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Abstract
The mononuclear phagocyte system (MPS) consists of monocytes, dendritic cells 
and macrophages, which play vital roles in innate immune defense against cancer. 
Hepatocellular carcinoma (HCC) is a complex disease that is affected or initiated 
by many factors, including chronic hepatitis B virus infection, hepatitis C virus 
infection, metabolic disorders or alcohol consumption. Liver function, tumor stage 
and the performance status of patients affect HCC clinical outcomes. Studies have 
shown that targeted treatment of tumor microenvironment disorders may 
improve the efficacy of HCC treatments. Cytokines derived from the innate 
immune response can regulate T-cell differentiation, thereby shaping adaptive 
immunity, which is associated with the prognosis of HCC. Therefore, it is 
important to elucidate the function of the MPS in the progression of HCC. In this 
review, we outline the impact of HCC on the MPS. We illustrate how HCC 
reshapes MPS cell phenotype remodeling and the production of associated 
cytokines and characterize the function and impairment of the MPS in HCC.
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Core Tip: The hepatocellular carcinoma (HCC) is a complex disease affected or initiated by many factors, 
including chronic hepatitis B virus infection, hepatitis C virus infection, metabolic disorders or alcohol 
consumption. Innate immune system can shape the acquired immune response, which can surveillance 
HCC directly. As the main component of innate immunity, the mononuclear phagocyte system (MPS) 
plays a vital role in HCC. In this review, we outline the impact of HCC on MPS. We illustrate how HCC 
reshapes MPS cell phenotype remodeling and producing the associated cytokines, and characterize the 
function and impairment of MPS in HCC.

Citation: Qiao DR, Shan GY, Wang S, Cheng JY, Yan WQ, Li HJ. The mononuclear phagocyte system in 
hepatocellular carcinoma. World J Gastroenterol 2022; 28(45): 6345-6355
URL: https://www.wjgnet.com/1007-9327/full/v28/i45/6345.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i45.6345

INTRODUCTION
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is predicted to be the 
sixth most-diagnosed cancer and the fourth-leading cause of death among all types of cancers[1-3]. HCC 
is influenced or initiated by many factors, including chronic hepatitis B virus (HBV) infection, hepatitis 
C virus (HCV) infection, metabolic disorder or chronic alcohol consumption[4-7]. More than 85% of 
HCC cases are accompanied by HBV infection in China[8-9]. Evidence has shown that HCC is a type of 
tumor with low or moderate immunogenicity[10]. Chronic inflammation creates an immunosuppressive 
microenvironment in the liver, facilitating HCC tumorigenesis and progression[11]. Although great 
progress has been made in the treatment of HCC in recent decades, the long-term survival rate of HCC 
is still poor[12]. Many factors, such as liver function, tumor stage and the performance status of patients, 
affect HCC clinical outcomes. According to previous studies, targeted treatment of dysregulated tumor 
microenvironments may improve the efficacy of HCC treatments[11,12].

The mononuclear phagocyte system (MPS) includes monocytes, dendritic cells (DCs) and macro-
phages and was proposed by Van Furth in the late 1960s and early 1970s[13,14]. Monocytes, DCs and 
macrophages are important members of the innate immune system and are capable of modulating 
adaptive immune responses. The immune system is precisely balanced between immune activation and 
tolerance. Within this system, antigen presenting cells (APCs) play a critical role in orchestrating the 
immune response[15]. Although stellate cells, endothelial cells and hepatocytes in the liver have the 
potential to present antigens to T cells, the MPS plays a major role in determining the nature of the 
immune response and keeps the liver as an immune tolerance organ. The MPS appears to be superior at 
sampling the environment through phagocytosis and presenting antigens to T cells via MHC class II 
molecules[16]. APCs of the MPS appear to have a commensurately increased expression of antigen 
presentation and costimulatory molecules and are potent secretors of modulatory cytokines[17].

In addition to its role in tissue development, homeostasis, inflammation and innate immune defense 
against pathogens, the MPS also plays a vital role in cancer[17,18]. Innate immune cell-derived cytokines 
can regulate T-cell differentiation, thereby shaping adaptive immunity, which is associated with the 
prognosis of HCC. It is important to illustrate the critical role of the MPS in the progression of HCC. In 
this review, we discuss how the HCC microenvironment remodels MPS cell phenotypes and cytokine 
production and describe the function and impairment of MPS components in HCC.

IMPACT OF THE MPS ON HCC
Monocytes and HCC
Monocytes originate in the bone marrow and spleen and account for approximately 5%-10% of human 
peripheral blood mononuclear cells[13]. Monocytes transform into macrophages and DCs during 
inflammation[19-23]. It has been reported that the increase in activated monocytes [human leukocyte 
antigen (HLA)-DRhighCD68+ cells] in the liver is related to disease progression[24]. Chemokine (C-C 
motif) ligand 15 (CCL15) recruits CCR1+CD14+ monocytes to the edge of HCC tissue. High expression of 
CCL15 is associated with poor clinical prognosis. CCR1+CD14+ monocytes suppress antitumor 
immunity, facilitate tumor metastasis and promote tumor cell proliferation and invasion[25]. Blocking 
CCL2/CCR2-mediated macrophage accumulation has been proposed as a treatment strategy for HCC
[26-29].

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid progenitors 
and immature myeloid cells[30]. MDSCs in the tumor microenvironment, which are essential for tumor 
progression and are effective inhibitors of natural killer (NK) cells in HCC patients, play an important 

https://www.wjgnet.com/1007-9327/full/v28/i45/6345.htm
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role in immunosuppression[31-33]. In humans, MDSCs usually express CD11b and CD33 and have low 
or no expression of HLA-DR. Monocyte-derived MDSCs (mMDSCs) express CD14, while granulocyte-
derived MDSCs named gMDSCs express CD15 and CD66b[34]. MDSCs inhibit T and NK-cell prolif-
eration and have an inhibitory effect on conventional NK cells in a TIGIT-dependent manner. Compared 
with conventional NK cells, adaptive NK cells express lower levels of TIGIT and resist the inhibitory 
effect of MDSCs[35]. MDSCs express CD155, which is induced by reactive oxygen species, and inhibit 
NK-cell function via the CD155-TIGIT interaction[35]. Compared with normal liver tissues, hepatoma 
tissues are rich in granulocytes and mononuclear cells. Mononuclear cells and MDSCs suppress the 
CD8+ T-cell response[36].

S100A9 is a marker that can be used to distinguish MDSCs from monocytes[37]. Studies have iden-
tified CD14+HLA-DRlow/neg monocytes as MDSCs in HCC patients. The frequency of CD14+HLA-DRlow/neg 
MDSCs in the peripheral blood and ascites fluid of these patients is increased. CD14+HLA-DRlow/neg 

MDSCs cannot induce T-cell proliferation. MDSCs induce FoxP3+ regulatory T (Treg) cell proliferation, 
while CD14+HLA-DR+ monocytes induce Th17-cell proliferation and IL-17 secretion[33]. MDSCs induce 
Treg cell generation via all-trans retinoic acid[38]. In human HCC, the fibrotic tissue around the tumor is 
rich in mMDSCs, which are significantly associated with a low survival rate[26].

DCs and HCC
DCs are a class of bone marrow-derived cells in the blood, epithelia and lymphoid tissues and are the 
most powerful professional APCs[39]. DCs participate in the regulation of innate and adaptive 
immunity[40]. DCs have antigen delivery capabilities, which make them attractive carriers for 
therapeutic tumor vaccines and platforms for vaccine development[41]. Human DCs are usually 
induced from monocytes isolated from peripheral blood mononuclear cells by M-CSF and IL-4 
stimulation and develop into mature DCs (mDCs) after being loaded with antigens[42].

Human DCs express CD45 and HLA-DR and are divided into different populations according to 
CD11c, CD123 and IL-3Rα expression. Myeloid DCs (mDCs) are important antigen-presenting cells and 
express high levels of CD11c but low levels of CD123. Plasmacytoid DCs (pDCs) express high levels of 
CD11c, CD123, Toll-like receptor (TLR)-7 and TLR-9[43,44]. In normal liver tissues, CD141+ hepatic DCs 
express CLEC9A, ILT3 and ILT4, but cell percentages and functions are damaged in hepatocellular 
carcinoma[45-47]. Evidence indicates that DCs have high antitumor and cytotoxic activity against HCC 
cells in vitro and in vivo[48]. DCs inhibit the growth of HCC cells by loading LCSC antigens[49].

Peptide-pulsed DCs present antigens to naive T cells, thereby activating and inducing naive T cells to 
become antigen-specific cytotoxic T lymphocytes (CTLs) to kill tumor cells[50]. DCs incubated with 
epithelial adhesion molecule peptides have a significant inhibitory effect on tumor growth[51]. DC 
precursors that are sensitized by dexamethasone can effectively trigger the major histocompatibility 
complex class I (MHC I)-restricted CTL response, allowing DCs to make full use of secondary antigen 
peptides, thereby maximizing the specificity of the HCC immune response[52].

Macrophages and HCC
Macrophages originating in the liver are generally described as Kupffer cells (KCs)[53]. KCs express 
MHC class II and have varying levels of costimulatory markers, such as CD40, CD80, and CD86, and 
express the inhibitory marker Z39Ig[20,54]. The activation of STAT3 is involved in the differentiation of 
monocytes into macrophages[55]. Although tumor-infiltrating macrophages are generally believed to be 
derived from circulating monocytes, emerging evidence suggests that tissue macrophages can be 
maintained through self-renewal[56]. Liver resident macrophages are established by progenitor cells 
derived from the fetal liver and are maintained by self-proliferation and monocyte migration[57,58]. 
KCs in the liver are negatively correlated with patient prognosis by inhibiting T-cell antitumor functions
[59].

Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microen-
vironment and play a key role in immunosuppression[60]. TAMs are important in tumor-related inflam-
mation and can be polarized into M1 or M2 phenotypes[61]. M1 macrophages are induced by LPS and 
IFN-γ; M2 macrophages are induced by IL-4 and IL-13[62]. It is generally believed that M1 TAMs have 
antitumor functions, while M2 TAMs promote tumor proliferation[63]. Studies have shown that IL-10 is 
involved in the polarization of TAMs to the M2 phenotype[64]. CD68 and CD163 are two popular TAM 
cell surface markers[65,66]. It has been reported that CD68+HLA-DR+ TAMs enhance HCC proliferation 
through the NFκB/FAK pathway[67].

TAMs induce CD8+ T-cell exhaustion via the PD-1/PD-L1 and Tim3 signaling pathways in the tumor 
microenvironment[68,69]. CCR2+ TAMs accumulate and express the inflammatory marker S100A9 at the 
border of highly vascularized HCC, while CD163+ TAMs accumulate in the center area of HCC tissue
[70]. Silencing SIRT4 in TAMs regulates macrophage activation and significantly promotes HCC cell 
growth[71]. Downregulation of SIRT4 expression is related to an increase in macrophage infiltration in 
HCC tissues and a high ratio of M2/M1 macrophages[72]. The miR-148B/CSF1 pathway regulates the 
entry of TAMs into HCC tissue. A lack of miR-148B induces CSF1 expression and macrophage infilt-
ration, thereby promoting liver cancer metastasis and poor prognosis[73].
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THE REGULATORY FUNCTION OF HCC ON THE MPS
Studies have shown that the tumor environment can trigger early activation of monocytes in the 
surrounding tumor tissues[74,75]. Tumor environmental factors induce monocytes to express PD-L1 
transiently in the early stage, activate monocytes, and induce PD-L1 expression in an autocrine 
cytokine-dependent manner[75]. HCC cells promote monocyte-to-macrophage differentiation via the 
PKM2 pathway[76]. In addition, monocytes in human peripheral blood differentiate into immature 
dendritic cells[77]. Monocyte-derived TNF-α works synergistically with tumor-derived soluble factors to 
induce neutrophils to produce the metastasis-promoting factor OSM. Tumor-infiltrating monocytes 
mediate the production of CXCL2 and CXCL8 through the PFKFB3/NFκB signaling pathway. The level 
of PFKFB3 and the production of CXCL2/CXCL8 in monocytes are positively correlated with the infilt-
ration of OSM-producing neutrophils in human HCC tissues[78].

The tumor microenvironment inhibits DC maturation and activation, leading to an immunosup-
pressive phenotype and function[79]. In addition, hepatoma cells recruit immunosuppressive DCs and 
MDSCs to suppress CD8+ T cells, leading to tumor escape from immune surveillance[80]. Tumor-
derived exosomes impair the differentiation and maturation of DCs through the IL-6/STAT3 signaling 
pathway, which prevents myeloid precursor cells from differentiating into CD11c+ DCs and induces 
apoptosis, thereby reducing T-cell activation and mediating immunosuppression[81,82].

The proliferation of tumor-infiltrated macrophages is more powerful than that of macrophages in 
nontumor tissues. Increased levels of macrophage proliferation are positively correlated with the 
density of macrophages in the tumor and the poor prognosis of HCC patients. Proliferating 
macrophages can be induced by small soluble adenosine, which is derived from tumor cells. GM-CSF 
released by tumors stimulates macrophages to express the A2A receptor, which then coordinates with 
adenosine to cause HCC-infiltrating macrophage proliferation[83]. Mitochondrial nucleoid structural 
changes lead to the release of mitochondrial DNA (mtDNA) into the cytoplasm, which is considered to 
be mtDNA stress, thereby regulating innate immunity[84].

CSF-1 and CCL2 in the tumor microenvironment polarize macrophages to the M2 phenotype[85,86]. 
Crosstalk between macrophages and liver tumor cells can also affect the polarization of TAMs through 
the Wnt/β-catenin signaling pathway[87]. Compared to those in M1 cells, β-catenin, c-Myc and Axin2 
are more enriched in M2 TAMs. It is believed that the c-Myc signaling pathway promotes the 
polarization of TAMs toward the M2 phenotype[88]. Neurotensin-induced IL-8 polarizes TAMs to the 
M2 phenotype and promotes epithelial-mesenchymal (EMT) in HCC through the MAPK and NFκB 
pathways[89]. In addition, hypoxia-inducible factors 1α (HIF-1α) and HIF-2α cause TAM polarization 
through hypoxia in the tumor microenvironment, leading to HCC malignancy[90,91]. Hypoxia-induced 
high mobility group protein box 1 may affect tumor progression by regulating TAMs, leading to poor 
clinical prognosis[92].

CONCLUSION
Components of the MPS have important but distinct roles in HCC. The MPS is associated with specific 
cell phenotypes and functions in the HCC microenvironment. Monocytes are progenitors of DCs and 
macrophages, which play an important role in inhibiting the immune response. In addition, MDSCs are 
a heterogeneous population composed of immature myeloid cells and myeloid progenitor cells. 
Increasing evidence suggests that tumor progression is associated with the accumulation of MDSCs, 
which cause local and systemic immunosuppression[93]. Furthermore, increased accumulation of 
MDSCs is associated with early tumor recurrence and is considered to be one of the predictors of poor 
prognosis in HCC patients who undergo clinical treatment[94]. Cytokine-induced killer (CIK) cells 
include a wide variety of T-cell receptor-specific effector cells, which are a mixed cell population. CIK 
cells have cytotoxic activity against tumor cells, which is not MHC-restricted. Studies have shown that 
adjuvant immunotherapy for HCC using CIK cells can reduce tumor recurrence and improve overall 
survival[95]. MDSCs inhibit CIK cell lysis via ARG1 and iNOS.

Human DCs are usually induced from monocytes isolated from peripheral blood. DCs have antigen 
delivery abilities, which make them attractive carriers for therapeutic tumor vaccines and platforms for 
vaccine development. In normal liver tissues, hepatic DCs have powerful antigen presentation functions 
and immunomodulatory abilities, but their percentages and functions are damaged in hepatocellular 
carcinoma[45]. Monocytes act as precursor cells that differentiate into DCs and macrophages under 
normal physiological conditions. The following are questions that remain to be investigated. Will 
monocyte impairments be inherited by DCs and macrophages? Will DCs and macrophages acquire 
immunosuppressive phenotypes and functions in HCC after differentiation?

Although the majority of previous studies have focused on individual MPS components, interactions 
and cooperation among various MPS components are common[96-98]. For instance, KCs are the main 
immune cells in liver tissues and play a key role in DC recruitment to the liver[97]. pDC survival and 
IFN-α production are affected by IL-10 and TNF-α secretion by monocytes. MDSCs produce increased 
levels of IL-10, which leads to pDC apoptosis. How do MDSCs interact with pDCs in the HCC microen-
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Figure 1  The interaction of mononuclear phagocyte system and hepatocellular carcinoma in the tumor microenvironment. (1) Activated monocytes secrete TNF-α and IL-10 to increases the expression of PD-L1 on the surface 
of monocytes, inhibiting the function of Tumor-specific T cell. TNF-α, CXCL2 and CXCL8 produced by monocytes stimulate neutrophils to produce MSO which promote tumor development; (2) Tumor-derived growth factors stimulate myeloid-derived 
suppressor cell differentiation through STAT3, IRF8, A2B, NLRP3 pathways and PEG2, COX2 produced by tumor stroma stimulate myeloid-derived suppressor cell differentiation through NK-κB, STAT1, STAT6 pathways. Myeloid-derived suppressor 
cell promotes tumor progression by producing VEGF, BV8 and MMP9. Myeloid-derived suppressor cells inhibits the function of NK cells and CD8+ T cells. Reactive oxygen species induce the expression of CD155 on myeloid-derived suppressor cells 
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inhibiting natural Killer cell function; (3) The exosomes PKM2 produced by hepatocellular carcinoma in tumor microenvironment mediate the production of CXCL2 and CXCL8 through the PFKFB3-NF-κB signaling pathway; (4) Monocytes in peripheral 
blood mononuclear cells differentiate into macrophages through STAT3 pathway. LPS and IFN-γ stimulated tumor-associated macrophages polarizing into M1 phenotype, but IL-4, IL-8, IL-10, IL-13, CSF-1 and CCL2 stimulated tumor-associated 
macrophages polarizing into M2 phenotype through c-Mcy, NFκB and MAPK signaling pathway; and (5) Monocytes in peripheral blood mononuclear cells can be differentiated into immature dendritic cell, loaded with antigen to produce mature dendritic 
cell. Tumor-derived exosomes impair the activation and maturation of dendritic cells through IL-6 STAT3 signaling pathway. HCC: Hepatocellular carcinoma; MDSC: Myeloid-derived suppressor cells; iDC: Immature dendritic cell; mDC: Mature dendritic 
cell; M1: M1-type macrophages; M2: M2-type macrophages; ROS: Reactive oxygen species.

vironment? Additionally, monocyte- or macrophage-derived IL-15 and pDC-derived IFN-α synergist-
ically stimulate IFN-γ production in NK cells during HCV infection[96]. Does this interaction occur in 
HCC? Other forms of cooperation between different MPS components remain to be analyzed.

In this review, we described the impact of HCC on each component of the MPS and the immune 
function of the MPS in HCC development (Figure 1). Monocytes are precursors of DCs and 
macrophages, which play an important role in the regulation of immune function in HCC. Through 
crosstalk with hepatoma cells or regulation of the tumor microenvironment, monocytes are capable of 
producing high levels of IL-10, resulting in an inhibitory microenvironment. DCs can suppress the 
stimulation of T cells and inhibit efficient antitumor T-cell functions. TAMs are the most abundant 
immune cells in the tumor microenvironment and play a key role in immunosuppression. The tumor 
microenvironment inhibits DC maturation and activation, leading to an immunosuppressive phenotype 
and function. The HCC microenvironment remodels MPS cell phenotypes and cytokine production and 
impairs MPS components in HCC.
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