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Abstract
Diabetic foot ulcer (DFU) and poor wound healing are chronic complications in 
patients with diabetes. The increasing incidence of DFU has resulted in huge 
pressure worldwide. Diagnosing and treating this condition are therefore of great 
importance to control morbidity and improve prognosis. Finding new markers 
with potential diagnostic and therapeutic utility in DFU has gathered increasing 
interest. Wound healing is a process divided into three stages: Inflammation, 
proliferation, and regeneration. Non-coding RNAs (ncRNAs), which are small 
protected molecules transcribed from the genome without protein translation 
function, have emerged as important regulators of diabetes complications. The 
deregulation of ncRNAs may be linked to accelerated DFU development and 
delayed wound healing. Moreover, ncRNAs can be used for therapeutic purposes 
in diabetic wound healing. Herein, we summarize the role of microRNAs, long 
ncRNAs, and circular RNAs in diverse stages of DFU wound healing and their 
potential use as novel therapeutic targets.

Key Words: Diabetic foot ulcer; Wound healing; MicroRNA; Long non-coding RNAs; 
Circular RNAs; Inflammation; Proliferation; Regeneration
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Core Tip: Non-coding RNAs (ncRNAs) have emerged as important regulators of 
diabetic foot and wound healing. NcRNAs can be used for therapeutic purposes in 
diabetic wound healing. In this study, we summarize the roles of microRNAs, long 
ncRNAs, and circular RNAs in diverse stages of diabetic foot ulcer wound healing and 
their potential use as novel therapeutic targets.
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INTRODUCTION
Diabetes mellitus (DM) is a chronic metabolic disease that is rapidly increasing worldwide. DM is a 
global public health burden with a negative impact on global health and socioeconomic development. 
Chronic hyperglycemia causes blood vessel inflammation, which leads to macroangiopathy and 
microangiopathy, particularly diabetic foot ulcer (DFU) and delayed wound healing. Delayed healing of 
chronic ulcer wounds in patients with diabetes is due to neuropathy, microangiopathy, and immune 
system dysfunction[1,2]. One of the leading causes of death in patients with diabetes is lower extremity 
amputation, which accounts for approximately 15% of DFU cases[3]. Different functional and structural 
microvascular changes in patients with diabetes increase the vulnerability of the skin and contribute to 
impaired wound healing[4]. DFU contributes to physical and psychological problems that hinder the 
health economy immensely. Conventional DFU treatments have an inefficient impact on reduction of 
the amputation rate; thus, a more efficient treatment is needed. Therefore, a better understanding of the 
molecular mechanisms and biomolecules involved in DFU development is necessary to provide better 
therapeutic options for wound healing.

Non-coding RNAs (ncRNAs) are potential novel biomarkers transcribed from the genome without 
protein translation function but can still perform specific biological functions. NcRNAs can be divided 
into two categories depending on the length of nucleotides; short-stranded RNAs or microRNAs 
(miRNAs) which are less than 200 nucleotides in length, and long ncRNAs (lncRNAs) which are greater 
than 200 nucleotides in length. Emerging evidence suggests that ncRNAs have an important regulatory 
role in various metabolic diseases, such as DM, based on the development of microarray and high-
throughput sequencing[5]. In addition, some lncRNAs are covalently bound to the 3’-5’ end, forming 
circular RNAs (circRNAs)[6]. NcRNAs can be protected from the effects of RNA enzyme activity, 
temperature changes, and extreme pH values by binding to proteins or being packaged into ex-
tracellular vesicles. In this way, ncRNAs can maintain a stable state in the extracellular environment and 
can be used as a potential biomarker for diagnosing and treating diseases[7-9]. NcRNAs regulate 
cellular chromatin rearrangements, histone modifications, variable splicing gene modifications, or gene 
expression; mediate different biological processes; and ultimately influence the development of certain 
diseases[10]. Exosome-cargoed ncRNAs have been reported as pivotal regulators of angiogenesis during 
wound closure[11]. This background confers the possible treatment of delayed wound healing using 
ncRNAs. In this study, we summarize the role and mechanism of miRNAs, lncRNAs, and circRNAs in 
the pathogenesis and process of wound healing in DFU and the research progress of ncRNAs in cell 
therapy.

WOUND HEALING PROCESS
Wound healing is a complex and highly regulated process divided into three phases: Inflammation, 
proliferation, and regeneration[12]. Diabetic wound healing is widely associated with different cellular 
components and the extracellular matrix (ECM) in different parts of the skin[13]. The main effector cells 
in the inflammatory phase are macrophages. When normal skin is damaged, macrophages polarize to 
M1 phenotype, producing pro-inflammatory cytokines and stimulating endothelial cells and fibroblasts 
to release reactive oxygen species (ROS) to remove bacteria and debris from wounds. The subsequent 
shift to the M2 phenotype is correlated with remission of the inflammatory response and wound 
remodeling[14,15]. In diabetic wounds, the persistence of the M1 phenotype and the inability to 
subsequently polarize to the M2 phenotype are the key components delaying wound healing. 
Angiogenesis is the main basis of the proliferative phase of wound healing, cell proliferation, migration, 
and differentiation[14]. The integrity of the endothelial cell structure plays a very important role in 
maintaining normal blood circulation in the body. In healthy tissues, endothelial cells are in a quiescent 
phase. In diabetic patients, wound healing is slowed by decreased angiogenic growth factors, such as 
vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and hypoxia-inducible 
factor (HIF)-1α[16-18]. An unfavorable diabetic wound environment promotes the dysregulation of key 
signaling pathways, such as Notch and PI3K/AKT/eNOS[19,20]. The regenerative phase of wound 
healing includes re-epithelialization and ECM remodeling. Reduced blood flow restricts the migration 
of leukocytes, keratinocytes, fibroblasts, and endothelial cells to the wound, which is detrimental to 
wound healing[21]. Fibroblasts proliferate and secrete ECM components, such as collagen fibers, which 
provide supportive structures for cell proliferation and migration to restore skin tissue function and 
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integrity to maintain tissue elasticity and strength[22]. DFUs have collagen degeneration and 
deformation and reduced fibroblasts in the proliferation and migration stages[23]. Keratinocytes are the 
main constituent cells of the epidermis involved in skin wound healing through migration, prolif-
eration, and differentiation[24]. In addition, epithelial-to-mesenchymal transition (EMT) plays a crucial 
role in DFU regeneration and wound healing[25]. Many studies have shown that ncRNAs regulate EMT 
involved in DFU and wound healing[26,27]. The wound healing process is shown in Figure 1.

MIRNAS
MiRNAs are a class of endogenous small ncRNAs with a molecular length of 18–25 nucleotides that 
regulate gene and/or protein expression at the post-transcriptional level by specifically binding to the 
3′-untranslated region of downstream target miRNAs. The increased prevalence of diabetes has 
prompted increasing research into the mechanisms of miRNAs as therapeutic targets in DFU and 
wound healing. A study showed that low miR-24 expression is an independent risk factor for DFU in 
multifactorial logistic regression analysis[28]. Furthermore, low miR-24 expression is negatively 
correlated with fasting blood glucose and glycated hemoglobin and positively correlated with inflam-
matory markers[28-30]. MiRNAs have been associated with DFU progression and severity; specific 
miRNAs, such as miR-26, increase DFU severity[31], whereas other miRNAs, such as miR-129 and miR-
335, improve wound healing[26].

Inflammation
MiR-217 belongs to the group that increases DFU severity. A study showed that a dual luciferase 
reporter gene assay confirmed HIF-1α as a direct target gene of miR-217. MiR-217 expression was 
upregulated whereas HIF-1α/VEGF expression was downregulated in patients with DFU and in the 
serum of rats with DFU compared with DM and healthy controls[32]. MiR-23c is upregulated in the 
peripheral blood and wound tissue in DFU, targeting stromal cell-derived factor-1α and inhibiting 
wound angiogenesis by recruiting inflammatory cells, such as macrophages[33]. In a mouse DFU model, 
miR-497 expression was downregulated, which considerably increased the expression of pro-inflam-
matory factors, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, resulting in a prolonged 
inflammatory phase of wound healing[34]. MiR-155 regulates insulin sensitivity and blood glucose 
levels in mice[35]. MiR-155 is markedly upregulated in diabetic skin[36]. MiR-155 has pro-inflammatory 
effects; thus, miR-155 inhibition leads to reduced inflammation, increased macrophage M2 polarization, 
reduced IL-1β and TNF-α levels, more regular collagen fiber alignment, and faster diabetic wound 
healing[37-39]. MiR-217, miR-497, and miR-155 are effector molecules in the inflammatory phase of 
diabetic wound healing; however, a further exploration of their mechanisms might improve wound 
healing during the inflammatory phase.

Proliferation
Angiogenesis is an essential step in the proliferative phase associated with DFU prognosis and wound 
healing. Recent studies have focused on the mechanisms and applications of miRNAs in regulating 
angiogenesis during the proliferative phase[40-42]. A maggot therapeutic approach study found that 
miR-18a/19a is markedly upregulated and thrombospondin-1 (TSP-1) expression is downregulated in 
DFU wounds as a result of impaired angiogenesis. The target activation of miR-18a/19a transcript levels 
and the regulation of TSP-1 expression may be a novel strategy for DFU treatment[40]. MiR-15a-3p is 
upregulated in the blood exosomes of patients with diabetes[41]. In vivo and in vitro experiments 
showed that exosomes with low miR-15a-3p expression inhibited diabetic wound healing. By contrast, 
knockdown of circulating exosomal miR-15a-3p expression may accelerate wound healing through the 
activation of NADPH oxidase (NOX) 5 and increase ROS release[41]. NOX activates redox signaling 
pathways and promotes angiogenesis[43]. Phosphatase and tensin homolog (PTEN) expression is 
regulated by blood glucose concentrations, is mainly found in epithelial cells, and activates signaling 
cascades that affect angiogenesis[44]. MiR-152-3p is an upstream negative regulator of PTEN 
upregulated in diabetic wounds; hence, inhibiting the angiogenic function of PTEN leads to delayed 
wound healing[45]. MiR-195-5p and miR-205-5p carried by extracellular vesicles in DFU wound fluid 
negatively regulate angiogenesis and wound healing in DFU[42]. Increased miR-133b expression 
induces downregulation of EGF receptor (EGFR), affecting endothelial cell proliferation and 
angiogenesis in all diabetic wounds. In vitro experiments showed that miR-133b downregulation in 
human umbilical vein endothelial cells partially reverses impaired angiogenesis[46]. These findings 
imply that miR-133b negatively regulates angiogenesis during the proliferative phase of wound healing. 
Huang et al[47] found that miR-489-3p downregulation increases sirtuin (SIRT) 1 expression, promotes 
the PI3K/AKT/eNOS signaling pathway, improves cellular antioxidant capacity, and alleviates DFU. 
MiR-199a-5p has an important role in the development of diabetes and its complications[48,49]. 
Moreover, miR-199a-5p promotes apoptosis and ROS production within pancreatic β-cells in type 2 DM 
(T2DM)[50]. MiR-199a-5p sponge-adsorbed to hsa-circ-006040 inhibits macrophage-mediated inflam-
matory responses in type 1 DM (T1DM)[48]. Wang et al[49] found that downregulating miR-199a-3p in 
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Figure 1 A diagram of the diabetic foot wound healing process. In the inflammation phase, macrophages produce pro-inflammatory cytokines. In the 
proliferation phase, angiogenic growth factors promote angiogenesis by stimulating endothelial cell proliferation and migration. In the regeneration phase, fibroblasts 
proliferate and secrete extracellular matrix components to provide supportive structures for cell proliferation and migration to restore skin tissue function. Mφ: 
Macrophages; VEGF: Vascular endothelial growth factor; EGF: Epidermal growth factor; HIF-1α: Hypoxia-inducible factor 1 α; ECM: Extracellular matrix.

endothelial cells alleviates inhibition of the target VEGFA and Rho-related kinase 1, rescuing the cellular 
damage induced by high glucose and restoring angiogenic function. Therefore, these findings suggest 
that regulating miRNA expression during the proliferative phase of wound healing has great potential 
in DFU treatment and wound repair.

Regeneration
Recently, Moura et al[36] also found that the local inhibition of miR-155 in diabetic wounds increased 
the expression of its target, fibroblast growth factor (FGF) 7, which sequentially increased re-epithelial-
ization and accelerated wound healing[36,51]. Yuan et al[52] found that miR-203 upregulation in DFU 
tissues may inhibit the EMT process and delay wound healing in a rat DFU model. On the contrary, 
miR-203 knockdown promoted wound healing by activating the target gene, IL-8, and IL-8/AKT 
downstream pathways. High miR-203 expression reduces keratinocyte proliferation and migration, 
partially explaining the development of DFU into chronic refractory wounds[52]. On the contrary, 
recent studies have found that negative pressure wound therapy can reverse the inhibition of 
keratinocytes as a result of high levels of miR-203 by reducing miR-203 in the peripheral blood and 
wound tissue and upregulating p63 expression[53]. Sprouty homolog (SPRY) 1, an antagonist of the 
FGF pathway, is expressed in fibroblasts, and its downregulation plays an important role in wound 
healing[54,55]. MiR-21-3p is downregulated in diabetic patients compared with healthy controls and in 
fibroblasts stimulated with D-glucose compared with control fibroblasts[56]. Enhanced miR-21-3p 
expression may inhibit SPRY1, stimulate fibroblast proliferation and migration, and accelerate wound 
healing[42]. MiR-146a is downregulated in DFU wound tissue. Bioinformatics analysis revealed that A-
kinase-anchoring protein 12 (AKAP12) and Toll-like receptor 4 (TLR4) are the target genes of miR-146a. 
Peng et al[57] showed that miR-146a activates in the inflammatory phase of diabetic wound healing by 
inhibiting the TLR4/nuclear factor-kappaB axis involved in macrophage M2 polarization. In addition, 
Zhang et al[58] constructed an in vitro DFU model using human keratinocyte-derived HaCaT cells and 
demonstrated that miR-146a is activated during the tissue regeneration phase. In vivo and ex vivo results 
showed that miR-146a overexpression inhibited the angiogenic regulator AKAP12, activated the HIF-1α
/Wnt3α/β-catenin signaling pathway, and promoted cell proliferation and migration[57]. MiRNAs have 
regulatory effects on a wide range of cells involved in tissue remodeling during the regeneration phase. 
MiRNAs are the most studied ncRNAs and act in various periods of DFU and wound healing, 
respectively, or continuously. We summarized some of the considerably altered miRNAs in diabetic 
patients as shown in Table 1. Notably, most of these pooled miRNAs have not been reported to have a 
clear therapeutic role in DFU and should therefore be evaluated in future studies.
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Table 1 Micro-RNAs in diabetic foot and wound healing

Name Expression Animal Target gene Pathway Phase Ref.

miRNA-217 Up Mouse HIF-1α VEGF Inflammation Lin et al[32], 2019

miRNA-23c Up / SDF-1α SDF-1α/CXCL12 Inflammation Amin et al[33], 2020

miRNA-497 Down Mouse IL-1β, IL-6, 
TNF-α

NF-κB Inflammation Ban et al[34], 2020

miRNA-155 Up Mouse FGF7 / Inflammation/regeneration Moura et al[36], 
2019; Gondaliya et 
al[51], 2022

miRNA-
18a/19a

Up / TSP-1 / Proliferation Wang et al[40], 2020

miRNA-15a-3p Up Mouse NOX5 ROS Proliferation Xiong et al[41], 2020

miRNA-152-3p Up Mouse PTEN / Proliferation Xu et al[45], 2020

miRNA-133b Up Mouse EGFR / Proliferation Zhong et al[46], 
2021

miRNA-195-5p Up Rat VEGFA / Proliferation Liu et al[42], 2021

miRNA-205-5p Up Rat VEGFA / Proliferation Liu et al[42], 2021

miRNA-199a-
5p

Up Rat VEGFA, 
ROCK1

/ Proliferation Wang et al[49], 2022

Rat IL-8 AKT Regeneration Yuan et al[52], 2019miRNA-203 Up

/ p63 / Regeneration Liu et al[53], 2022

miR-489-3p Up Rat SIRT1 PI3K/AKT/eNOS Regeneration Huang et al[47], 
2022

miRNA-21-3p Down Mouse SPRY1 FGF Regeneration Wu et al[56], 2020

/ AKAP12 Wnt/β-catenin Regeneration Peng et al[57], 2022miRNA-146a Down

/ TLR4 NF-κB Inflammation Zhang et al[58], 
2022

HIF-1α: Hypoxia-inducible factor 1 α; VEGF: Vascular endothelial growth factor; SDF-1α: Stromal cell-derived factor-1α; IL: Interleukin; TNF: Tumor 
necrosis factor; FGF7: Fibroblast growth factor 7; TSP-1: Thrombospondin-1; NOX5: NADPH oxidase 5; ROS: Reactive oxygen species; PTEN: Phosphatase 
and tensin homolog; EGFR: Epidermal growth factor receptor; ROCK1: Rho-related kinase 1; SIRT1: Sirtuin 1; SPRY1: Sprouty homolog 1; AKAP12: A-
kinase-anchoring protein 12; TLR4: Toll-like receptor 4; NF-κB: Nuclear factor-kappaB; PI3K: Phosphoinositide 3-kinase; eNOS: Endothelial nitric oxide 
synthase.

LNCRNAS
LncRNAs are located in highly conserved genomic regions with spatially and temporally tightly 
regulated expression and dysregulated expression profiles as important markers of altered disease or 
developmental status. The main mechanism and function of lncRNAs are to act as competing 
endogenous RNAs (ceRNAs) for miRNAs, which interact with mRNA target base pairs to control 
various signaling pathways[59]. Another mechanism is by interacting with RNA-binding proteins[60]. 
Increasing evidence shows that lncRNAs play an important role in diabetic complications. LncRNA 
3632454L22RiK can promote corneal epithelial wound healing in diabetic mice by sponging miR-181a-
5p[61]. The regulatory role of lncRNA MIAT in diabetic cardiomyopathy has also been demonstrated
[62]. These findings indicate an increased awareness of lncRNAs in diabetic complications.

Inflammation
The mechanism of lncRNAs in the inflammatory phase lacks enough evidence. LncRNA growth arrest 
specific 5 (GAS5) has been identified as a tumor suppressor that inhibits cell proliferation and promotes 
apoptosis[63]. GAS5 expression was markedly elevated in DFU wounds[64]. GAS5 promotes the M1 
phenotypic polarization of macrophages through the upregulation of signal transducer and activator of 
transcription 1 (STAT1), leading to prolonged inflammatory phase and delayed wound remodeling and 
closure[64]. STAT1 signaling is exactly the central pathway that controls M1-M2 polarization in 
macrophages. Reduced GAS5 levels in wounds appear to promote healing by facilitating the conversion 
of M1 macrophages to M2 macrophages. Thus, targeting lncRNA GAS5 may contribute to efficient 
therapeutic interventions for impaired wound healing in diabetes.
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Proliferation
GAS5 regulates the inflammatory process of wound healing and plays a part in the proliferative phase. 
During the proliferative phase, GAS5 activates the HIF-1α/VEGF pathway by binding to TATA box-
binding protein associated factor 15, stimulating endothelial cell proliferation and angiogenesis and 
leading to accelerated DFU wound healing[65]. Metastasis-associated lung adenocarcinoma transcript 1 
(MALAT1) is a relatively well-studied transcript among lncRNAs. The role of MALAT1 has been 
reported in a variety of diseases, including renal tumors, osteosarcoma, and gestational diabetes[66-68]. 
MALAT1 protects endothelial cells from oxidative stress injury by activating the nuclear factor 
erythroid-2-related factor 2 (Nrf2) pathway. MALAT1 is markedly reduced in DFU-infected tissues, 
leading to insufficient HIF-1α/VEGF activation and impeding angiogenesis[69]. The exogenous uptake 
of exosome lnc01435 by vascular endothelial cells alters the subcellular localization of transcription 
factor yin yang 1 (YY1) and synergistically upregulates histone deacetylase (HDAC) 8 expression with 
YY1. HDACs are important components of the NOTCH signaling pathway with negatively regulated 
expression levels and thus affect endothelial cell function and angiogenesis[70,71]. In summary, 
targeting GAS5, MALAT1, and lnc01435 may help develop new therapeutic strategies to treat DFUs.

Regeneration
LncRNA H19, located on chromosome 11, exhibits negative regulation of diabetic wound healing. 
LncRNA H19 acts as a sponge for miR-29b and competitively represses miR-29b expression; therefore, it 
upregulates fibrillin 1 (FBN1), activates the transforming growth factor-β/Smad signaling pathway, and 
promotes ECM accumulation[72]. Connective tissue growth factor (CTGF) is a matricellular protein 
from the Cyr61/CTGF/Nov protein family, which interacts with ECM protein to mediate external 
signal transduction into cells through many subtypes of integrin receptors[73]. During the proliferative 
phase of diabetic wound healing, lncRNA H19 recruits the transcription factor SRF to the CTGF 
promoter region, activating CTGF and its downstream MAPK signaling pathway to accelerate fibroblast 
proliferation and wound healing[74]. These findings elaborate lncRNA H19 as a regulator in the 
regenerative phase of wound healing. A novel lncRNA MRAK052872, named lnc-upregulated in 
diabetic skin (URIDS), is involved in the mechanism of DFU wound healing. Lnc-URIDS is highly 
expressed in diabetic skin and dermal fibroblasts treated with advanced glycosylation end products. 
Lnc-URIDS binds to procollagen-lysine and 2-oxoglutarate 5-dioxygenase 1 (plod1), decreases plod1 
protein stability, and leads to dysregulated collagen deposition and delayed wound healing[27]. 
LncRNA cancer susceptibility candidate 2 (CASC2) was originally discovered in an endometrial cancer 
study and is located on human chromosome 10q26[75]. Furthermore, CASC2 overexpression inhibited 
fibroblast migration and proliferation, suppressed apoptosis, and facilitated wound healing, especially 
in DFU mice. By contrast, miR-155 overexpression inhibited the function of CASC2[75]. Another study 
showed that HIF-1α inhibition reversed the effects of miR-155 downregulation on fibroblasts[76]. 
Evidently, lncRNAs have a considerable regulatory role in cellular functions during re-epithelialization 
and remodeling.

The mechanisms by which lncRNAs cause DFU and delayed wound healing are atypical inflam-
matory responses, impaired angiogenesis, impaired and abnormal ECM accumulation, and epithelial 
processes that regulate wound healing. The lncRNAs in DFU and delayed wound healing are listed in 
Table 2. These findings provide new information for the clinical treatment of diabetic chronic non-
healing wounds.

CIRCRNAS
CircRNAs are a unique type of ncRNA derived from exons, introns, or intergenic regions that are 
covalently linked to produce a closed loop structure in the absence of 50 caps and 30 tails. CircRNAs are 
conserved among species owing to their resistance properties to RNase R. CircRNAs are involved in a 
wide range of biological processes, such as transcription and mRNA splicing, RNA decay, and RNA 
translation; the dysregulation of circRNAs leads to abnormal cellular functions and human diseases[77,
78]. CircRNAs can also act as a miRNA sponge to inhibit miRNA function, which plays a crucial role in 
the pathogenesis of diabetes and its vascular complications[79]. Circ-PNPT1 and has_circ_0046060 
promote the development of gestational DM by regulating trophoblast cell function or causing insulin 
resistance[80,81]. Circ-ITCH improved renal inflammation and fibrosis in diabetic mice by regulating 
the miR-33a-5p/SIRT6 axis[82]. CircRNAs are closely related to the development of diabetes and its 
complications. Studies on the role and mechanism of circRNAs in DFU and delayed wound healing are 
relatively few. Existing studies evaluated the regulatory role of circRNAs on angiogenesis and re-
epithelialization.

CircRNAs protein kinase, DNA-activated, catalytic subunit (circ_PRKDC, has-circ-0084443) is 
involved in the promotion of keratinocyte proliferation and the suppression of keratinocyte migration 
during wound healing[83]. Circ_PRKDC negatively regulates keratinocyte migration via the EGFR 
pathway, impeding re-epithelialization and angiogenesis[84]. However, circ_PRKDC knockdown 
promotes epidermal keratinocyte migration via the miR-31/FBN1 axis[83]. This finding shows that 
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Table 2 Long non-coding RNAs in diabetic foot and wound healing

Name Expression Sponge Animal Target gene Pathway Phase Ref.

/ Mouse STAT1 / Inflammation Hu et al[64], 2020GAS5 Up

/ Mouse TAF15 HIF-1α/VEGF Proliferation Peng et al[65], 2021

MALAT1 Down / / HIF-1α/Nrf2 Proliferation Jayasuriya et al
[69], 2020

Lnc01435 Up / Mouse YY1, HDACs Notch Proliferation Fu et al[70], 2022

Up miRNA-29b Mouse FBN1 TGF-β/Smad Regeneration Li et al[72], 2021H19

Up / Rat CTGF, SRF MAPK Regeneration Li et al[74], 2020

URIDS Up / Rat Plod1 VEGF/TGF-β Regeneration Hu et al[27], 2020

CASC2 Down miR-155 Mouse HIF-1α / Regeneration He et al[76], 2022

GAS5: Growth arrest specific 5; STAT1: Signal transducer and activator of transcription 1; TAF15: TATA box-binding protein associated factor 15; 
MALAT1: Metastasis-associated lung adenocarcinoma transcript 1; YY1: Yin yang 1; HDAC8: Histone deacetylase 8; FBN1: Fibrillin 1; CTGF: Connective 
tissue growth factor; SRF: Serum response factor; URIDS: Upregulated in diabetic skin; Plod1: Procollagen-lysine and 2-oxoglutarate 5-dioxygenase 1; 
CASC2: Cancer susceptibility candidate 2; HIF-1α: Hypoxia-inducible factor 1 α; VEGF: Vascular endothelial growth factor; TGF: Transforming growth 
factor; Nrf2: Nuclear factor erythroid 2-related factor 2.

circ_PRKDC has therapeutic potential for skin wound healing. Shang et al[85] evaluated the effect of 
circ-Klhl8 in epithelial progenitor cells (EPCs) on diabetic wound closure by establishing an in vivo 
mouse model of total skin defect and found that circ-Klhl8 overexpression increases the therapeutic 
effect of EPCs to promote diabetic wound healing by targeting the miR-212-3p/SIRT5 axis. Altered 
circRNA expression can affect disease progression and wound healing in DFU (Table 3). Studies on 
circRNAs in various stages of DFU and wound healing are few and prompted the need for further 
research on functional circRNAs in the future to identify limitations in DFU treatment.

NCRNAS IN CELL THERAPY
The standard treatment for DFUs includes optimizing blood flow, debridement, infection control, and 
offloading. In standard treatment, only 50% of patients heal within 20 wk and 50% relapse within 18 mo; 
thus, efficient treatment for DFUs are urgently needed[86]. Cell-based DFU therapy is a new treatment 
intervention therapy studied in the last few years. Stem cells can affect ulcer healing through various 
pathophysiological processes, such as stimulating tissue repair, increasing ECM synthesis, and 
promoting angiogenesis in ischemic tissues[87]. Soluble factors and extracellular vesicles secreted by 
stem cells are active factors in diabetic wound healing. Extracellular vesicles from mesenchymal stem 
cells (MSCs) are considered an alternative treatment for immune disorders, including diabetes. 
Emerging evidence suggests that MSC-derived exosomes applied to the wound surface can promote 
angiogenesis and tissue repair[88]. MSC regenerative therapy is a novel tissue regeneration modality 
that accelerates wound healing in DFU and identifies patients at high risk of amputation[89]. Adipose-
derived stem cells (ADSCs) have become an alternative to cell therapy owing to their abundance, 
subcutaneous location, easy accessibility, and longer culture time than bone marrow mesenchymal cells 
(BMSCs) and thus exert greater proliferation and differentiation capacity. Previous studies found that 
ADSC transplantation can promote foot wound healing in diabetic rats whereas stem cell 
transplantation may have clinical application in DFU treatment[90]. EPCs are the precursor cells of 
vascular endothelial cells that can be directed to the site of ischemic injury and form new vessels 
through proliferation and differentiation to promote wound healing[91]. Cell-derived exosomes loaded 
with ncRNAs have a therapeutic effect on refractory DFUs.

Gondaliya et al[51] revealed the therapeutic potential of miR-155 inhibitor-loaded MSC-derived 
exosomes in diabetic wound healing and demonstrated that wrapping miRNA and antibiotics in MSC-
derived exosomes improved the management of chronic, non-healing diabetic wounds. Studies found 
that miR-129 may promote diabetic wound healing by balancing ECM synthesis and degradation 
through the inhibition of Sp1-mediated matrix metalloproteinase 9 expression[26]. A recent study also 
showed that miR-129 loaded in MSC-derived extracellular vesicles promoted wound healing via the 
downregulation of tumor necrosis factor receptor-associated factor 6[92]. Evidently, miR-129 is an 
important regulator of the proliferative and regenerative phases of wound healing and may be a 
biologically active molecule in MSC for DFU treatment. Xu et al[93] showed that miR-221-3p in EPC-
derived exosomes accelerated skin wound healing in normal and diabetic mouse models. The latest 
study further demonstrated the mechanism of miR-221-3p in diabetic wound treatment[94]. MiR-221-3p 
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Table 3 Circular RNAs in diabetic foot and wound healing

Name Expression Sponge Animal Target gene Phase Ref.

Up / / EGFR Proliferation Wang et al[84], 2020Circ_PRKDC

Up miR-31 / FBN1 Proliferation Han et al[83], 2021

Circ_Klhl8 Down miR-212-3p Mouse SIRT5 Proliferation Shang et al[85], 2021

Circ_PRKDC: Circular RNA protein kinase, DNA-activated, catalytic subunit; SIRT5: Sirtuin 5; FBN1: Fibrillin 1; EGFR: Epidermal growth factor receptor.

overexpression may inhibit the anti-angiogenic function of its direct targeted homeodomain-interacting 
protein kinase 2 (HIPK2) and promote endothelial cell proliferation[94].

Li et al[95] showed that the MSC-derived exosomal lncRNA, lncRNA H19, causes fibroblast inflam-
mation and apoptosis by disrupting miR-152-3p-mediated PTEN inhibition, leading to a stimulated 
wound-healing process in DFU. MSCs have demonstrated a therapeutic effect in DFU by generating 
pro-angiogenesis factors, such as VEGF. Recent research shows that genetically modified MSCs have 
been used in therapy, and the depletion of miR-205-5p in human MSCs promotes VEGF-mediated 
therapeutic effects in DFU[96,97]. LncRNA MALAT1 is a ceRNA for miR205-5p but has a low 
expression in human MSCs. Ectopic MALAT1 expression in human MSCs considerably decreased miR-
205-5p levels, resulting in the upregulation of VEGF production and improved in vitro endothelial cell 
tube formation. In an immunodeficient NOD/SCID mouse model of diabetic foot (DF), the 
transplantation of human miR-205p-depleted MSCs resulted in better therapeutic effects on DF recovery 
than control MSCs. Moreover, MALAT1-expressing MSCs showed even better therapeutic effects on DF 
recovery than miR-205-5p-depleted MSCs. This difference in DF recovery was associated with the levels 
of on-site vascularization. Overall, MALAT1 functions as a sponge RNA for miR-205-5p to increase the 
therapeutic effects of MSCs on DF[97]. As mentioned above, miR-205-5p is an anti-angiogenic factor that 
inhibits VEGFA expression at the post-transcriptional level in MSCs, and the inhibition of its expression 
leads to angiogenesis and considerably improves the therapeutic effect of MSCs on diabetic wounds[97,
98]. BMSC-derived exosomes can encapsulate lncRNA Kruppel-like factor 3 antisense RNA 1 (KLF3-
AS1); adequately promote vascular endothelial cell proliferation, migration, and tube formation; and 
inhibit high glucose-induced apoptosis[99]. Diabetic wound healing by lncRNA KLF3-AS1 encapsulated 
by MSC-derived exosomes was achieved by downregulating miR-383 and upregulating its target, 
VEGFA[99].

High-throughput sequencing revealed an abnormally reduced expression of mmu_circ_0000250 in 
diabetic mice[100]. Exosomes from mmu_circ_0000250-modified ADSCs promote wound healing in 
diabetic mice through the induction of miR-128-3p/SIRT1-mediated autophagy[100]. In the study by Shi 
et al[100], the exosomes of ADSCs exerted therapeutic effects by restoring vascular endothelial cell 
function under high-glucose conditions. Circ-0000250 expression may increase the effectiveness of 
exosome therapy. Circ_ARHGAP12 is a cyclic molecule that inhibits high glucose-induced cell apoptosis 
by enhancing cellular autophagy[101]. Circ_ARHGAP12 was able to directly interact with miR-301b-3p 
and subsequently stimulate miRNAs to regulate the expression of ATG16L1 and ULK2, the target genes 
of miR-301b-3p, as well as downstream signaling pathways[101]. These findings propose a prospective 
therapeutic strategy of targeting circ_ARHGAP12 in MSCs to promote diabetic wound healing. Recent 
studies have found that circRNAs HIPK three (circHIPK3)-rich exosomes derived from human umbilical 
cord-derived MSCs have promising therapeutic effects in DFU. Exosomal circHIPK3 significantly 
promotes revascularization and wound healing by sponging to miR-20b-5p and upregulating the 
Nrf2/VEGFA axis[102]. Some ncRNAs for the cell therapy of DFU are shown in Table 4. NcRNAs and 
vector exosomes are effector molecules with great potential among the cellular therapeutic approaches 
for DFU and are expected to be of clinical use in the near future.

CONCLUSION
This study summarized the role and intrinsic mechanisms of ncRNAs in diabetic wound healing and 
provided more potential targets for future studies on wound healing in patients with diabetes. NcRNAs 
are regulatory molecules that modify many physiological processes and aspects of human diseases. The 
inflammation, proliferation, and regeneration phases of diabetic wound healing overlap, and ncRNAs 
are biologically active during all three phases. NcRNAs have a crucial role in the pathogenesis and 
impairment of wound healing in patients with diabetes. NcRNAs activate certain signaling pathways by 
downregulating or upregulating certain genes. Some of these molecules may provide valuable 
information in the clinical setting and serve as diagnostic or screening tools to predict high-risk DFUs 
and provide a basis for early prevention. These findings suggest that cell therapy using ncRNAs for 
DFU has great potential in the field of regenerative medicine.
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Table 4 Non-coding RNAs in cell therapy

Name Origin Expression Sponge Target gene Phase Ref.

miRNA-155 MSC Up / FGF7 Proliferation Moura et al[36], 2019; 
Gondaliya et al[51], 
2022

miR-129 MSC Down / TRAF6 Proliferation Hu et al[92], 2022

miRNA-221-3p EPC Down / HIPK2 Proliferation Yu et al[94], 2022

LncRNA H19 MSC Up miRNA-152-3P PTEN Proliferation Li et al[95], 2020

MALAT1 MSC Down miR-205-5p VEGF Proliferation Zhu et al[97], 2019

Lnc KLF3-AS1 BMSC Down miR-383 VEGFA Proliferation Han et al[99], 2022

Circ_0000250 ADSC Down miR-128-3p SIRT1 Proliferation Shi et al[100], 2020

Circ_ARHGAP12 MSC Down miR-301b-3p ATG16L1, ULK2 Proliferation Meng et al[101], 2022

Circ HIPK3 MSC Down miR-20b-3p Nrf2/VEGFA Proliferation Liang et al[102], 2022

MSC: Mesenchymal stem cells; FGF7: Fibroblast growth factor 7; TRAF6: Tumor necrosis factor receptor-associated factor 6; EPC: Epithelial progenitor 
cells; HIPK2: Homeodomain-interacting protein kinase 2; PTEN: Phosphatase and tensin homolog; SIRT1: Sirtuin 1; VEGF: Vascular endothelial growth 
factor; Lnc KLF3-AS1: LncRNA Kruppel-like factor 3 antisense RNA 1; BMSC: Bone marrow mesenchymal cells; ADSC: Adipose-derived stem cells; Circ 
HIPK3: Circular RNA homeodomain-interacting protein kinase three; Nrf2: Nuclear factor erythroid 2-related factor 2; MALAT1: Metastasis-associated 
lung adenocarcinoma transcript 1; Lnc: Long non-coding; miRNA: Micro RNA.
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