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Abstract
BACKGROUND 
Urinary tract infection (UTI) is a common type of postoperative infection 
following cytoreductive surgery for ovarian cancer, which severely impacts the 
prognosis and quality of life of patients.

AIM 
To develop a machine learning assistant model for the prevention and control of 
nosocomial infection.

METHODS 
A total of 674 elderly patients with ovarian cancer who were treated at the 
Department of Gynaecology at Jingzhou Central Hospital between January 31, 
2016 and January 31, 2022 and met the inclusion criteria of the study were selected 
as the research subjects. A retrospective analysis of the postoperative UTI and 
related factors was performed by reviewing the medical records. Five machine 
learning-assisted models were developed using two-step estimation methods 
from the candidate predictive variables. The robustness and clinical applicability 
of each model were assessed using the receiver operating characteristic curve, 
decision curve analysis and clinical impact curve.

RESULTS 
A total of 12 candidate variables were eventually included in the UTI prediction 
model. Models constructed using the random forest classifier, support vector 
machine, extreme gradient boosting, and artificial neural network and decision 
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tree had areas under the receiver operating characteristic curve ranging from 0.776 to 0.925. The 
random forest classifier model, which incorporated factors such as age, body mass index, catheter, 
catheter intubation times, blood loss, diabetes and hypoproteinaemia, had the highest predictive 
accuracy.

CONCLUSION 
These findings demonstrate that the machine learning-based prediction model developed using 
the random forest classifier can be used to identify elderly patients with ovarian cancer who may 
have postoperative UTI. This can help with treatment decisions and enhance clinical outcomes.

Key Words: Cytoreductive surgery; Machine learning; Ovarian cancer; Risk factors; Urinary tract infection

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Using a machine learning-based algorithm, we developed a feasible and robust method to 
identify factors that are significant for predicting urinary tract infections. The random forest classifier was 
especially robust and can improve the prediction and early detection of urinary tract infections in patients 
with ovarian cancer. In addition, the five most crucial factors were age, body mass index, catheter, catheter 
intubation times, blood loss, diabetes and hypoproteinaemia. Clinicians may find it extremely helpful to 
assess the individualised risk of urinary tract infections in clinical practice by incorporating the 
presentation of simple clinical data.

Citation: Ai J, Hu Y, Zhou FF, Liao YX, Yang T. Machine learning-assisted ensemble analysis for the prediction of 
urinary tract infection in elderly patients with ovarian cancer after cytoreductive surgery. World J Clin Oncol 2022; 
13(12): 967-979
URL: https://www.wjgnet.com/2218-4333/full/v13/i12/967.htm
DOI: https://dx.doi.org/10.5306/wjco.v13.i12.967

INTRODUCTION
Ovarian cancer is a gynaecological malignant tumour with the highest degree of malignancy and 
mortality[1]. Approximately 70%–80% of patients have advanced to the middle and late stage at the 
initial diagnosis owing to the asymptomatic nature of ovarian cancer in the early stage and lack of 
sensitive screening methods. In addition, 80% of patients with ovarian cancer experience a relapse 
within 1-2 years after surgery[2,3]. According to the statistics of the International Union of Obstetrics 
and Gynaecology, patients with ovarian cancer have a 5-year overall survival rate of < 40%, and a 5-year 
clinical stage IV survival rate of < 5%[4,5]. Currently, the first-line treatment for ovarian cancer is 
carboplatin combined with paclitaxel platinum chemotherapy following surgery, with a clinical 
remission rate of 60%–80%[6-8].

Advanced ovarian cancer is surgically treated with tumour cytoreductive surgery, which is the most 
effective surgical procedure[8]. Tumour cytoreductive surgery with a satisfactory tumour reduction 
ratio can prolong the survival time of patients and improve their overall survival rate. However, the 
scope of surgical resection includes not only ovaries, uterus and omentum but also pelvic and 
abdominal metastases and affected lymph nodes with a diameter of > 2 cm[9]. The operation is 
challenging, the injury obtained from the procedure is significant, and there are numerous complic-
ations since the procedure often involves the intestinal tract, the urinary tract and pelvic vessels. 
Additionally, some patients must undergo 2-3 courses of neoadjuvant chemotherapy prior to the 
surgery to have sufficient operation conditions[10]. The postoperative rehabilitation process and the 
quality of life of patients will suffer significantly from the high incidence of postoperative complications.

Urinary tract infection (UTI) is a common type of postoperative infection following tumour cell 
reduction surgery for ovarian cancer. It is related to the surgical procedure and the unique physiological 
structure of the female urinary tract[11,12]. Elderly patients with ovarian cancer have a higher incidence 
of postoperative UTI owing to their weak immune system, poor organ reserve capacity and a high 
proportion of basic diseases[13]. The evaluation of related factors is crucial for the prevention and 
management of nosocomial infection. However, there is no specific study on the related factors of UTI in 
elderly patients with ovarian cancer who underwent cytoreductive surgery at home and abroad.

Nowadays, predictive models based on advanced algorithms have been gradually applied to the 
medical field, which also enables many diseases to be detected and diagnosed early[14,15]. Among 
them, the machine learning (ML) algorithm relies on repeated iterative operations to accurately output 
the results, so it can improve the accuracy and robustness of prediction. Given the superior ability of the 

https://www.wjgnet.com/2218-4333/full/v13/i12/967.htm
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ML-based algorithm to improve the accuracy of muscular invasion prediction, we applied the ML-
assisted decision-support model to assess the risk of UTI using clinical parameters and direct clinical 
decision-making prior to treatment decisions.

MATERIALS AND METHODS
Patient selection
As the research subjects, 674 elderly patients with ovarian cancer who received treatment at the 
Department of Gynaecology at Jingzhou Central Hospital between January 31, 2016 and January 31, 
2022 and met the inclusion criteria were selected. A retrospective analysis of the postoperative UTI and 
related factors was performed using medical records. The inclusion criteria for patients were as follows: 
(1) All patients met the diagnostic criteria in the clinical practice guidelines for ovarian cancer 
developed by the National Comprehensive Cancer Network and were diagnosed by imaging 
examination and postoperative pathology[16]; (2) All the patients were older than 60-years-old. The 
clinical stages were stage III and above, and the pelvic and abdominal masses were fixed; and (3) All the 
patients were scheduled for cytoreductive surgery. The clinical data were complete, and the 
postoperative hospital stay exceeded 5 d. The exclusion criteria for patients were as follows: (1) Patients 
undergoing secondary cytoreductive surgery for recurrent ovarian cancer; (2) Patients with liver and 
kidney insufficiency, cardiovascular and cerebrovascular accidents, blood diseases, autoimmune 
diseases or immunodeficiency diseases and other malignant tumours; (3) Patients diagnosed with acute 
and chronic infection prior to surgery; and (4) Patients who had long-term usage of immunosup-
pressants or glucocorticoids. The guidelines of the Helsinki Declaration (2013 revision) were followed 
by the study protocol. It was approved by the Institutional Review Committee of Jingzhou Central 
Hospital (JZ-2022014). Owing to its traceability, patient information was managed with the utmost 
confidentiality, and informed consent was waived. The workflow for patient selection and model 
construction is summarized in Figure 1.

Diagnosis of postoperative urinary tract infection
The diagnostic criteria were as follows: The patient had urinary tract irritation symptoms such as 
frequent micturition, urgency and pain following the surgery. By microscopic examination of the urine 
sediment, the average number of leukocytes per high-power visual field was ≥ 5, and the urine 
pathogen was present. Based on a diagnosis of UTI, patients were divided into an infection group and a 
non-infection group.

Data collection and quality assessment
The following data were collected from all patients: age, body mass index (BMI), catheter retention time, 
catheter intubation times, operation time, intraoperative blood loss, length of hospital stay, diabetes, 
hypertension, prophylactic use of antibiotics and postoperative hypoproteinaemia. In most cases, the 
median was applied to variables with missing values. A variable was excluded from variable screening 
for the final model if ≥ 10% of its values were missing.

Development and validation of ML-based models
The data were randomly divided into a training set (70%) and a verification set (30%) to verify the 
prediction model. The inclusion principle of variables reported in previous studies was followed to 
screen variables. The principle of ‘OOB error’ was employed to screen the model variables (i.e. charac-
teristic variables)[17], as follows: Gini (D) = 1-∑_(i = 1)^m P_i^2. If the Gini index was small, the 
probability of selecting mixed samples in the set was low, that is, the higher the purity of the set was 
and vice versa. However, the Gini index approaches zero if every sample in the set was of the same 
class. Based on the above algorithm principles, we have included five commonly used machine 
algorithm prediction models in this study, namely random forest classifier (RFC), support vector 
machine, extreme gradient boosting, artificial neural network (ANN) and decision tree (DT). Among 
them, RFC and DT are based on the algorithm principle of “branching and pruning,” while ANN is 
based on “hidden layer” iteration. Support vector machine and extreme gradient boosting are also based 
on their iterative algorithm principle.

Prediction efficiency evaluation of ML-based models
The optimal subset variables for the modelling were obtained based on the intersection of variable sets. 
The receiver operating characteristic curve was used to evaluate the prediction accuracy of the model in 
the training and validation set. The discrimination ability of each model was quantified by the area 
under the receiver operating characteristic curve, decision curve analysis and clinical impact curve.

Statistical analysis
For descriptive analysis, median (interquartile range) and frequencies (%) were assessed for continuous 
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Figure 1 Flow chart of the patient selection and data process. ANN: Artificial neural network; CIC: Clinical impact curve; DCA: Decision curve analysis; 
DT: Decision tree; RFC: Random forest classifier; ROC: Receiver operating characteristic curve; SVM: Support vector machine; XGboost: Extreme gradient boosting.

and categorical variables, respectively. Bonferroni corrected probability values were used to compare 
the qualitative data[18]. Wilcoxon rank-sum test or χ2 test was used to compare the differences between 
diverse groups. The best subset of randomly selected explanatory variables or features was used to 
further divide each node during the selecting process, and the class prediction values generated by each 
tree were collected. Finally, the candidate variables of the prediction model, namely the Gini index, 
were determined according to the weight. All analysis was performed using the Python programming 
language (version 3.9.2, Python Software Foundation, https://www.python.org/) and R project for 
statistical computing (version 4.0.4, http://www.r-project.org/). All P values were two-tailed, and P < 
0.05 was considered statistically significant.

RESULTS
Baseline characteristics of the study population
The comprehensive clinical features and baseline data of 674 elderly patients with ovarian cancer are 
presented in Table 1. Using the caret package, patients were randomly divided into a training set (70%, 
n = 471) and a validation set (30%, n = 203) for internal validation of the model. As presented in Table 1 
and Supplementary Table 1, 96 patients had postoperative UTI, with an infection rate of 14.24%. The 
clinical symptoms and signs of the patients were primarily urinary tract irritation, fever, poor urination 
or urinary retention, renal percussion pain and urethral mouth itching. In addition, there were 
significant differences in catheter retention time, catheter intubation times, intraoperative bleeding, 
length of hospital stay, the proportion of patients with diabetes and the incidence of postoperative 
hypoproteinaemia (P < 0.05) between the infection group and the non-infection group.

Selection of candidate variables
Feature selection is the aspect of ML that concentrates on selecting candidate variables[19]. The iterative 
analysis screened the candidate covariates of each algorithm. We executed 13 variables via Pearson 
correlation analysis. The correlation matrix revealed that UTIs significantly correlated with image 
factors and some clinical variables (Figure 2A). In addition, every significant candidate variable, such as 
age, BMI, catheter, catheter intubation times, blood loss, diabetes and hypoproteinaemia, contributed to 
the ML-based model (Figure 2B). These seven were the top predictors, which were consistent with the 
findings of the correlation analysis.

https://www.python.org/
http://www.r-project.org/)
https://f6publishing.blob.core.windows.net/9fe079e5-b27b-49db-9560-5a0c645050a2/WJCO-13-967-supplementary-material.pdf
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Table 1 Baseline demographic and clinicopathological characteristics of patients, n (%)

Training set Testing set
Variables Overall, n = 

471 Yes, n = 70 No, n = 401 P 
value

Overall, n = 
203 Yes, n = 26 No, n = 177 P 

value

Age [median (IQR)], yr 64.00 (63.00, 
66.00)

69.00 (67.00, 
71.00)

64.00 (62.00, 
65.00)

< 0.001 64.00 (62.00, 
65.50)

68.50 (65.25, 
70.75)

63.00 (62.00, 
65.00)

< 0.001

BMI [median (IQR)], kg/ 
m2

23.00 (22.00, 
24.00)

24.00 (23.00, 
25.00)

23.00 (22.00, 
24.00)

< 0.001 23.00 (22.00, 
24.00)

25.00 (23.00, 
26.00)

23.00 (22.00, 
24.00)

< 0.001

Catheter [median (IQR)], d 8.00 (7.00, 10.00) 13.00 (10.00, 
14.00)

8.00 (7.00, 9.00) < 0.001 8.00 (7.00, 9.00) 13.00 (11.00, 
13.00)

8.00 (6.00, 9.00) < 0.001

Catheter intubation times

≥ 3 148 (31.4) 49 (70.0) 99 (24.7) < 0.001 59 (29.1) 23 (88.5) 36 (20.3) < 0.001

< 3 323 (68.6) 21 (30.0) 302 (75.3) 144 (70.9) 3 (11.5) 141 (79.7)

Operation time [median 
(IQR)], h

3.60 (2.90, 4.40) 3.80 (3.10, 4.50) 3.60 (2.80, 4.30) 0.061 3.70 (2.90, 4.60) 3.85 (2.93, 4.60) 3.70 (2.90, 4.50) 0.373

Blood loss [median (IQR)], 
mL

476.00 (434.50, 
515.50)

627.00 (592.75, 
658.75)

465.00 (429.00, 
499.00)

< 0.001 470.00 (432.00, 
504.00)

646.00 (616.25, 
670.00)

461.00 (426.00, 
494.00)

< 0.001

Hospitalization [median 
(IQR)], d

11.00 (9.00, 
13.00)

15.00 (14.00, 
17.00)

10.00 (8.00, 
12.00)

< 0.001 10.00 (8.00, 
12.00)

16.00 (15.00, 
17.00)

10.00 (8.00, 
12.00)

< 0.001

Diabetes

Yes 162 (34.4) 57 (81.4) 105 (26.2) < 0.001 59 (29.1) 22 (84.6) 37 (20.9) < 0.001

No 309 (65.6) 13 (18.6) 296 (73.8) 144 (70.9) 4 (15.4) 140 (79.1)

Hypertension

Yes 283 (60.1) 45 (64.3) 238 (59.4) 0.519 132 (65.0) 19 (73.1) 113 (63.8) 0.483

No 188 (39.9) 25 (35.7) 163 (40.6) 71 (35.0) 7 (26.9) 64 (36.2)

Antibiotics

Yes 295 (62.6) 47 (67.1) 248 (61.8) 0.477 128 (63.1) 16 (61.5) 112 (63.3) 1

No 176 (37.4) 23 (32.9) 153 (38.2) 75 (36.9) 10 (38.5) 65 (36.7)

Hypoproteinaemia 

Yes 122 (25.9) 53 (75.7) 69 (17.2) < 0.001 54 (26.6) 22 (84.6) 32 (18.1) < 0.001

No 349 (74.1) 17 (24.3) 332 (82.8) 149 (73.4) 4 (15.4) 145 (81.9)

NACT

Yes 293 (62.2) 18 (25.7) 275 (68.6) < 0.001 133 (65.5) 12 (46.2) 121 (68.4) 0.045

No 178 (37.8) 52 (74.3) 126 (31.4) 70 (34.5) 14 (53.8) 56 (31.6)

BMI: Body mass index; IQR: Interquartile range; NACT: Neoadjuvant chemotherapy.

Construction of ML-based UTI predictive model 
Positive or negative training results for each patient were entered for training data, and the final 
judgment result was the output, as indicated in the following formula: Gini(D)= 1-∑_(i = 1)^m P_i^2. 
The RFC algorithm represents a computational method for effectively navigating the free parameter 
space to obtain a robust model (Figure 3A). The variable Gini index in the RFC model is presented in 
Supplementary Table 2. The top seven candidate variables were age, BMI, catheter, catheter intubation 
times, blood loss, diabetes and hypoproteinaemia, which were consistent with the predicted results. In 
addition, data mining through the DT model, as demonstrated by impurity analysis: Gini (p) = ∑_(K = 
1)^K [Pk(1-Pk)], was advantageous. At the branch of DT, age and catheter functioned as the 
irreplaceable weight in addition to clinical factor indicators (Figure 3B). In contrast, the RFC model 
outperformed the ANN model, which outperformed other models, in terms of prediction efficiency 
(Figure 4 and Supplementary Table 3).

https://f6publishing.blob.core.windows.net/9fe079e5-b27b-49db-9560-5a0c645050a2/WJCO-13-967-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/9fe079e5-b27b-49db-9560-5a0c645050a2/WJCO-13-967-supplementary-material.pdf
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Figure 2 Variable screening and weight allocation. A: Variable screening; B: weight allocation. ANN: Artificial neural network; BMI: Body mass index; DT: 
Decision tree; NACT: Neoadjuvant chemotherapy; RFC: Random forest classifier; SVM: Support vector machine; XGboost: Extreme gradient boosting.

Comparison across ML-based models
We used five supervised learning models for UTI assessment to investigate whether ML-based models 
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Figure 3 Predictive model visualization based on machine learning-based algorithm. A: The random forest classifier algorithm represents a 
computational method for effectively navigating the free parameter space to obtain a robust model; B: At the branch of decision tree, age and catheter functioned as 
the irreplaceable weight in addition to clinical factor indicators. BMI: Body mass index; NACT: Neoadjuvant chemotherapy.

can improve prediction performance. The RFC model demonstrated a strong prediction performance in 
the training and validation cohorts based on decision curve analysis (Figure 5). In addition, the area 
under the curve of the RFC models peaked when the seven variables were added, followed by those of 
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Figure 4 Predictive model visualization based on artificial neural network algorithm. BMI: Body mass index.

ANN, DT, support vector machine and extreme gradient boosting (Table 2 and Supplementary Table 4). 
Undoubtedly, RFC outperformed the generalised linear model in terms of prediction accuracy. Thus, 
both RFC and DT (ML-assisted decision-support) models were used to guide UTI prediction using the 
iterative algorithm analysis of supervised learning.

https://f6publishing.blob.core.windows.net/9fe079e5-b27b-49db-9560-5a0c645050a2/WJCO-13-967-supplementary-material.pdf
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Table 2 Receiver operating characteristic curve analyses for predicting urinary tract infection in each machine learning-based model

Training set Testing set
Model

AUC mean AUC 95%CI Variables1 AUC mean AUC 95%CI Variables1

RFC 0.925 0.868-0.982 7 0.918 0.861-0.975 7

SVM 0.787 0.730-0.844 7 0.779 0.722-0.836 7

DT 0.776 0.719-0.833 7 0.769 0.712-0.826 7

ANN 0.879 0.822-0.936 6 0.854 0.797-0.911 6

XGboost 0.797 0.740-0.854 7 0.788 0.731-0.845 7

1Variables included in the model. ANN: Artificial neutral network; AUC: Area under the curve; CI: Confidence interval; DT: Decision tree; RFC: Random 
forest classifier; SVM: Support vector machine; XGboost: Extreme gradient boosting.

Internal validation of the optimal predictive model
We also used the clinical impact curve to assess the accuracy to further validate the RFC model’s ability 
to predict outcomes. The clinical impact curve revealed that UTI stratification was achieved in the 
training cohorts (Supplementary Figure 1). These were consistent with the results of validation cohorts, 
indicating that RFC performed best in terms of discrimination, calibration and overall performance, in 
particular the candidate systemic inflammation markers that were highly relevant to UTIs.

DISCUSSION
This study’s findings indicated that the factors influencing the risk of UTI in elderly patients with 
ovarian cancer after tumour cell reduction include not only the patients’ basic diseases but also their 
indwelling catheter and postoperative nutritional level. There has been a lack of specialised research on 
UTIs after tumour cell reduction in recent years, and some researchers have examined the operation or 
resection of patients with ovarian cancer. These findings demonstrated that the most common clinical 
manifestations of patients with UTI are urinary tract irritation, urinary retention, urethral mouth itching 
and urine turbidity, which is consistent with the results of a previous study[20]. However, the incidence 
of UTIs reported in these studies ranges from < 10% to > 40%. The infection rate reported in this study 
was 14.24%, which is considered moderate; this may be due to the exclusion of patients with severe 
basic diseases such as liver and kidney dysfunction[21,22]. In addition, concerning infection-related 
factors, these reports have drawn similar conclusions as this study, albeit they also stated that age, 
intubation times, length of hospital stay, paraaortic lymph node dissection and intestinal resection, 
haemoglobin and other factors can all affect the risk of infection.

In general, cytoreductive surgery is a relatively traumatic procedure for advanced ovarian cancer, 
and the scope of the operation is likely to involve the urinary system, causing a significant increase in 
the risk of postoperative UTI. Simultaneously, the risk factors for postoperative UTI in elderly patients 
differ from those in young and middle-aged patients. Therefore, the research objects with high hetero-
geneity are selected for analysis, and the demonstrability and repeatability of the results are insufficient. 
Furthermore, a thematic analysis for the patient population with specific surgical procedures and 
similar conditions and susceptibility factors should be performed. Considering this situation, this study 
included elderly patients with ovarian cancer who had undergone cytoreductive surgery as the 
research. Our findings indicated that actively controlling catheter-related UTIs and correcting 
postoperative malnutrition were important links to preventing and controlling UTIs in the elderly after 
ovarian cancer cell reduction.

Through clinical observation, researchers have discovered that postoperative UTI caused by an 
indwelling catheter is one of the most common postoperative infections in clinics in recent years. The 
operation, catheter selection, bladder flushing and patient factors are the main causes of infection, and 
catheter placement time, difficulty in catheter intubation, multiple intubations, previous catheter 
retention history, long anaesthesia time, history of diabetes, age, consciousness disorder improper 
bladder flushing, gastrointestinal decompression, enema, long replacement time of urine collection bag 
and other factors are related to postoperative catheter-related UTI[23]. Numerous studies have 
demonstrated that the time of catheter placement is an independent risk factor for postoperative UTI. 
Thus, to effectively prevent catheter-related UTI, it is necessary to strictly control the indications of a 
long-term indwelling catheter, reduce urethral injury, improve the skills of operators, prevent 
retrograde infection, improve the tightness of the catheter system and ensure the patency of the catheter 
system in clinical work.

https://f6publishing.blob.core.windows.net/9fe079e5-b27b-49db-9560-5a0c645050a2/WJCO-13-967-supplementary-material.pdf
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Figure 5 Prediction performance of candidate models based on machine learning-based algorithm. ANN: Artificial neural network; DT: Decision 
tree; RFC: Random forest classifier; SVM: Support vector machine; XGboost: Extreme gradient boosting.
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One of the most common complications after major surgery is hypoproteinaemia. Its causes are 
complex, and it is closely linked to surgical trauma. Operation post-stress is related to infection and 
other factors[24,25]. Simultaneously, plasma albumin level in severe patients is correlated with the 
expression of serum inflammatory factors and peripheral blood T cell subsets. Hypoproteinaemia can 
improve the degree of inflammatory stress, cause immune dysfunction, significantly increase the risk of 
bacterial and fungal infection and have a serious adverse impact on the disease outcome[26,27]. In 
patients undergoing surgery for a malignant tumour or organ function decompensation, postoperative 
hypoproteinaemia can increase the incidence and mortality of complications, such as postoperative 
infection, and seriously impact the surgical efficacy. The incidence of postoperative complications 
significantly decreases as plasma albumin levels rise. Therefore, early postoperative nutritional support 
is an important link in the treatment and prevention of infection in elderly patients with ovarian cancer. 
Early intravenous nutrition support should be strengthened for patients who cannot use early enteral 
nutrition to correct the negative nitrogen balance caused by surgical stress and maintain normal 
nutrition levels in particular.

It is noteworthy that, owing to the limitations of clinical medical records, the risk factors associated 
with cytoreductive surgery for ovarian cancer in the elderly examined in this study are not compre-
hensive, which is a flaw in this study. In addition to the relevant factors analysed in this study, ascites 
volume, operation scope and other factors will also affect it. Laparoscopic cytoreductive surgery for 
advanced ovarian cancer is becoming more prevalent as laparoscopic technology advances, which 
reduces the risk of surgical trauma and postoperative infection to some extent. These factors must be 
researched and analysed further.

CONCLUSION
In conclusion, using an ML-based algorithm, we created a feasible and robust method for identifying 
factors important for predicting UTIs. The RFC in particular, which can improve the prediction and 
early detection of UTIs in patients with ovarian cancer, was robust. In addition, age, BMI, catheter, 
catheter intubation times, blood loss, diabetes and hypoproteinaemia were five crucial factors. In clinical 
practice, incorporating the presentation of simple clinical data may be helpful for clinicians to identify 
the individualised risk of UTI.

ARTICLE HIGHLIGHTS
Research background
Nowadays, predictive models based on advanced algorithms have been gradually applied to the 
medical field, which also enables many diseases to be detected and diagnosed early. Among them, the 
machine learning (ML) algorithm relies on repeated iterative operations to accurately output the results. 
Therefore, it can improve the accuracy and robustness of prediction.

Research motivation
Given the superior ability of the ML-based algorithm to improve the accuracy of muscular invasion 
prediction, we applied the ML-assisted decision-support model to assess the risk of urinary tract 
infection (UTI) using clinical parameters and direct clinical decision-making prior to treatment 
decisions.

Research objectives
We developed an ML assistant model for the prevention and control of nosocomial infection.

Research methods
A total of 674 elderly patients with ovarian cancer treated between January 31, 2016 and January 31, 
2022 and met the inclusion criteria of the study were selected as the research subjects. A retrospective 
analysis of the postoperative UTI and related factors was performed by reviewing the medical records. 
Five ML-assisted models were developed using two-step estimation methods from the candidate 
predictive variables. The robustness and clinical applicability of each model were assessed using the 
receiver operating characteristic curve, decision curve analysis and clinical impact curve.

Research results
A total of 12 candidate variables were eventually included in the UTI prediction model. Models 
constructed using the random forest classifier (RFC), support vector machine, extreme gradient 
boosting, artificial neural network and decision tree had areas under the receiver operating charac-
teristic curve ranging from 0.776 to 0.925. The RFC model, which incorporated factors such as age, body 
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mass index, catheter, catheter intubation times, blood loss, diabetes and hypoproteinaemia, had the 
highest predictive accuracy.

Research conclusions
These findings demonstrated that the ML-based prediction model developed using the RFC can be used 
to identify elderly patients with ovarian cancer who may have postoperative UTI. This can help with 
treatment decisions and enhance clinical outcomes.

Research perspectives
Using an ML-based algorithm, we developed a feasible and robust method to identify factors that are 
significant for predicting UTIs. The RFC, which can improve the prediction and early detection of UTIs 
in patients with ovarian cancer, was particularly robust. In addition, the five most crucial factors were 
age, body mass index, catheter, catheter intubation times, blood loss, diabetes and hypoproteinaemia. 
Clinicians may find it extremely helpful to assess the individualised risk of UTI in clinical practice by 
incorporating the presentation of simple clinical data.
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