28]. 
Exploring new targets for colon cancer is particularly critical. In cells, protein tyrosine phosphatases 
(PTPs) have a vital role in regulating tyrosine phosphorylation levels and numerous physiological 
processes[29]. PTP4A1 belongs to the tripentenyl PTP subclass (PTP4A1/2/3)[30]. Hu et al[31] found 
that GINS2 interacted with PTP4A1 to regulate the proliferation and apoptosis of colon cancer cells. This 
finding indicates that GINS2 may be a potential new molecular target for colon cancer.

Ovarian cancer
In 2018, the worldwide incidence of ovarian cancer (OC) was 6.6 per 100000[32]. Zhan et al[14] found 
that miR-502-5p can inhibit GINS2 expression through the activity of a competing endogenous RNA, 
which inhibits OC progression by suppressing OC cell growth and promoting apoptosis. In summary, 
GINS2 can be used as a downstream molecule to influence OC development, and GINS2 may be a new 
OC target.

Glioma
Gliomas are the most commonly occurring primary malignancies in the brain, with significantly higher 
recurrence and mortality rates[33]. In addition, the prognosis of patients is poor, methods to 
significantly improve patient survival are lacking, and research into the mechanisms of glioma is 
urgently needed. Minichromosome maintenance complex component 2 (MCM2) belongs to the 
minichromosome maintenance protein complex and consists of 6 highly conserved proteins (MCM2-7)
[34]. Ataxia telangiectasia mutated (ATM) is an important upstream signaling molecule that controls the 
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Table 2 The mechanism of action of Go-Ichi-Ni-San 2 in various cancers

Cancer types Assessed cancer cell 
lines Expression Related genes and 

pathways Biological significance Ref.

Bladder cancer 5637, T24 Up miR-515-5p Proliferation, migration, 
invasion, EMT

Dai et al[27]

Bladder cancer RT4, T24, J82, 5637 Up miR-22-3p Proliferation, colony 
formation, anti-apoptosis

Tian et al[26]

Breast cancer MCF10A, T47D, MCF-7, 
SUM149, SUM159, MDA-
MB-231, MDA-MB-468, 
HS578 

Up MMP9 Proliferation, cell cycle, 
migration, invasion, stem-
like feature

Peng et al[4]

Breast cancer HCC-1937, MCF-10A, 
MDA-MB-231, T-47D, 
JIMT-1

Up / Proliferation, cell cycle Rantala et al[5]

Cervical cancer SiHa, HeLa, C33A, Caski, 
MS751, ME180

Up / Proliferation, migration, 
invasion

Ouyang et al[3]

Colon cancer HCT116, LS174T, HCT8, 
SW620

Up PTP4A1 Proliferation, cell cycle, 
anti-apoptosis

Hu et al[31]

Ovarian cancer SKOV3, CaOV3, OVCAR3 Up miR-502-5p Proliferation, migration, 
anti-apoptosis

Zhan et al[14]

Ovarian cancer SKOV-3, OVCAR3 Up / Proliferation, anti-
apoptosis, cell cycle

Yan et al[15]

Gastric adenocarcinoma KATO-III, MKN45 Up / Proliferation Feng et al[6]

Gliomas U87, U251 Up MCM2, ATM, CHEK2 Proliferation, cell cycle, 
anti-apoptosis

Shen et al[7]

Leukemia HL60 Up Bax, Bcl2, ATM, CHK2, 
P53

Proliferation, cell cycle, 
anti-apoptosis

Zhang et al[16]

Leukemia K562, NB4 Up p38/MAPK Anti-apoptosis, cell cycle Gao et al[19]

Lung cancer 95D, A549, NCI-H1299, 
NCI-H1975

Up STAT Proliferation, growth, 
colony formation, cell cycle

Sun et al[17]

Lung cancer A549, H460 Up p53/GADD45A Proliferation, anti-
apoptosis, cell cycle

Chi et al[9]

Lung cancer H1975, H1299, A549, SPC-
A1, H460

Up PI3K/Akt, MAPK/ERK Proliferation, migration, 
invasion, EMT

Liu et al[8]

Pancreatic cancer PANC-1, BxPC-3 Up MAPK/ERK Proliferation, anti-
apoptosis, cell cycle

Zhang et al[18]

Pancreatic cancer Aspc-1, Bxpc-3, PANC-1, 
Miapaca-2

Up MAPK/ERK EMT Huang et al[10]

Pancreatic cancer PANC-1, AsPC-1 Up / Proliferation, cell cycle Bu et al[11]

Thyroid cancer K1, SW579 Up CITED2, LOXL2 Proliferation, anti-
apoptosis, cell cycle

Ye et al[12]

Thyroid cancer K1, SW579 Up MAPK Proliferation, migration, 
invasion, anti-apoptosis

He et al[13]

EMT: Epithelial-mesenchymal transition; MMP9: Matrix metalloproteinase-9; PTP4A1: Protein tyrosine phosphatase 4A1; MCM2: Microchromosome 
maintenance protein 2; ATM: Ataxia telangiectasia mutated; CHEK2: Checkpoint kinase 2; Bax: BCL2-associated x; Bcl2: B-cell lymphoma 2; CHK2: Cell 
kinase cyclecheckpoint 2; MAPK: Mitogen-activated protein kinase; STAT: Signal transducer and activator of transcription; GADD45A: Growth arrest and 
DNA damage inducible alpha; ERK: Extracellular signal-regulated kinase; CITED2: Cbp/P300-interacting transcription factor 2; LOXL2: Lysine oxidase-
like 2.

cell cycle and phosphorylates and activates CHEK2 during DNA replication or upon stimulation by 
other substances, halting the cell cycle[35-37]. Shen et al[7] used laser confocal microscopy to reveal the 
relationship between MCM2 and ATM in glioma cells. Additionally, it was reported that inhibition of 
GINS2 expression reduced cell proliferation and tumorigenicity and that GINS2 could block the cell 
cycle by regulating MCM2, ATM, CHEK2 and other downstream molecules[7]. GINS2 could be a 
prognostic indicator and potential therapeutic target for glioma.
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Figure 1 The position and structure of Go-Ichi-Ni-San 2. A: The chromosomal localization of Go-Ichi-Ni-San 2 (GINS2) (GeneCards, http://www.
genecards.org); B: GINS2 expression is usually concentrated in the nucleus and cytosol (GeneCards, http://www.genecards.org); C: The structure of the GINS2 
protein (AlphaFold Protein Structure Database, http://www.alphafold.ebi.ac.uk). The positions of the C- and N-termini and α-domains and β-domains in each subunit 
are indicated.

Leukaemia
Leukaemia is a blood cancer that originates in the bone marrow and is one of the leading causes of 
death from tumors in humans. In 2016, there were 467000 new cases of leukaemia and 310000 deaths 
from leukaemia worldwide. Early detection of effective treatment options for leukaemia can help reduce 
mortality[38]. Mitogen-activated protein kinase (MAPK) is a serine/threonine-protein kinase found in 
eukaryotic cells that can be activated by various internal and external stimuli. Upon activation, MAPK 
transmits extracellular signals to the nucleus and affects cellular functions by modulating the activity of 
transcription factors to alter the expression of related genes[39]. The p38/MAPK signaling pathway is a 
member of the MAPK superfamily. Gao et al[19] reported that GINS2 knockdown caused cell cycle 
arrest in chronic granulocytic leukaemia cells and acute promyelocytic leukaemia cells at the G2 phase 
through activation of p38/MAPK.

ATM-Chk2 and ATM-Chk1 are key signaling pathways that mediate the DNA damage response, and 
activation of these pathways is critical for the coordination of checkpoint and DNA repair processes. 
The DNA damage response is crucial to both cancer progression and treatment. p53 oncogene mutations 
are a way to evade the oncogenic barrier during tumor progression[40]. The findings of Zhang et al[16] 
suggest that the ATM, Chk2 and p53 genes may play a role in the pathogenic signaling pathway of 
human acute promyelocytic leukaemia when the GINS2 gene is downregulated. The above studies 
suggest that GINS2 contributes to the diagnosis and treatment of leukaemia.

http://www.genecards.org
http://www.genecards.org
http://www.genecards.org
http://www.alphafold.ebi.ac.uk
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Figure 2 The effect of Go-Ichi-Ni-San 2 on the malignant characteristics of tumour cells. GINS2: Go-Ichi-Ni-San 2; MAPK: Mitogen-activated protein 
kinase; ERK: Extracellular signal-regulated kinase; STAT: Signal transducers and activator; EMT: Epithelial-mesenchymal transition; ATM: Ataxia telangiectasia 
mutated.

NSCLC
Lung cancer is the leading cause of cancer deaths, with NSCLC accounting for approximately 85% of all 
lung cancers[41]. Patients with NSCLC are often at an advanced stage at the time of detection. A better 
understanding of the development and evolution of NSCLC is needed to improve this situation. 
GADD45A is a protein whose expression is regulated over the entire cell cycle, with levels of this 
protein at their highest in the G1 phase and significantly reduced in the S phase. p53 is a member of the 
GADD45 (growth arrest and DNA damage induction) family and is responsible for maintaining 
genomic stability. Wild-type p53 protein arrests cell proliferation, inhibits cell division at the G1 
checkpoint and contributes to the repair of damaged DNA. p53 mutations predispose cells to cellular 
malignancy and tumor formation during the S-phase of damaged DNA. GADD45A-mediated G2-M 
arrest was found to be dependent on wild-type p53, which controls cell proliferation/apoptosis by 
regulating cell cycle phases[42]. The results of Chi et al[9] showed that GINS2 expression was increased 
in NSCLC tissues and cell lines and could promote cell proliferation and inhibit apoptosis via the 
p53/GADD45A pathway.

Studies have shown that noncanonical nuclear factor-kappaB (NF-κB) transcription factors regulate 
several normal cellular and tissue processes, such as inflammatory responses, immunity, cell growth, 
and apoptosis[43,44]. NF-κB is an important “transcription factor”, and aberrant activation of NF-κB 
signaling has been implicated in the pathogenesis of many diseases, especially tumors[45-47]. Tumor 
necrosis factor-inducible protein 3 (TNFAIP3) encodes TNFAIP3 (also known as A20) and is a critical 
negative regulator of NF-κB signaling[48]. Family members of transcription signal transducers and 
activators (STATs) have been identified as key proteins involved in cytokine signaling and interferon-
related antiviral activity[49-51]. Their signaling activities are involved in many normal physiological 
cellular processes, including proliferation, differentiation, apoptosis, and angiogenesis. However, 
aberrant STAT regulation can lead to various pathological events, such as malignant cell transformation 
and metastasis[52]. Sun et al[17] found that after GINS2 gene knockout, the expression of STAT1 and 
STAT2 proteins increased, which inhibited tumor migration and proliferation. The protein expression of 
TNFAIP3 increased, suggesting that TNFAIP3 participates in the activity of GINS2 and could be 
involved in the spread and migration of NSCLC.

Both the PI3K/Akt and MEK/extracellular signal-regulated kinase (ERK) pathways have been 
reported to be associated with EMT in tumors[53,54]. Liu et al[8] also found that GINS2 could enhance 
the proliferation, migration, invasion and EMT of NSCLC cells in vivo and in vitro and further 
demonstrated that GINS2 could regulate the PI3K/Akt and MEK/ERK signaling pathways. In 
conclusion, GINS2 may be a therapeutic target for NSCLC.
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Figure 3 The participating pathways of Go-Ichi-Ni-San 2. GINS2: Go-Ichi-Ni-San 2; MAPK: Mitogen-activated protein kinase; ERK: Extracellular signal-
regulated kinase; STAT: Signal transducers and activator; EMT: Epithelial-mesenchymal transition; MAPKKK: MAP kinase kinase kinase; MMPs: Matrix 
metalloproteinases; MEK: Mitogen-activated protein kinase; MKK3/6: MAP kinase kinase 3/6; MCM2: Minichromosome maintenance complex component 2; CHEK2: 
Checkpoint kinase 2; ATM: Ataxia telangiectasia mutated; CHK2: Cell kinase cyclecheckpoint2; PTP4A1: Protein tyrosine phosphatase 4A1; CITED2: Cbp/P300-
interacting transcription factor 2; LOXL2: Lysyl oxidase like 2; GADD45A: Growth arrest and DNA damage inducible alpha; JAK: Janus kinase; mTOR: Mammalian 
target of rapamycin.

Pancreatic cancer
Due to the adverse survival prognosis of pancreatic cancer, the number of deaths is almost as high as 
the number of patients, and morbidity and mortality rates have remained stable or increased slightly in 
many countries[55]. It is therefore of interest to identify new targets for the diagnosis and treatment of 
pancreatic cancer. ERKs belong to the MAPK family and function in signaling cascades that transmit 
extracellular signals to cells. MAPK cascades are key signaling elements that regulate key processes 
such as cell proliferation, differentiation, and stress responses[56-58]. The ERK cascade is a tightly 
controlled cascade responsible for fundamental cellular processes. Excessive activation of proteins and 
kinases in the ERK pathway has been shown to contribute to a variety of diseases, including cancer, 
inflammation, developmental disorders, and neurological disorders[59,60]. Huang et al[10] found that 
overexpression of GINS2 in pancreatic cancer could stimulate EMT in vitro. In MiaPaCa-2 and PANC-1 
cells with high GINS2 expression, GINS2 colocalized and coprecipitated with ERK, suggesting that 
GINS2 interacts closely with the MAPK/ERK pathway. Zhang et al[18] used small interfering RNA to 
reduce GINS2 expression and explored its mechanism of action in pancreatic cancer. Their results 
showed that GINS2 interference inhibited pancreatic cancer cell viability through the MAPK/ERK 
pathway, induced cell cycle arrest and promoted apoptosis in pancreatic cancer cell lines. The above 
findings suggest that GINS2 may play a negative role in pancreatic cancer and has a guiding role in 
treating pancreatic cancer.

TC
Since the 1980s, the incidence of TC has increased rapidly in most parts of the world. However, the 
aetiology of TC is not well understood, and the study of its development is particularly critical in its 
prevention and treatment[55]. Cbp/p300-interacting transcription factor 2 (CITED2) has a Glu/asp-rich 
carboxy-terminal domain and is a non-DNA-binding transcriptional coregulator. CITED2 can directly 
bind to host transcription factors and coactivators, interacting with them to activate gene transcription 
and affect their function[61]. Several studies have demonstrated that interference with CITED2 can 
induce apoptosis[62]. Lysine oxidase class 2 (LOXL2) is a member of the lysine oxidase (LOX) family, 
and some researchers have found that overexpression of LOXL2 activates cell growth in BC. In addition, 
LOXL2 can directly bind to substrate-like 1 of myristoylation alanine-rich kinase (MARCKSL1), activate 
the FAK/Akt/mTOR signaling pathway, and inhibit MARCKSL1-induced apoptosis[63]. Ye et al[12] 
found that GINS2 plays a role in TC cell proliferation and apoptosis by regulating the expression of 
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CITED2 and LOXL2 in TC cells. He et al[13] reported that GINS2 plays a vital role in the survival, 
migration and invasion of TC cells and regulates the MAPK signaling pathway. GINS2 may be a 
potential biomarker for TC diagnosis or prognosis and a drug target for treatment.

CONCLUSION
Most studies have shown that GINS2 expression is upregulated in tumor tissues such as CC, gastric 
adenocarcinoma, glioma, pancreatic cancer and OC compared to adjacent normal tissues, while GINS2 
expression levels correlate with various clinicopathological parameters such as tumor size and TNM 
stage. These findings suggest that GINS2 can promote tumor progression by regulating tumor cell 
proliferation, apoptosis, migration, the cell cycle and EMT. In addition, at the cellular level, GINS2 
affects the function of several pro- or oncogenic molecules through several signaling pathways, leading 
to poor patient prognosis. These results imply that GINS2 may be a new target in the diagnosis and 
treatment of certain tumors.

Currently, there are few publications on interfering with GINS2 in tumor therapy, and no corres-
ponding inhibitors have been reported. In contrast, GINS2 expression is increased in the vast majority of 
tumors compared to normal tissues, which may make it possible to interfere with GINS2 expression and 
inhibit GINS2 protein function as an effective way to control tumor development. In future research, 
potent agents can be explored through molecular docking based on the GINS2 structure, for example.

In conclusion, a better understanding of the role of GINS2 in clinicopathological features and 
mechanisms of tumor development may help improve diagnostic and therapeutic outcomes. Further 
studies on GINS2 and its regulatory mechanisms may help improve prevention and treatment based on 
patient biological and pathological characteristics.
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