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Abstract
Colorectal cancer (CRC) is the third most diagnosed malignancy and a major 
leading cause of cancer-related deaths worldwide. Despite advances in therapeu-
tic regimens, the number of patients presenting with metastatic CRC (mCRC) is 
increasing due to resistance to therapy, conferred by a small population of cancer 
cells, known as cancer stem cells. Targeted therapies have been highly successful 
in prolonging the overall survival of patients with mCRC. Agents are being 
developed to target key molecules involved in drug-resistance and metastasis of 
CRC, and these include vascular endothelial growth factor, epidermal growth 
factor receptor, human epidermal growth factor receptor-2, mitogen-activated 
extracellular signal-regulated kinase, in addition to immune checkpoints. 
Currently, there are several ongoing clinical trials of newly developed targeted 
agents, which have shown considerable clinical efficacy and have improved the 
prognosis of patients who do not benefit from conventional chemotherapy. In this 
review, we highlight recent developments in the use of existing and novel 
targeted agents against drug-resistant CRC and mCRC. Furthermore, we discuss 
limitations and challenges associated with targeted therapy and strategies to 
combat intrinsic and acquired resistance to these therapies, in addition to the 
importance of implementing better preclinical models and the application of 
personalized therapy based on predictive biomarkers for treatment selection.

Key Words: Colorectal cancer; Metastatic colorectal cancer; Targeted therapy; Drug-
resistance; Personalized medicine
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Core Tip: Efforts in cancer research has yielded significant advances in our understanding of the molecular 
mechanisms underlying colorectal cancer (CRC) resistance and metastasis. Therapeutic strategies centered 
on targeted molecules involved in CRC progression have been shown to be highly promising in 
overcoming resistance to conventional treatments. Targeted agents are currently being evaluated in 
preclinical and clinical studies to identify novel pharmacological targets and to study the efficacy of 
personalized medicine-based approaches.

Citation: Al Bitar S, El-Sabban M, Doughan S, Abou-Kheir W. Molecular mechanisms targeting drug-resistance 
and metastasis in colorectal cancer: Updates and beyond. World J Gastroenterol 2023; 29(9): 1395-1426
URL: https://www.wjgnet.com/1007-9327/full/v29/i9/1395.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i9.1395

INTRODUCTION
Colorectal cancer (CRC) is among the most prevalent malignancies in the world and the third most 
frequent cause of cancer-related death in the US and Europe[1,2]. Estimates from the American Cancer 
Society indicate that over 100000 new cases of CRC will be diagnosed in 2022 in the US and 53000 deaths 
will result from CRC in the same year. In addition to the increased incidence of CRC, the number of 
patients presenting with advanced, metastatic CRC (mCRC) is increasing[3]. In fact, it has been 
estimated that 25% of CRC patients have mCRC at the time of diagnosis and 50% of patients 
subsequently develop mCRC[4].

Lifestyle factors are thought to be a major factor in the increased incidence of CRC, and they include 
unhealthy diet, lack of physical activity, smoking, and alcohol consumption[3]. Other factors include 
heredity and family history which contribute to 30% of cases and genetic mutations and variations 
which contribute to 10% of cases[3]. It is important for health care providers and individuals to 
understand the causes and risk factors of CRC, in addition to the prevention strategies that could reduce 
the incidence. Screening can reduce CRC incidence and death through early detection and treatment of 
disease[3]. Colonoscopy is the standard screening method for CRC[5]. Other imaging-based tests are 
also available and include computed tomography colonography, colon capsule, and flexible 
sigmoidoscopy. In addition, screening modalities include stool-based tests, such as fecal immuno-
chemical testing and the multitarget stool DNA test[5].

Conventional therapy for CRC includes surgery, chemotherapy, and radiotherapy[6]. 5-fluorouracil 
(5-FU) is the standard treatment for mCRC. It is now being combined with other chemotherapeutic 
drugs to improve patient survival. 5-FU, leucovorin, and irinotecan (FOLFIRI), 5-FU, leucovorin, 
oxaliplatin, and irinotecan, and 5-FU, oxaliplatin, and leucovorin (FOLFOX4) have been used as 
multidrug chemotherapy regimens. Although these treatment strategies have improved overall survival 
(OS), intrinsic and acquired resistance has been a major limitation in the effectiveness of these 
treatments in 90% of patients with mCRC[6]. Innate resistance is usually noted during early treatment or 
in early clinical trials. Acquired resistance may occur through different molecular mechanisms, and is 
specific to each therapy; however, acquired resistance to one drug sometimes results in resistance to 
other drugs with the same or different mechanism of action. This is known as multidrug resistance and 
is responsible for multiple cross-resistance towards different drugs[7].

Chemotherapy targets rapidly dividing cells by blocking DNA replication or tubulin assembly, and 
thus is not specific to cancer cells and is associated with toxicity to healthy tissues[8]. In the last 15 years, 
major attempts have been made to develop targeted or biological therapies that kill cancer cells by 
targeting specific pathways implicated in tumor growth. Targeted therapies against cancer cells include 
mainly monoclonal antibodies (mAbs) that bind membrane growth factor receptors or their ligands, and 
small molecules that cross the cell membrane and inhibit cell growth and survival[9].

With the development and advancement of next generation sequencing (NGS) and omics techno-
logies[10], it has been possible to determine molecular mechanisms underlying resistance and to 
develop new strategies to overcome this resistance. Over the past decade, new discoveries in the field of 
CRC led to the introduction of targeted therapies in clinical practice, which resulted in significant 
therapeutic efficacy and prolonged survival. New drugs whose action is directed at specific pathways 
implicated in CRC pathogenesis, including the epidermal growth factor receptor (EGFR) pathway, have 
been tested in preclinical models and in clinical trials. Yet, the best combination of standard 
chemotherapy and targeted therapy for the first-line treatment of mCRC has been debated for several 
years.

Understanding the mechanisms of acquired drug resistance to targeted therapies is critical for the 
development of novel and effective treatment combinations and will help guide future therapies. In this 
article, we review mechanisms of resistance to conventional therapy, we discuss the efficacy of novel 
targeted therapies against drug-resistant and mCRC and challenges associated with them, in addition to 

https://www.wjgnet.com/1007-9327/full/v29/i9/1395.htm
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strategies to overcome resistance to targeted therapy. We conclude by highlighting lessons learned from 
molecular studies and their clinical relevance, as well as the importance of employing novel preclinical 
models to facilitate the development of effective targeted therapy.

RESISTANCE TO THERAPY
Resistance to conventional treatment is one of the most challenging problems in cancer therapy, 
resulting in poor prognosis, recurrence, and metastasis. It is attributed to several intrinsic and acquired 
factors in tumor cells and in the microenvironment they reside in.

Cancer stem cells
CRC treatment requires surgical intervention, which is accompanied by the application of 
chemotherapy or radiotherapy, before or after surgery, as neoadjuvant or adjuvant treatment to ensure 
maximum reduction of tumor size[11]. These treatments are effective against cancer cells but spare the 
more resistant cancer stem cells (CSCs). Mechanisms of resistance are still unclear, but several factors 
are known to contribute to it. For example, CSCs are quiescent and do not enter the cell cycle, therefore 
they are not targeted by conventional therapy that kills highly proliferating cells[12]. Different 
molecular mechanisms are involved in CRC drug-resistance[13], as shown in Figure 1, and are 
summarized in this paper.

CSCs express high levels of ATP-binding cassette (ABC) transporters that mediate drug efflux and 
resistance to chemotherapy[14,15]. The first identified ABC member is ABCB1 or P-glycoprotein, which 
is expressed in normal intestinal cells. The overexpression of ABCB1 has been reported in preclinical 
and clinical studies of CRC and is associated with resistance to chemotherapy[16,17]. First-, second-, and 
third-generation inhibitors have been designed against ABCB1 and have been shown to have high 
affinity; however, their effectiveness is limited and needs further improvement[18]. Other ABC 
members include ABCC6, ABCC11, ABCF1, and ABCF2 and their upregulation has been documented in 
CRC tumor tissues[19], suggesting that these transporters may serve as potential targets for reversing 
drug-resistance in CRC.

The anti-cancer effect of chemotherapeutic drugs can be reduced by impaired drug metabolism. 
Capecitabine is a chemotherapeutic agent used for the treatment of mCRC. Upon administration, it is 
converted into 5-FU by thymidine phosphorylase (TP)[20]. It has been shown that methylation of the 
gene encoding TP inhibits its translation and results in resistance to capecitabine[20]. 5-FU acts by 
inhibiting thymidylate synthase and incorporating its metabolites into DNA and RNA[21]. Several 
enzymes, such as orotate phosphoribosyl-transferase and uridine monophosphate synthetase, mediate 
the conversion of 5-FU into its active metabolites[22]. Interestingly, lower expression of these enzymes is 
associated with resistance to 5-FU in CRC[23]. Additionally, TP converts 5-FU into 5-fluoro-2’ 
deoxyuridine and it has been shown to predict good response to 5-FU treatment and is associated with 
higher progression-free survival (PFS) in patients with high expression of TP[24]. Another enzyme that 
has been reported to affect response to chemotherapy is carboxylesterase 2. This metabolic enzyme 
plays a major role in the activation of irinotecan and its high expression and activity improves the 
efficacy of irinotecan[25]. On the other hand, uridine diphosphate glucuronosyltransferase 1A1 and β-
glucuronidase inactivate irinotecan, and their alteration results in reduced irinotecan activity, 
suggesting that targeting these enzymes may reverse resistance to irinotecan[26,27]. Similarly, 
dihydropyrimidine dehydrogenase is a metabolic enzyme that mediates the catabolism of 5-FU to its 
inactive metabolite, and its high expression has been associated with resistance to 5-FU in CRC[28,29].

In cancers, including CRC, the DNA damage response (DDR) is activated and aberrant. This damage 
response consists of several kinase-dependent signaling pathways and is important for maintaining 
genome integrity and stability. Damage sensing is usually mediated by DDR sensors, followed by 
transduction of damage signals to DDR mediators and downstream molecules, leading to either cell 
cycle arrest, DNA damage repair, or apoptosis[30]. Ataxia telangiectasia mutated and ATM and Rad3-
related protein, members of the phosphatidyl-inositol 3-kinase (PI3K) like family of protein kinases, are 
the main regulators of DDR. They interact with p53 and checkpoint pathways that regulate Cdc25[31]. 
Several mechanisms attribute to resistance of CSCs to DNA damage and include cell cycle checkpoint 
alteration and activation of an efficient scavenging system that protects against reactive oxygen species 
(ROS), which are induced by therapy[32]. Three main pathways that contribute to CRC development are 
unsensed or repaired by the aberrant DDR. These pathways are chromosomal instability (CIN), CpG 
island hypermethylation phenotype, and microsatellite instability (MSI) pathways. CIN is common in 
80% of CRC cases while MSI results from inactivation of mismatch repair genes (MMR) and is common 
in sporadic CRC[33]. Notably, DNA repair induced by oxaliplatin is mainly mediated by the nucleotide 
excision repair pathway[34]. The upregulation of excision repair cross-complementing 1 has been linked 
to oxaliplatin resistance in CRC[34] and its mRNA expression level is a predictive marker of survival in 
patients treated with 5-FU and oxaliplatin[35]. These results suggest that the expression levels of DNA 
repair proteins may serve as treatment response biomarkers, and the reduction of their expression can 
enhance the effect of DNA-damaging agents, leading to eradication of resistant CSCs.
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Figure 1 Major mechanisms of cancer stem cell resistance. Cancer stem cell (CSC) resistance has been associated with CSC characteristics including 
quiescence, upregulation of ATP-binding cassette transporters, altered drug metabolism, enhanced DNA damage response, and activation of pro survival pathways. 
The tumor microenvironment (TME) plays a major role in the resistance of CSCs to therapy. CD8 T cells, tumor associated macrophages, and cancer associated 
fibroblasts (CAFs) are major components of the TME and contribute to tumor progression and metastasis through the secretion of cytokines, growth factors, and 
angiogenic factors. Additionally, gut microbiota, such as Fusobacterium nucleatum and Enterobacter secrete inflammatory molecules that modulate the TME and 
contribute to therapy resistance. All of these mechanisms contribute to tumor invasion, angiogenesis, epithelial-to-mesenchymal transition, immunosuppression, drug 
resistance and survival following treatment. TAMs: Tumor associated macrophages; CAFs: Cancer associated fibroblasts; EMT: Epithelial-to-mesenchymal transition.

Intrinsic and acquired resistance to apoptosis is one of the characteristics of CSCs. Apoptosis is 
regulated by a balance between pro-apoptotic, anti-apoptotic, and pro-survival mechanisms[36], which 
is frequently altered in cancer, including CRC[34,37]. p53 plays a key role in the induction of apoptosis 
in response to DNA damage by chemotherapy[34]. However, p53 is mutated in 85% of CRC cases and is 
linked to resistance to 5-FU and oxaliplatin[38].  In addition, the expression of high levels of anti-
apoptotic proteins, including Bcl-2 family members, is a characteristic of CSCs and results in resistance 
to cell death by apoptosis[39]. Frameshift mutations in the BAX gene result in the loss of expression and 
activity of the anti-apoptotic protein BAX, leading to chemoresistance[34]. Other anti-apoptotic proteins 
that are implicated in chemoresistance include Bcl-XL and the FLICE-inhibitory protein[40].

Moreover, several pro survival signaling pathways are activated in CRC. One major pathway is the 
Wnt/β-catenin pathway, which is important for stemness and resistance. Binding of Wnt ligand to the 
Frizzled receptor results in activation of β catenin, a key effector in this pathway[41]. Activation of the 
Wnt pathway induces proliferation and differentiation of CSCs, which is partly mediated by activation 
of several molecules that are recognized as putative CSC markers and include Lgr5, CD44, CD133, and 
Epcam[42]. All of these markers are associated with CSC resistance to chemo- and radiotherapy. Other 
pathways that are involved in stemness include the Notch and Hedgehog pathways[42].

Tumor microenvironment
CRC resistance has been also linked to the tumor microenvironment (TME) that is also involved in the 
multistep process that encompasses the development of adenomatous polyps from normal colonic 
epithelium, finally leading to invasive CRC[43,44]. The TME consists mainly of immune cells, 
endothelial cells, stromal cells, extracellular matrix (ECM), and signaling molecules[45]. Solid tumors, 
including CRC are infiltrated by different cells, such as dendritic cells, monocytes, neutrophils, CD8 and 
CD4 T cells, cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and 
mesenchymal stem cells. During tumor formation, interactions between tumor and stromal cells and 
secretion of soluble inflammatory molecules mediate the attraction of immune cells that promote tumor 
cell survival and metastasis[45,46]. The most important tumor-promoting cells are TAMs and CAFs. 
These cells facilitate tumor progression through direct contact with other cells or through secretion of 
cytokines, growth factors, and angiogenic factors, thereby promoting ECM formation, tumor invasion, 
angiogenesis, epithelial-to-mesenchymal transition (EMT), and immunosuppression[43,45].

Gut microbiota
Strong evidence is emerging to support the role of gut microbiota in the progression and resistance of 
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CRC and interventions made in this regard may hold promises for improving CRC treatment[47]. 
Fusobacterium nucleatum has been shown to contribute to CRC chemoresistance through activation of 
innate immune signals that stimulate the autophagy pathway[48]. The use of antibiotics can increase 
pathogenic bacteria such as Enterobacter and has been shown to reduce the anti-cancer effect of 
oxaliplatin through modulation of cytokine secretion and ROS production in the TME[49]. On the other 
hand, the effect of immunotherapy has been shown to be enhanced by intestinal microbiota, such as 
Faecalibacterium, Clostridiales, and Bifidobacterium spp[50,51]. The exact mechanism of action is still 
unclear but has been attributed to direct interactions between these bacteria and immune cells[52], in 
addition to a possible role for microbial metabolites, such as butyrate and propionate[53].

TARGETED THERAPY
Targeted agents can directly inhibit the proliferation and migration of cancer cells (Figure 2). They could 
also target the TME, thereby limiting tumor growth and enhancing immune surveillance. Small 
molecules play a major role in such treatments, as they can penetrate cells to selectively inactivate 
specific enzymes involved in tumor proliferation induction and apoptosis inhibition[54].

Targeting EGFR
EGFR belongs to the ErbB family of receptor tyrosine kinases and is involved in cellular proliferation, 
survival, migration, adhesion, and angiogenesis[55,56]. 80% of CRCs express or upregulate the EGFR 
gene[57,58], and this expression is associated with a risk of metastasis[59], therefore inhibiting EGFR 
could be a possible strategy to reduce cellular proliferation.

EGFR activation can be blocked by mAbs or tyrosine kinase inhibitors (TKIs). EGFR mAbs include 
cetuximab and panitumumab, which are currently used in parallel with FOLFOX or FOLFIRI regimens 
in the treatment of patients with KRAS or NRAS wild-type (WT) tumors[60]. In RAS-mutant tumors, 
constitutive activation of signaling pathways downstream of EGFR limits the effectiveness of EGFR 
inhibitors[61].

Cetuximab is a chimeric murine human IgG1 mAb that binds to the extracellular domain of EGFR 
and inhibits its pro-oncogenic action in cancer cells[62,63] (Table 1 and Figure 2). It also binds to natural 
killer cells and induces antibody-dependent cell-mediated cytotoxicity[62]. In a study that involved 
patients with advanced CRC after treatment with irinotecan, treatment with cetuximab alone or in 
combination with irinotecan showed significant clinical activity, with an enhanced rate of response and 
median survival time in the combination groups[64]. Combining cetuximab with FOLFIRI reduced the 
risk of progression of mCRC by 15% in first-line treatment of patients with KRAS WT tumors, when 
compared to FOLFIRI alone[65]. Complete or partial tumor responses were observed in 46.9% of 
patients treated with combination therapy and in 38.7% of patients treated with FOLFIRI alone[65]. 
Another treatment regimen that was tested in the first-line treatment of mCRC included FOLFOX4 and 
cetuximab[66]. Results from this randomized study showed an increased chance of response and lower 
risk of disease progression in the combination-treated group when compared to FOLFOX4 alone in 
KRAS WT patients[66]. A more recent randomized phase 3 Medical Research Council COIN trial 
showed that adding cetuximab to oxaliplatin-based chemotherapy increased the response rate in 
patients with advanced CRC; yet no enhancement of PFS or OS was shown[67].

Similar to cetuximab, treatment with panitumumab alone or in combination with standard 
chemotherapy has shown promising results in several clinical trials[60,68]. Panitumumab monotherapy 
was effective in CRC patients with KRAS WT tumors, with a response rate of 17%[69]. In an open-label 
phase III trial that involved patients with chemotherapy-refractory mCRC, panitumumab plus best 
supportive care (BSC) significantly prolonged PFS when compared to BSC alone. Response rates were 
10% for panitumumab and 0% for BSC, with no difference observed in OS[70]. Several clinical trials 
were conducted to compare the efficacy of panitumumab and FOLFOX4 in comparison to FOLFOX4 
alone[60,68]. Results from a phase III trial showed that combination treatment significantly improved 
PFS whereas the increase in OS was insignificant when compared to FOLFOX4 alone in KRAS WT 
tumors[60]. Except for the toxicities that are usually associated with EGFR inhibitors, adverse event 
rates were comparable between these treatments[60]. The very recent PARLIM trial showed that PFS 
and OS were improved upon the addition of panitumumab to FOLFOX in KRAS WT CRC patients with 
R0/1-resected liver metastases. Importantly, no new adverse events were observed in the combination-
treated group[71].

The most common side effects observed in trials of these EGFR mAbs were skin toxicity, abdominal 
pain, nausea, diarrhea, infusion reactions, fatigue, and hypomagnesemia. Rare adverse events included 
pulmonary fibrosis, sepsis, severe skin toxicity, and anaphylaxis[72].

EGFR TKIs are small molecules derived from quinazolines that block the tyrosine kinase domain of 
different receptors, including EGFR. Erlotinib is specific to EGFR alone and is used to block ligand-
induced EGFR receptor phosphorylation[73]. Gefitinib is another EGFR TKI that has a similar 
mechanism of action to erlotinib, but also targets other pathways, such as the extracellular signal-related 
kinases 1/2 (ERK1/2) pathway in mesothelioma cell lines[73].
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Table 1 Agents targeting epidermal growth factor receptors and downstream molecules under clinical investigation for the treatment of 
drug-resistant and metastatic colorectal cancer

Agent Targeted molecule Condition Study phase Clinical trial 
identifier

Erlotinib EGFR First-line treatment for mCRC Phase III NCT01229813

Futuximab/Modotuximab (Sym-
004)

EGFR mCRC Phase II NCT02083653

Gefitinib EGFR Refractory CRC Phase I/II NCT00242788

Refractory mCRC Phase II NCT01919879

Advanced CRC Phase II NCT00801294

Afatinib EGFR

mCRC Phase II NCT01152437

mCRC Phase II NCT03668431Dabrafenib (GSK2118436) BRAF

mCRC Phase II NCT03428126

BMS-908662 BRAF K-RAS/BRAF-mutated CRC Phase I/II NCT01086267

Encorafenib Wild-type and BRAF 
V600E

Previously untreated BRAF-mutant mCRC Phase II NCT03693170

Vemurafenib Mutated BRAF V600E BRAF V600E mutated advanced CRC Phase II NCT03727763

PX-866 PI3K mCRC Phase I/II NCT01252628

KRAS/NRAS-wild-type mCRC Phase II NCT01925274Gedatolisib PI3K/mTOR

mCRC Phase I/II NCT01937715

KRAS-mutated mCRC Phase II NCT00827684Temsirolimus CCI-770 mTOR

Cetuximab-refractory CRC Phase I NCT00593060

mCRC Phase II NCT01387880

mCRC Phase I/II NCT01058655

Advanced mCRC Phase I/II NCT01139138

Everolimus (RAD001) mTOR

Refractory mCRC Phase I NCT01154335

MK-2206 AKT Advanced CRC Phase II NCT01333475

Napabucasin (BBI608) STAT3 Previously treated mCRC Phase III NCT03522649

Cobimetinib MAPK mCRC Phase III NCT02788279

Selumetinib MEK mCRC Phase II NCT00514761

Binimetinib MEK Previously untreated BRAF-mutant mCRC Phase II NCT03693170

Neratinib EGFR/HER2/4 KRAS/NRAS/BRAF/PIK3CA-wild-type 
mCRC

Phase II NCT03457896

Sapitinib (AZD-8931) EGFR/HER2/3 mCRC Phase II NCT01862003

Duligotuzumab (MEHD7945A) EGFR/HER3 KRAS-mutated mCRC Phase II NCT01652482

Trastuzumab HER2 First-line HER2-positive mCRC Phase III NCT05253651

Tucatinib HER2 First-line HER2-positive mCRC Phase III NCT05253651

HER2-positive advanced CRC Phase II NCT05493683Disitamab Vedotin HER2

HER2-expressing mCRC Phase II NCT05333809

Trastuzumab-emtansine HER2 HER2-positive mCRC progressing after 
trastuzumab and lapatinib

Phase II NCT03418558

EGFR: Epidermal growth factor receptor; mCRC: Metastatic colorectal cancer; PI3K: Phosphoinositide 3-kinases; mTOR: Mammalian target of rapamycin; 
STAT3: Signal transducer and activator of transcription 3; AKT: Protein kinase B; MAPK: Mitogen-activated protein kinases; MEK: Mitogen-activated 
extracellular signal-regulated kinase; HER2: Human epidermal growth factor receptor 2.
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Figure 2 Targeted therapies under investigation for the treatment of drug-resistant and metastatic colorectal cancer. Anti-epidermal growth factor receptor, anti-vascular endothelial growth factor/vascular endothelial growth factor 
receptor, and anti-human epidermal growth factor receptor 2 agents inhibit their respective targets and thus, the downstream effector pathways, PI3K/Akt and RAS/RAF. Other agents directly target and inhibit PI3K, AKT, mammalian target of rapamycin, 
RAF, mitogen-activated extracellular signal-regulated kinase, or mitogen-activated protein kinases. In addition, anti-hepatocyte growth factor/mesenchymal epithelial transition factor receptor agents target this pathway to inhibit signal transducer and 
activator of transcription, which is also targeted by Napabucasin. Several novel agents that are aimed at other pathways implicated in colorectal cancer proliferation, survival, resistance, and metastasis are also being evaluated. Targeted pathways 
include Wnt, Notch, Hedgehog, insulin growth factor/insulin growth factor receptor-1, and transforming growth factor beta. Moreover, immune escape can be hindered through immunotherapy which targets co-inhibitory molecules, mainly programmed 



Al Bitar S et al. Treating mCRC using targeted agents

WJG https://www.wjgnet.com 1402 March 7, 2023 Volume 29 Issue 9

death-1/programmed death ligand-1, cytotoxic T lymphocyte-associated antigen 4, and lymphocyte activation gene 3. EFGR: Epidermal growth factor receptor; VEGF: Vascular endothelial growth factor; VEGFR: Vascular endothelial growth factor 
receptor; HER2: Human epidermal growth factor receptor 2; mTOR: Mammalian target of rapamycin; MEK: Mitogen-activated extracellular signal-regulated kinase; MAPK: Mitogen-activated protein kinases; HGF: Hepatocyte growth factor; MET: 
Mesenchymal epithelial transition factor receptor; STAT3: Signal transducer and activator of transcription; CRC: Colorectal cancer; IGF: Insulin growth factor; IGF-1R: Insulin growth factor receptor-1; TGF-β: Transforming growth factor beta; PD-1: 
Programmed death-1; PD-L1: Programmed death ligand-1; CTLA-4: Cytotoxic T lymphocyte-associated antigen 4; LAG-3: Lymphocyte activation gene 3; EGF: Epidermal growth factor; TGFβRI/II: Transforming growth factor-Beta type I/II.

It is important to note that studies investigating the efficacy of EGFR targeted therapy vary widely in 
clinical context, and some focus on the effect of EGFR monotherapy while others compare it to a 
combination of various chemotherapy regimens. One important factor to be taken into consideration is 
KRAS status, which could be used as a biomarker to predict the effectiveness of a treatment. Several 
inhibitors targeting EGFR or downstream molecules are currently under clinical investigation and are 
summarized in Table 1.

Targeting HER
Human EGFR 2 (HER2) is emerging as a key driver in CRC. It acts similar to EGFR, as they both share 
common downstream pathways, such as RAS/RAF/MEK and PI3K/AKT, which explains the link 
between HER2 overexpression and resistance to EGFR inhibitors[74,75]. The HER2/neu oncogene 
encodes a receptor with intrinsic tyrosine kinase activity[76]. HER2 lacks an endogenous ligand unlike 
other members of the HER/EGFR/ERBB system[77]. Homodimerization or heterodimerization with 
other EGFR family receptors, HER3 and EGFR, results in transphosphorylation of tyrosine residues 
within the cytoplasmic domain of HER2, thus leading to its activation[77,78]. HER2-HER3 heterodimers 
activate the PI3K/AKT pathway which is implicated in cancer cell growth and survival[79].

Different rates of HER2 amplification have been reported in CRC[80-82], with rates of membranous 
expression ranging from 2.1% to 11%[80,83,84], and that of cytoplasmic expression  ranging from 47.4 to 
68.5%[80,85,86]. Several factors may account for this variability, including small sample size, different 
antibodies used for immunohistochemistry (IHC), and analysis of different subgroups of patients with 
multiple clinical characteristics[87]. The efficacy of targeted agents against HER2-expressing CRC was 
determined in several clinical trials. Ramanathan et al[88] reported the detection of HER2/neu overex-
pression in only 8% of screened tumors in patients with advanced CRC and this low overexpression rate 
limited the study of irinotecan and trastuzumab, a humanized mAb targeting the HER2/neu receptor, 
in a phase II clinical study. Yet, partial response was observed in some patients, and the response was 
maintained for approximately six wk[88]. In a proof-of-concept study that exploited patient-derived 
xenografts (PDX), HER2 was identified as an effective therapeutic target in cetuximab-resistant mCRC
[89]. HER2 amplification was detected in clinically unresponsive KRAS WT patients, and the 
combination of lapatinib (a dual EGFR/HER2 TKI) and pertuzumab induced an increase in response 
rate and tumor regression, in agreement with clinical studies in patients with similar clinicopathological 
characteristics[89]. The synergic antiproliferative effect of HER2 and EGFR blockade was also 
demonstrated in cetuximab-resistant CRC cell lines[74,90]. Interestingly, HER2 activating mutations 
were identified in CRC PDX and were shown to be highly sensitive to HER2/EGFR TKIs neratinib and 
afatinib and resulted in tumor regression when subjected to dual HER2 targeted therapy with 
trastuzumab plus TKIs[91]. It was also reported that these mutations cause oncogenic transformation of 
colon epithelial cells and resistance to anti-EGFR monotherapy[91]. Various clinical trials targeting 
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HER2 alterations in combination with chemotherapeutic therapies in patients with mCRC have 
validated findings from preclinical studies. High toxicity[92] and poor accrual[88,93] were the reasons 
behind halting earlier clinical studies evaluating the addition of HER2 mAbs (trastuzumab or 
pertuzumab) to cetuximab or chemotherapy (i.e., irinotecan, 5-FU, and oxaliplatin).  In a phase I trial 
involving patients with HER2-positive refractory tumors, none of the CRC patients responded to the 
combination of trastuzumab, paclitaxel, and interleukin (IL)-12[94]. More recently, a study that followed 
the stringent HERACLES criteria reported that the combination of trastuzumab and lapatinib achieved 
an objective response rate of 30% and was well tolerated in KRAS codon 12/13 WT, HER2-positive 
mCRC patients[95]. Within the same project, HERACLES-B phase II trial assessed the efficacy of 
pertuzumab and trastuzumab emtansine; however, it did not reach its primary endpoint of response 
rate. Yet, this combination can be considered a potential therapeutic strategy for HER2-positive mCRC, 
based on the high disease control achieved, in addition to the enhanced PFS and low toxicity[96]. The 
MyPathway trial assessed the combination of pertuzumab and trastuzumab in pretreated HER2-
amplified mCRC patients and further supported the efficacy of the dual blockage of HER2[97,98]. 
Several agents targeting HER and EGFR are currently under clinical investigation (Table 1).

Targeting VEGF
Angiogenesis is the formation of new blood vessels from endothelial cells. It is mediated by vascular 
endothelial growth factor (VEGF), together with platelet-derived growth factor (PDGF) and fibroblast 
growth factor (FGF)[99]. Angiogenesis plays an important role in tumor initiation, growth, and 
metastasis. The VEGF system consists of six ligands and three receptors known as VEGF receptors 
(VEGFR). VEGF-A is secreted by multiple cell types, including cancer cells, and plays a major role in 
survival, growth, differentiation, and migration of endothelial cells[100]. VEGF-A mediates its effect by 
binding to VEGFR2, which is the major signal transducer of angiogenesis and is expressed by 
endothelial cells. On the other hand, VEGFR1 is a strong VEGF inhibitor[101]. Hypoxia is a key 
regulator of angiogenesis in cancer through hypoxia-inducible factors, which induce transcription of 
several genes, including VEGF-A[102].

VEGF levels and VEGFR activity are elevated in patients with CRC and are associated with poor 
prognosis[103]. The activation of this system is important both in local sites to support tumor 
progression and in metastatic sites to support neovascularization and tumor survival; therefore, a 
targeted therapy against VEGF/VEGFR might be developed at all stages of tumor progression and 
metastasis. Like EGFR, targeted therapy against angiogenesis consists of mAbs and TKIs. mAbs bind to 
VEGF-A or block the extracellular domain of its receptor. mAbs that bind VEGF-A include bevacizumab 
and aflibercept, thereby preventing activation of their receptors. Ramucirumab binds to the VEGFR2 
extracellular domain, inhibiting the binding of VEGF ligands, thereby inhibiting receptor activation
[104].

Bevacizumab as a monotherapy has a limited effect and is therefore used in combination with 
chemotherapy in first- and later-lines of mCRC treatment[105]. It is the first Food And Drug Adminis-
tration (FDA)-approved VEGF-targeted agent for mCRC[105]. The first randomized clinical trial showed 
that bevacizumab improves response rate, PFS, and OS, thereby enhancing chemotherapy efficacy[106]. 
Combining bevacizumab (5 mg per kg of body weight every two wk) with irinotecan, 5-FU, and 
leucovorin (IFL) enhanced median duration of survival and PFS, as compared to IFL treatment alone, 
corresponding to a hazard ratio for death of 0.66 and for disease progression of 0.54, respectively[106]. 
The results also showed that median duration of the response to combination treatment was 10.4 mo as 
compared to 7.1 mo in the group treated with IFL and placebo[106]. A major adverse event was grade 3 
hypertension which was more common in the group treated with IFL and bevacizumab but was easily 
managed. More recent trials showed that modern combination regimens were better substitutes for IFL; 
however, the efficacy of combining bevacizumab with first-line treatment of mCRC has been contro-
versial. Several recent clinical trials demonstrated the promising efficiency of combining bevacizumab 
with trifluridine/tipiracil, which is usually better tolerated than capecitabine, especially in elderly 
patients with mCRC[107-109]. Notably, promising results were reported in the phase II TASCO study 
that assessed the effectiveness of combining bevacizumab with trifluridine/tipiracil as first-line 
treatment in untreated patients with unresectable mCRC[110]. This combination treatment achieved 
better median PFS and OS when compared to patients receiving bevacizumab plus capecitabine. On the 
other hand, Chen et al[111] carried out a meta-analysis that showed no improvement in OS upon the 
addition of bevacizumab to FOLFOX/FOLFIRI/capecitabine plus oxaliplatin (XELOX) regimens when 
compared to chemotherapy alone, unless PFS is considered, specifically in capecitabine-based regimens. 
This exception was established based on two trials, the NO16966 study[112] and ITACA trial[113], 
which used PFS as an endpoint measurement. These studies showed that adding bevacizumab to 
oxaliplatin-based therapy (XELOX or FOLFOX4) significantly improved PFS in patients with mCRC
[112]. OS and response rate were not changed by the addition of bevacizumab, suggesting that 
prolonged treatment may be needed for optimal combination efficacy[112]. Interestingly, it has been 
documented that both patients with KRAS mutations and with WT KRAS may benefit from adding 
bevacizumab to chemotherapy[114,115]. The efficacy of the second-line application of bevacizumab has 
also been validated in several trials that showed longer PFS and OS, and a better response rate, 
compared with standard chemotherapy alone in the E3200 study[116] and III ML18147 trial[117].
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The addition of aflibercept to FOLFIRI enhanced the survival of patients progressing who were 
previously given oxaliplatin-based regimens[118]. Combination treatment resulted in a 9% increase in 
response rate, accompanied by an improvement in PFS from 4.7 to 6.9 mo and OS from 12.1 to 13.5 mo
[118].

Ramucirumab was approved by the FDA for second-line treatment of mCRC based on the phase III 
RAISE trial[119]. Data from this study showed that the addition of ramucirumab significantly prolonged 
PFS and OS but not response rate, following first-line treatment with 5-FU, oxaliplatin, and 
bevacizumab[119].

Few VEGF TKIs have been proven to be effective in patients with mCRC. These include regorafenib, 
which was approved by FDA for the treatment of mCRC[120]. Yet, regorafenib has multiple targets, 
other than VEGF, whereby it also inhibits PDGF receptor, FGF receptor, and BRAF[120]. Notably, 
treatment of mCRC patients with regorafenib was associated with enhanced OS[121]. A more significant 
OS benefit was observed when combining regorafenib with its major metabolites, M-2 and M-5, in 
concentrations ranging between 2.5 and 5.5 mg/L[121]. While no improvement in the response rate was 
shown upon adding regorafenib to FOLFOX in mCRC patients as compared to chemotherapy alone
[120], better median OS and PFS were achieved using regorafenib alone than placebo for refractory 
mCRC treatment in the phase III CORRECT trial[122]. These results were also validated in an Asian 
population in the CONCUR trial[123]. Anlotinib, a novel TKI that inhibits VEGFR1/2/3, among other 
kinases, showed an enhanced overall rate response and PFS when combined with capecitabine and 
oxaliplatin in the first-line treatment of mCRC[124]. Other TKI agents have been developed in the last 
few years, these include fruquintinib[125] and famitinib[126], in addition to other agents that are under 
clinical investigation and are summarized in Table 2.

Targeting MEK and mutant BRAF
BRAF mutations are found in 8% to 12% of mCRC cases, and the V600E-activating mutations, which are 
the most prevalent mutations, are most commonly located in right-colon tumors, and confer a worse 
prognosis for mCRC[127,128]. BRAF mutations are generally mutually exclusive with KRAS and NRAS 
mutations. Notably, BRAF and RAS are the only available biomarkers for advanced CRC that are used 
in clinical practice[129].

BRAF is a downstream effector of RAS in the EGFR pathway and several preclinical studies have 
shown that BRAF inhibition may induce EGFR overactivation and that EGFR inhibition is important for 
sensitizing resistant cell lines to anti-BRAF agents[130]. In fact, BRAF inhibitor monotherapy in CRCs 
harboring V600E-activating mutations is ineffective with a response rate of only 5%[131]. Capalbo et al
[132] reported the first clinical evidence that combining anti-EGFR (panitumumab) and an inhibitor of 
BRAF V600 kinase (vemurafenib) achieves strong disease control and is well tolerated in patients with 
mCRC that progressed on standard lines of treatment. However, this is only achieved in RAS and BRAF 
WT tumors, as RAS and BRAF mutations lead to the constitutive activation of downstream transducers 
of EGFR, circumventing EGFR inhibition, resulting in failure of anti-EGFR therapy[133-135]. A very 
recent randomized trial reported that the addition of vemurafenib to irinotecan combined with 
cetuximab improved PFS (hazard ratio of 0.50) in patients with BRAF-mutated, RAS WT mCRC. The 
response rate was 17% upon addition of vemurafenib and 4% without vemurafenib[136]. Disease 
control rate was also improved by 44%, suggesting that blocking signaling activity of EGFR using 
cetuximab prevents its feedback upregulation by vemurafenib. Interestingly, treatment with EGFR and 
BRAF inhibitors led to a decline in circulating tumor DNA (ctDNA) BRAF V600E variant allele 
frequency in 87% of the studied population[136]. In the phase III BEACON CRC trial, twenty-nine 
patients with BRAF V600E-mutant mCRC who had experienced treatment failure with chemotherapy 
were selected to assess the safety of the encorafenib, binimetinib, and cetuximab regimen. The results 
showed that the tolerability of this treatment regimen was acceptable, with an overall response rate of 
48%, median PFS of 8.0 mo, and median OS of 15.3 mo[137].

BRAF V600E mutations result in constitutive activation of BRAF kinase, which results in activation of 
mitogen-activated protein kinase (MAPK) kinases MEK1 and MEK2. The latter phosphorylates and 
activates ERK kinases, resulting in phosphorylation and activation of key molecules involved in prolif-
eration and survival[138].

Studies have shown that combination therapies targeting RAF and EGFR or RAF and MEK can 
inhibit feedback reactivation of the MAPK signaling pathway, resulting in more robust inhibition and 
improved efficacy of the treatment in BRAF-mutant CRC[139,140]. Combining RAF and MEK inhibitors 
produced a 12% partial response and 2% complete response, with a more than 36 mo duration of 
response, whereby 56% of the patients achieved stable disease. Interestingly, 9 patients who remained in 
the study for more than 6 mo had reduced levels of phosphorylated ERK during treatment, relative to 
pretreatment biopsies[141]. A clinical trial of combined inhibition of BRAF, EGFR, and MEK with 
dabrafenib, panitumumab, and trametinib, respectively, showed improved efficacy in patients with 
BRAF V600E-mutant CRC[140]. Interestingly, the triplet regimen achieved a response rate of 21% that 
was higher than dabrafenib and panitumumab (10%) or panitumumab and trametinib (0%)[140]. The 
BEACON trial reported similar results, whereby a triple treatment consisting of cetuximab, encorafenib, 
and binimetinib (a MEK inhibitor) significantly prolonged OS and achieved a higher response rate than 
standard chemotherapy, with a comparable rate of adverse events[142]. Few agents targeting mutant 
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Table 2 Agents targeting vascular endothelial growth factor/vascular endothelial growth factor receptor under clinical investigation for 
the treatment of drug-resistant and metastatic colorectal cancer

Agent Targeted molecule Condition Study phase Clinical trial identifier

Vanucizumab VEGF-A/angiopoietin-2 mCRC Phase II NCT02141295

mCRC Phase II NCT03251612

Previously treated mCRC Phase II NCT01471353

mCRC Phase II NCT00826540

Sorafenib VEGFR

KRAS-mutated mCRC Phase II NCT01715441

Untreated mCRC Phase II NCT02141295Bevacizumab VEGF

Advanced CRC Phase II NCT02487992

Linifanib ABT-869 VEGFR Advanced CRC Phase II NCT00707889

mCRC Phase III NCT00056446Vatalanib VEGFR

mCRC Phase III NCT00056459

Famitinib VEGFR2/3 Advanced CRC Phase II NCT01762293

Cediranib VEGFR2 First-line mCRC Phase III NCT00399035

mCRC Phase III NCT00004252Semaxanib VEGFR

Advanced CRC Phase I/II NCT00005818

Nintedanib VEGFR Refractory mCRC Phase III NCT02149108

Ramucirumab VEGFR2 Chemotherapy refractory mCRC Phase III NCT03520946

Refractory CRC Phase II NCT03190616

mCRC NA NCT03743428

Apatinib VEGFR2

End-stage CRC Phase II NCT02829385

Brivanib VEGFR2 KRAS-wild-type mCRC Phase III NCT00640471

Later-lines treatment of mCRC Phase III NCT05328908Regorafenib VEGFR1/2/3

mCRC Phase III NCT05425940

Surufatinib VEGFR1/2/3 Advanced CRC Phase II NCT05372198

Lenvatinib VEGFR1/2/3 mCRC Phase III NCT04776148

Fruquitinib VEGFR tyrosine kinase Non-MSI-H/dMMR mCRC Phase II NCT04866862

mCRC Phase I NCT00532090

mCRC Phase II NCT00500292

Vandetanib VEGF/VEGFR

Advanced CRC Phase I NCT00496509

VEGF: Vascular endothelial growth factor; VEGFR: Vascular endothelial growth factor receptor; mCRC: Metastatic colorectal cancer; MSI: Microsatellite 
instability; dMMR: mismatch repair deficient.

BRAF or MEK have been tested in clinical settings in the context of mCRC (Table 1).
The most common adverse events associated with BRAF inhibition include rash, fatigue, arthralgia, 

and diarrhea. When combined with MEK inhibitors, toxicities include pulmonary toxicities and 
ophthalmic changes[143].

Targeting c-MET and HGF
MET is activated by hepatocyte growth factor (HGF) that is secreted by cells of mesenchymal lineage
[144]. The MET pathway is frequently aberrantly activated in CRC, in which its overexpression has been 
reported in up to 70% of cases[144]. MET has been proposed to be a major contributor to resistance to 
anti-angiogenic therapy and is associated with progression, metastasis, and poor prognosis[145,146], 
due to c-MET activation of several proteins, such as surviving and x-linked inhibitor of apoptosis 
protein[147]. In fact, inhibition of the VEGF pathway results in upregulation of MET. A study reported 
that resistance to cetuximab was caused by MET locus amplification in CRC PDX and that treatment 
with a MET inhibitor led to an anti-tumor effect[148].
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Various mAbs and small molecules with different mechanisms of action have been developed to 
target the HGF-MET pathway in mCRC[9]. Some drugs are directed at blocking HGF activation and 
production, while other drugs inhibit the binding of HGF to MET receptors. Agents that interfere with 
the binding of HGF to MET can be classified as MET antagonists, which competitively bind to MET 
receptors or as MET TKIs, which inhibit intracellular tyrosine kinase activity[9].

Cabozantinib is a multi-kinase inhibitor that targets MET and VEGFR2, in addition to other kinases
[146]. A study reported a potent growth inhibitory effect of cabozantinib in 80% of tumors treated using 
a CRC PDX model and this inhibition was mostly observed in tumors with PIK3CA mutation. Mechan-
istically, cabozantinib inhibited Akt activation and decreased the expression of genes involved in the 
PI3K pathway[146]. Several clinical trials assessed the efficacy of agents that neutralize HGF and block 
its ability to bind to the MET receptor. A randomized phase Ib/II trial of panitumumab  in combination 
with rilotumumab (a human mAb against HGF), ganitumab (a human mAb against insulin-like growth 
factor 1 receptor), or placebo in patients with KRAS WT mCRC showed a significant increase in overall 
response rate of 10% when combining panitumumab with rilotumumab[149]. However, the 
enhancement in response rate did not translate into significant improvement in OS and PFS. Agents, 
such as onartuzumab, that compete with HGF for binding to MET have been developed and tested in 
various solid tumors, including CRC. A phase II randomized trial of first-line FOLFOX plus 
bevacizumab with or without onartuzumab (MET inhibitor) reported an improvement in PFS in the 
MET IHC-negative population with mCRC, as compared to those receiving treatment without 
onartuzumab[150]. However, the addition of onartuzumab did not improve OS or response rate in this 
population[150]. Tivantinib is an oral small molecule allosteric receptor TKI that selectively keeps MET 
in the inactive state[151]. In the case of mCRC, clinical trials of tivantinib are insufficient to evaluate its 
efficacy. A phase I/II trial involving CRC patients with WT KRAS receiving tivantinib or placebo plus 
cetuximab and irinotecan found no PFS improvement[152]. A recent phase II trial of tivantinib and 
cetuximab in patients with MET-high KRAS WT mCRC did not meet its primary endpoint; yet, results 
suggested some efficacy of the combination, with approximately 10% of patients achieving an objective 
response[153]. Merestinib, an oral multikinase inhibitor, demonstrated an acceptable safety profile and 
potential anti-tumor effect in a recent first-in-human phase I study involving patients with advanced 
cancer, including CRC[154]. Findings from this study warrant further investigation to determine the 
efficacy of this agent in patients with KRAS WT mCRC.

Mild adverse events have been reported for the above-mentioned agents, including fatigue, poor 
appetite, allergic reactions, edema, skin rash, and neutropenia[155,156].

AMG-337, an oral ATP-competitive TKI specific to MET, is being investigated in a CRC phase I trial 
(Table 3). Crizotinib targets TKIs of MET, in addition to macrophage-stimulating 1 receptor and ROS 
proto-oncogene[157]. Although there is a lack of clinical evidence for crizotinib in CRC, a series of trials 
are in progress[158] (Table 3). The use of crizotinib might enhance the response to radiation therapy in 
KRAS-mutant CRC cell lines, and a combination of crizotinib with mitomycin C seemed to have a 
synergistic effect against CRC in preclinical results, which showed promise for future anti-CRC 
treatments[159]. Few MET inhibitors are under clinical investigation for the treatment of mCRC, and 
several new agents are being tested in patients with CRC (Table 3).

Immune checkpoint inhibitors
In addition to developing agents to directly target pathways involved in tumor growth and metastasis, 
there is great interest in modulating other pathways involved in immune recognition and responses 
against cancer cells (Table 4). Immune escape has been frequently identified in various cancers, 
including CRC[160]. Underlying mechanisms include secretion of immunosuppressive cytokines 
(transforming growth factor beta (TGFβ), IL-6, CXCL3, CXCL4, and high mobility group box-1), 
recruitment of regulatory T cells, and loss of immunogenicity via downregulation of major histocompat-
ibility complex-I (MHC-I)[161,162]. Tumor activation of co-inhibitory receptors, also known as immune 
checkpoint receptors, on the surface of T cells results in T cell inactivation and exhaustion[163]. These 
receptors include programmed death-1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4)[164]. PD-
1 is expressed on peritumoral lymphocytes and is activated by its ligands [programmed death ligand-1 
(PD-L1) or PD-L2], which are expressed on tumor cells, to suppress immune functions[165]. mCRC 
lesions express higher levels of PD-L1 than primary lesions[166], paving the way for promising clinical 
benefits.  Six antibodies against PD-1 or PD-L1 have been approved by the FDA as an anti-cancer 
treatment, among which some have been evaluated in mCRC patients[167,168]. Metastatic DNA 
mismatch repair-deficient (dMMR)/MSI-high (MSI-H) CRC has a poor prognosis and is less responsive 
to conventional chemotherapy, which could be linked to BRAF mutation[169,170]. Importantly, patients 
who have high mutational tumor burden, with dMMR or MSI-H, respond to immune checkpoint 
targeted therapy[171-173], most probably due to the fact that mutations result in tumor neoantigens that 
attract T cell infiltration[174].  Pembrolizumab was the first PD-1 inhibitor to be approved by the FDA 
for the treatment of mCRC. The KEYNOTE-016 study showed that MSI-H mCRC patients responded to 
pembrolizumab treatment and showed a response rate of 40% and PFS of 78%[168]. The efficacy of 
pembrolizumab for the treatment of MSI-H mCRC was also validated in another phase I clinical trial
[175]. The more recent trial, KEYNOTE-164, showed that when given in the second-line setting, 
pembrolizumab resulted in an objective response rate of 33%, PFS of 2.3 mo, and OS of 31.4 mo[176]. 
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Table 3 Agents targeting mesenchymal epithelial transition factor receptor under clinical investigation for the treatment of colorectal 
cancer and metastatic colorectal cancer

Agent Targeted molecule Condition Study phase Clinical trial identifier

Savolitinib MET mCRC Phase II NCT03592641

Tivantinib MET mCRC Phase I/II NCT01075048

Onartuzumab MET CRC Phase II NCT01418222

CRC Phase I NCT02008383

mCRC Phase I NCT03798626

Cabozantinib MET/RET/VEGFR-2

Refractory mCRC Phase II NCT03542877

Rilotumumab HGF KRAS wild-type mCRC Phase I/II NCT00788957

MET: Mesenchymal epithelial transition factor receptor; mCRC: Metastatic colorectal cancer; CRC: Colorectal cancer; VEGFR: Vascular endothelial growth 
factor receptor; HGF: Hepatocyte growth factor; RET: Rearranged during transfection.

The clinical benefit of PD-1 blockade in dMMR mCRC was also documented in the CheckMate 142 
phase I trial of nivolumab in patients with refractory solid tumors, 14 of whom had mCRC. A durable 
complete response was achieved in one patient with mCRC, after receiving five doses of 3 mg/kg 
nivolumab[177]. This study led to the FDA approval of nivolumab for dMMR or MSI-H mCRC. 
Combined therapy with nivolumab and the CTLA-4 inhibitor ipilimumab produced durable clinical 
benefits and helped previously treated patients who had MSI-H or dMMR reach high PFS and OS rates
[178,179]. The potential of PD-1 blockade using the single-agent dostarlimab was also evaluated in a 
very recent phase II study in patients selected for having dMMR stage II or III rectal adenocarcinoma. 
Administration of dostarlimab every three wk for six mo in twelve patients, who had not received 
chemoradiotherapy or undergone surgery, resulted in a clinical complete response in all patients with 
no evidence of progression or recurrence during the six to twenty-five mo follow-up[180]. Several 
preclinical studies are evaluating other potential immunotherapy agents. A novel antibody (LBL-007), 
recently characterized by Yu et al[181], targets lymphocyte activation gene 3 (LAG-3) expressed on 
activated T cells, natural killer cells, and B cells, and functions to negatively regulate these cells. This 
antibody was found to bind activated T cells and prevent LAG-3 binding to MHC class II molecules, 
blocking downstream signaling induction in vitro. In vivo results showed that treating mice bearing CRC 
with LBL-007 significantly delayed tumor growth and combining it with an anti-PD-1 antibody led to a 
more effective inhibition. Serum LBL-007 levels were high in monkeys injected with LBL-007 at 3, 10, or 
30 mg/kg[181]. Another negative regulator of the immune system, T cell immunoglobulin and mucin 
domain 3, has been shown to be expressed in mCRC and plays an important role in cancer progression
[181], and therefore might be a potential target for immunotherapy.

Pathways offering potential for targeted therapy
Several clinical trials have been initiated to evaluate the efficacy of agents targeting other pathways, yet 
no meaningful results have been presented so far. RO4929097 is a selective inhibitor of γ-secretase, a 
proteolytic enzyme that produces an activated intracellular Notch[182]. Notch is an attractive drug 
target as it is involved in CRC progression; however, a study of RO4929097 showed that no objective 
radiographic responses were observed and only a few mCRC patients had stable disease, although 
positive staining for intracellular Notch and its receptor was demonstrated in tissues[182].  A 
randomized phase II trial of vismodegib, a Hedgehog pathway inhibitor, reported no added benefit in 
combination with FOLFIRI or FOLFOX, and was instead associated with increased toxicity in mCRC 
patients[183]. The expression of morphogenetic protein 4 (BMP-4) has been shown to be upregulated in 
human CRC tissue and inhibition of BMP-4 by BMP type I receptor inhibitor, LDN-193189, induced 
apoptosis and inhibited tumor formation in mice injected with CRC cells[184]. The progress in the 
development of agents targeting TGF-β, Wnt, and ATP-binding cassette member B5 is still limited and 
needs further investigation[185-187]. Limitations in targeted therapy against these pathways are 
attributed to the existence of crosstalk between pathways, in addition to difficulty selecting patients, 
identifying predictive biomarkers, and specifically blocking targeted molecules. However, several 
clinical trials are investigating novel agents, which are summarized in Table 5.

BEATING RESISTANCE TO TARGETED THERAPY
Although multiple targeted therapy agents have demonstrated significant potency in mCRC patients, 
several challenges hinder the effectiveness of these therapies. Such therapies are associated with 
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Table 4 Agents targeting immune checkpoints under clinical investigation for the treatment of drug-resistant and metastatic colorectal 
cancer

Agent Targeted molecule Condition Study phase Clinical trial identifier

Non-MSI-H/dMMR mCRC Phase II NCT04866862Camrelizumab PD-1

mCRC Phase II NCT03912857

Tislelizumab PD-1 HER2-Positive Advanced CRC Phase II NCT05493683

Later-lines treatment of mCRC Phase III NCT05328908

Advanced CRC Phase I NCT02991196

Metastatic MSS CRC Phase I NCT03993626

Nivolumab PD-1

mCRC Phase II NCT04166383

MSI-H/dMMR CRC Phase III NCT05239741

mCRC Phase III NCT04776148

MMR-proficient mCRC Phase II NCT03519412

HER2-expressing mCRC Phase II NCT03631407

Pembrolizumab (MK-3475) PD-1

HER2-expressing mCRC Phase II NCT05333809

mCRC Phase I NCT03081494PDR-001 PD-1/PD-L1

First-line mCRC Phase I NCT03176264

Toripalimab PD-1/PD-L1 mCRC Phase II NCT03927898

mCRC Phase II NCT03150706Avelumab PD-1/PD-L1

mCRC Phase II NCT03258398

mCRC Phase III NCT05425940

mCRC Phase III NCT02788279

First-line mCRC Phase II NCT02291289

Atezolizumab PD-L1

Refractory CRC Phase II NCT02873195

Relatlimab LAG-3 Later-lines treatment of mCRC Phase III NCT05328908

mCRC Phase I/II NCT03202758

mCRC Phase II NCT03122509

mCRC Phase II NCT03428126

Tremelimumab CTLA-4

mCRC Phase II NCT03435107

PD-1: Programmed death-1; PD-L1: Programmed death ligand-1; mCRC: metastatic colorectal cancer; MSI-H/dMMR: Microsatellite instability-
high/mismatch repair deficient; MSS: Microsatellite stable; HER2: Human epidermal growth factor receptor 2; LAG-3: Lymphocyte activation gene 3; 
CTLA-4: Cytotoxic T lymphocyte-associated antigen 4.

intrinsic and acquired resistance and a thorough understanding of resistance mechanisms is essential for 
developing effective drugs (Figure 3). For example, EGFR inhibitors are effective against KRAS WT 
mCRC but not KRAS mutated mCRC and there is a need for effective agents in this poor prognosis 
group. Several clinical trials have assessed the combination of VEGF and chemotherapy, but no 
attractive results have been shown[9,188].

Overcoming resistance to EGFR
Administration of EGFR antibodies with MEK inhibitors has been tested in preclinical models, but 
clinical data are still limited[189]. Alterations in ctDNA in the following genes: KRAS, NRAS, MET, 
ERBB2, FLT3, EGFR, and MAP2K1 have been identified in patients with primary or secondary resistance 
to EGFR inhibition[190]. Thus, determining the ctDNA profiles of patients with mCRC might help 
predict patient response[191]. Güttlein et al[192] recently tested NRAS, KRAS, and BRAF mutations in 
liquid plasma biopsies of patients with mCRC and reported a 12- and 4-mo median PFS of RAS/BRAF 
WT and RAS/BRAF mutated patients, respectively. The frequency of plasma mutations was highest for 
KRAS (34%). This study suggested that analysis of these mutations in the plasma of mCRC patients can 
be used to predict OS. The REVEAL study identified multiple actionable targets by performing NGS 
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Table 5 Agents targeting other pathways under clinical investigation for the treatment of drug-resistant and metastatic colorectal 
cancer

Agent Targeted 
molecule Condition Study phase Clinical trial 

identifier

CB-103 Notch Resistant to oxaliplatin or irinotecan-based therapy advanced 
or mCRC

Phase I/II NCT03422679

RO4929097 Notch mCRC Phase II NCT01116687

WNT974 Wnt BRAF-mutant mCRC Phase I/II NCT02278133

FOXY-5 Wnt mCRC Phase I NCT02020291

LGK974 Wnt BRAF mutant CRC Phase I NCT01351103

First-line therapy mCRC Phase II NCT00636610Vismodegib (GDC-0449) Hedgehog

mCRC Phase II NCT00959647

LDE225 Hedgehog mCRC Phase I NCT01576666

NIS793 TGF Advanced CRC Phase I NCT02947165

LY3200882 TGF Advanced chemotherapy -resistant CRC with an activated 
TGF-beta Signature

Phase I/II NCT04031872

KRAS wild-type mCRC Phase I/II NCT00788957Ganitumab IGF-1R

KRAS-mutant mCRC Phase II NCT00813605

Dalotuzumab (MK-0646) IGF-1R mCRC Phase II NCT00614393

Cixutumumab (IMC-
A12)

IGF-1R mCRC resistant to EGFR therapy Phase II NCT00503685

Wnt: Wingless-related integration site; mCRC: Metastatic colorectal cancer; TGF: Transforming growth factor; IGF-1R: Insulin growth factor receptor-1; 
EGFR: Epidermal growth factor receptor.

and transcriptional analysis of tumor and liquid biopsies during and after standard first-line 
chemotherapy treatment of patients with mCRC[193]. Differentially identified genes reported by this 
study were associated with EMT, ECM modulation, metabolism regulation, and several oncogenic 
pathways, such as PI3K/AKT and MAPK[193]. This study also reported the secreted phosphoprotein 1/
osteopontin gene as a potentially druggable target whose inhibition also modulates the previously 
mentioned oncogenic pathways. Interestingly, the approach devised in this study aids in identifying 
mutations and transcriptional changes following first-line treatment, and thus can be used to predict 
novel resistance mechanisms and manage them by administering the appropriate targeted agents. 
Several clinical studies are underway to determine patient subsets who can benefit from anti-EGFR 
therapy[194,195]; however, sensitivity thresholds in PCR should be taken into consideration since they 
can affect the genotyping of KRAS, NRAS, BRAF and PIK3C. This would improve the selection of 
treatment for mCRC with anti-EGFR therapy, as shown by the ULTRA trial[196]. A prospective-
retrospective cohort study documented that ctDNA KRAS tested using Digital PCR showed consistency 
with tumor tissues obtained from mCRC patients and predicted responses to EGFR inhibition[197]. 
Notably, recent studies have demonstrated that while left-sided KRAS WT mCRC should be preferen-
tially treated with anti-EGFR agents, right-sided tumors might respond better to bevacizumab plus 
chemotherapy; however, optimization of treatment for these subsets of tumors is yet to be achieved[198-
200]. Reversal strategies have emerged to overcome intrinsic resistance, and these include development 
of new EGFR inhibitors, combination of anti-EGFR with multitargeted inhibitors, development of small 
molecules that enhance the effect of anti-EGFR agents, and the implementation of metabolic regulators
[201]. The development of EGFR mAbs that bind to mutated extracellular domains may enhance the 
efficacy of these treatments. A study involving CRC patients showed that MM-151, a mAb that binds to 
different regions of EGFR, significantly inhibits EGFR signaling and decreases mutations in ctDNA
[202]. The FDA-approved anti-EGFR agent, necitumumab, was developed to bind to EGFR that harbors 
the most common cetuximab-resistant variant[203]. The first-in-class anti-EGFR non-overlapping mAbs 
mixture Sym004 has been documented to suppress mutant EGFR signaling in cetuximab-resistant cell 
lines and in xenograft models, contrary to cetuximab and panitumumab[204]. Interestingly, Sym004 is 
currently under clinical investigation for the treatment of mCRC (Table 1 and Figure 1). Notably, 
recombinant protein-based therapeutics have become an interesting therapeutic option for the treatment 
of resistant mCRC. A very recent study showed that PEPDG278D, a recombinant human protein that 
induces the degradation of both EGFR and HER2, exerts strong anti-tumor activity and overcomes 
resistance to anti-EGFR therapy in CRC PDX[205]. As for patients with KRAS-mutant CRC, a fully 
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Figure 3 Mechanisms of resistance to targeted therapy and strategies to overcome resistance in colorectal cancer. A: Resistance 
mechanisms; B: Strategies to overcome resistance. EGFR: Epidermal growth factor receptor; HER2: Human epidermal growth factor receptor 2; VEGF: Vascular 
endothelial growth factor; MEK: Mitogen-activated extracellular signal-regulated kinase; MAP2K1: Mitogen-Activated Protein Kinase 1; PI3KCA: Phosphoinositide 3-
kinases catalytic subunit alpha; MAP2K1: Mitogen-activated protein kinase 1; HGF: Hepatocyte growth factor; MET: Mesenchymal epithelial transition; ERBB2: Erb-B2 
Receptor Tyrosine Kinase 2; TME: Tumor microenvironment; FGF: Fibroblast growth factor; PDGF: Platelet-derived growth factor; PD-1: Programmed death-1; PD-L1: 
Programmed death ligand-1; CTLA-4: cytotoxic T lymphocyte-associated antigen 4.

humanized EGFR mAb (GC1118) showed significant inhibitory effects against KRAS-mutant CRC PDX
[206] and hopes are now placed on the use of this novel compound for better targeting of these tumors.

Extrinsic resistance is mainly mediated by changes in the TME, specifically immune cells and CAFs, 
in addition to novel development of KRAS mutations and activation of angiogenesis[207,208]. Strategies 
to remodel the TME are usually beneficial to increase the efficacy of anti-EGFR antibodies and they may 
include activation of T cells and natural killer cells, suppression of CAFs, and inhibition of angiogenesis 
through VEGF blockade[201].

Interestingly, rechallenge and reintroduction strategies have been implemented in recent years and 
have been tested on patients with mCRC who have received an anti-EGFR therapy and whose treatment 
was halted[209]. Rechallenge refers to anti-EGFR re-treatment of KRAS WT mCRC patients who have 
initially received and benefited from first-line anti-EGFR therapy before disease progression and 
receiving a different treatment. Reintroduction refers to re-exposure after prior discontinuation of anti-
EGFR therapy due to toxicity, intolerance, and other factors[209,210]. Very recently, Schulz et al[210] 
reported real-world evidence supporting the benefits of anti-EGFR treatment re-exposure in patients 
with mCRC, regardless of the reason for discontinuation of anti-EGFR therapy. The reintroduction or 
rechallenge of this treatment was associated with high OS and PFS[210], suggesting that the adminis-
tration of more than one-line of treatment with anti-EGFR could be a promising tool to manage disease 
progression, given the limitations in the current treatment options.

Overcoming resistance to anti-HER2 therapy
Several strategies have been tested to combat resistance to anti-HER2 therapy (Figure 3). These include 
dual HER2 and EGFR inhibition in the first-line setting and increasing sensitivity to HER2 blockade 
following resistance to trastuzumab-based therapy[190,211]. Patients with HER2-amplified mCRC that 
harbor RAS, BRAF, or PIK3CA mutations show limited response to HER2 inhibitors[211], and therefore 
require a novel therapeutic strategy that would concomitantly block feedback loops involving EGFR, 
BRAF, and KRAS in mutated mCRC. In terms of the first strategy, several compounds are currently 
under clinical investigation and new drugs are being proposed as candidates to inhibit both molecules 
and improve efficacy of CRC targeted therapy, particularly in HER2-positive mCRC[212,213] (Table 1). 
In fact, HER2 amplification has been linked with resistance to EGFR inhibition[214] and thus, may serve 
as a biomarker for these treatment regimens. Moreover, combinations of HER2 and PD-1 inhibitors are 
also being investigated in HER2 expressing advanced CRC or mCRC (Table 6).  As for patients with 
trastuzumab-refractory disease, a possible strategy would be to switch to another anti-HER2 agent. A 
novel antibody-drug conjugate (T-DM1) consisting of a mAb covalently linked to the cytotoxic agent 
DM1 has shown robust activity in patients with trastuzumab-resistant HER2-positive breast cancer
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Table 6 Combination of targeted therapies under clinical investigation for the treatment of drug-resistant and metastatic colorectal 
cancer

Agents Targeted molecule (s) Condition Study phase Clinical trial identifier

Encorafenib + Binimetinib + 
Cetuximab

Wild type plus BRAF V600E and 
MEK, EGFR

Previously untreated BRAF-
mutant mCRC

Phase II NCT03693170

Tucatinib + Trastuzumab HER2 First-line HER2-positive mCRC Phase III NCT05253651

Disitamab + Vedotin + Tislel-
izumab

HER2 and PD-1 HER2-positive advanced CRC Phase II NCT05493683

Vanucizumab + Bevacizumab VEGF-A/angiopoietin-2 and 
VEGF

mCRC Phase II NCT02141295

Regorafenib + Nivolumab VEGFR1/2/3 and PD-1 Later-lines treatment of mCRC Phase III NCT05328908

Lenvatinib + Pembrolizumab VEGFR1/2/3 and PD-1 mCRC Phase III NCT04776148

Fruquitinib + Camrelizumab VEGFR tyrosine kinase and PD-1 Non-MSI-H/dMMR mCRC Phase II NCT04866862

Disitamab + Vedotin + Pembrol-
izumab

HER2 and PD-1 HER2-expressing mCRC Phase II NCT05333809

Cobimetinib + Atezolizumab MAPK and PD-L1 mCRC Phase III NCT02788279

Cetuximab + Vemurafenib EGFR and mutated BRAF V600E BRAF V600E Mutated 
Advanced CRC

Phase II NCT03727763

Penpulimab + Anlotinib PD-1 and VEGFR1/2/3 Refractory mCRC Phase II NCT04970914

Favezelimab LAG-3 and PD-1 Previously treated metastatic 
PD-L1 positive CRC

Phase III NCT05064059

MEN1611 + Cetuximab PI3K and EGFR mCRC Phase I/II NCT04495621

Encorafenib + Cetuximab + 
Pembrolizumab

BRAF V600E, as well as wild-type 
BRAF, EGFR, andPD-1

Previously untreated mCRC Phase II NCT05217446

RXC004 + Nivolumab Porcupine (wnt activator) and 
PD1

RNF43 or RSPO aberrated, 
metastatic, MSS CRC after 
progression on SOC

Phase II NCT04907539

Regorafenib + Pembrolizumab VEGFR1/2/3PD1 Advanced or mCRC Phase I/II NCT03657641

Isatuximab + Atezolizumab Epitope on CD38, and PD-L1 mCRC Phase I/II NCT03555149

Atezolizumab + Selicrelumab + 
Bevacizumab

PD-L1, CD40 antigen, and VEGF mCRC Phase I/II NCT03555149

Atezolizumab + Idasanutlin PD-L1 and MDM2 mCRC Phase I/II NCT03555149

Atezolizumab + Regorafenib PD-L1 andVEGFR1/2/3 mCRC Phase I/II NCT03555149

Olaparib (MK-7339) + 
Bevacizumab

PARP and VEGF Unresectable or mCRC Phase III NCT04456699

Nivolumab + Ipilimumab PD-1 andCTLA-4 dMMR and/or MSI mCRC 
resistant to anti-PD1 
monotherapy

Phase II NCT05310643

Nivolumab + Ipilimumab PD-1 and CTLA-4 dMMR and/or MSI mCRC Phase II NCT04730544

Surufatinib + Sintilimab VEGFR1/2/3 and PD-1 Advanced MSS-Type CRC Phase II NCT04764006

Camrelizumab + Apatinib PD-1 and VEGFR-2 Advanced CRC Phase I/II NCT04067986

Fruquintinib + Tislelizumab + 
Stereotactic ablative 
radiotherapy

VEGFR1/2/3 and PD-1 mCRC Phase II NCT04948034

Avelumab + Cetuximab + 
mFOLFOXIRI

PD-1/PD-L1 and EGFR Unresectable mCRC Phase II NCT04513951

Geptanolimab (GB226) + 
Fruquintinib

PD-1 and VEGFR1/2/3 mCRC Phase I NCT03977090

Selinexor + Pembrolizumab Exportin 1 and PD-1 Previously treated mCRC with 
RAS mutations

Phase II NCT04854434

Panitumumab + Rilotumumab EGFR and HGF wild-type KRAS mCRC Phase I/II NCT00788957
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Panitumumab + Ganitumab EGFR and IGF-1R wild-type KRAS mCRC Phase I/II NCT00788957

MEK: Mitogen-activated extracellular signal-regulated kinase; EGFR: Epidermal growth factor receptor; mCRC: Metastatic colorectal cancer; HER2: 
Human epidermal growth factor receptor 2; PD-1: Programmed death-1; PD-L1: Programmed death ligand-1; VEGF-A: Vascular endothelial growth factor-
A; VEGFR: Vascular endothelial growth factor receptor; MSI-H/dMMR: Microsatellite instability-high/mismatch repair deficient; MSS: Microsatellite 
stable; MAPK: mitogen-activated protein kinases; LAG-3 Lymphocyte activation gene 3; PI3K: Phosphoinositide 3-kinases; RNF43: Ring Finger Protein 43; 
RSPO: R-spondin; SOC: Standard of Care; PARP: Poly ADP ribose polymerase; CTLA-4: Cytotoxic T lymphocyte-associated antigen 4; HGF: Hepatocyte 
growth factor; IGF-1R: Insulin growth factor receptor-1.

[215]. A clinical trial is currently evaluating the efficacy of this new compound in HER2-positive mCRC 
progressing after trastuzumab and lapatinib (Table 1).

Overcoming resistance to anti-VEGF therapy
The major mechanisms of resistance to anti-VEGF therapy are still not fully elucidated. Redundancy in 
angiogenic signaling pathways and compensation through activation of other pathways may contribute 
to this resistance (Figure 3). Several agents are currently under development for the purpose of 
improving anti-angiogenic therapy efficacy (Table 2). Importantly, it has recently been shown that the 
location of the primary tumor affects the choice of targeted therapy for the treatment of mCRC, whereby 
left-sided tumors benefit more than right-sided tumors from EGFR inhibition[198,200]. As mentioned 
before, combining anti-angiogenic agents with immune checkpoint inhibitors has been shown to restore 
vascular-immune crosstalk to establish a strong anti-tumor immune response[216]. In addition to 
VEGF/VEGFR, targeting alternative angiogenic pathways such as FGF, PDGF, and angiopoietins can 
inhibit VEGF-independent angiogenic pathways that are activated in response to VEGF blockade[217]. 
In mCRC patients, increased plasma levels of FGF, PDGF, and placental growth factor were linked to 
disease progression during bevacizumab-based therapy[217]. The clinical efficacy of the dual inhibition 
of VEGF-A and angiopoietin-2 using vanucizumab is still under phase II clinical trials, though with 
promising results[218] (Table 2).  It is important to note that additional factors, including hypoxia and 
the limited blood supply restrict the delivery of drugs to the tumor site, resulting in resistance. In 
addition, cancer resistance to anti-VEGF therapy has been linked to activation of the HGF/c-MET 
pathway[219]. The latter activates key pathways involved in CRC metastasis and drug-resistance, 
including MAPK/ERK, STAT3, NF-κB, and PI3K/Akt[219]. Several MET inhibitors are being evaluated 
in the clinic for the purpose of blocking MET to overcome resistance to anti-VEGFR treatment (Table 3). 
This approach has produced effective results in other types of cancer, including advanced renal cell 
carcinoma[220]. Dual inhibition of MET and VEGFR2 using cabozantinib showed a strong anti-tumor 
effect in a preclinical CRC PDX model and the effect was greatest in tumors that possessed a mutation in 
the PIK3CA gene[146]. Several trials have been initiated to evaluate the efficacy of this compound in 
mCRC (Table 3).

Overcoming resistance to immunotherapy
Evading the immune system is an important hallmark of cancer, including CRC and is linked to 
immunotherapy and targeted therapy resistance[221].  Intrinsic resistance to immunotherapy is mainly 
conferred by changes in anti-tumor immune response, aberrant expression of tumor antigens, functional 
gene mutations, alterations in antigen presentation and other signaling pathways in tumor cells, in 
addition to secretion of inhibitory molecules by tumor cells[222] (Figure 3). Extrinsic mechanisms 
include activation of immunosuppressive cells in the TME and abnormal tumor vascularization[222]. 
One of the most effective strategies to deal with resistance to immunotherapy involves increasing tumor 
visibility and infiltration by T cells, through induction of immunogenic cell death by targeted agents 
and other therapies. The success of combining anti-angiogenic agents with immunotherapy has been 
shown in several cancers and is being evaluated in phase III clinical studies involving patients with 
advanced or metastatic and/or refractory CRC (Table 6). In addition, the efficacy of combining immune 
checkpoint inhibitors with chemokines that mediate the recruitment of T cells into the TME warrants 
investigation in mCRC. This could also be achieved by the administration of VEGF inhibitors that 
would normalize tumor vasculature and permit T-cell infiltration[223].

Enhancing the immune system function is also a good strategy to activate effector T cells and inhibit 
immunosuppressive immune cells.  An emerging approach is the dual or combinatory inhibition of PD-
1/PD-L1 and CTLA-4 to concomitantly block immune system inhibitory pathways and has shown 
promising results in preclinical[224,225] and clinical[226] (Table 6) models of mCRC. Ongoing trials are 
also addressing genomic and epigenetic alterations by evaluating the efficacy of anti-PD-1 agents in 
combination with VEGFR or CTLA-4 inhibitors in dMMR and/or MSI mCRC (Table 6).

Implementation of better preclinical models
The importance of preclinical models has been highlighted in the case of mCRC. The rapidly emerging 
role of patient-derived tumor samples may be considered one of the revolutionizing approaches to 
improve treatment strategies. Such samples can be propagated in mice to produce PDXs or in three-
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dimensional cultures to produce patient-derived organoids (PDOs)[227-230]. These models are 
important for understanding and predicting treatment responses in drug-resistant CRC and mCRC. 
Molecular response predictors are usually identified in clinical trials by employing a statistically 
significant enrichment for a genetic mutation and correlating it with a clinical outcome in responsive 
and non-responsive patients. A major limitation of this approach is the inability to elucidate the 
mechanisms underlying this correlation and to validate whether these predictors influence response to 
treatment. Cancer cell line cultures have made it possible to gain insight into the functional processes; 
however, they do not recapitulate the in vivo structure, in addition to the genomic and functional hetero-
geneity of mCRC. Therefore, patient-derived models are ideal platforms with clinical fidelity and good 
reflection of disease diversity. These models are being used for target discovery and for characterization 
of response biomarkers to combat drug-resistance and to predict treatment response[228]. For example, 
PDX were used to validate the correlation between KRAS mutations in exon 2 and de novo resistance to 
EGFR inhibition and to identify HER2 as a potential target in cetuximab-resistant mCRC[89,231]. 
Additionally, these models were the first to identify KRAS exon 3 and 4 mutations as predictors of 
resistance to EGFR mAbs[89]. Both PDX and PDOs have clinical relevance; however, PDOs are easier to 
cultivate and are useful for high-throughput drug screening[232]. Subsequently, PDOs have been used 
to model CRC and study mechanisms of resistance. In addition, the newly emerging CRISPR/Cas9 
genome-editing tool has been applied to introduce mutations in normal human colorectal organoids and 
has confirmed the role of these mutations in CSC maintenance, in addition to metastasis and resistance 
to therapy[233,234]. The association between KRAS mutation and lack of response to EGFR blockade has 
been also validated in organoids derived from mCRC[235]. Importantly, results from PDOs have been 
shown to recapitulate clinical response to targeted therapies, including cetuximab and regorafenib[236]. 
Notably, PDO-based drug screening has been used to improve the accuracy and effectiveness of 
precision medicine, paving the way for PDO-based personalized therapy[237]. CRC PDOs can be also 
used to identify patients that benefit from a specific targeted therapy.

CONCLUSION
Given the high molecular heterogeneity associated with CRC, different mechanisms of resistance may 
develop. A multi-targeted approach to therapy and the use of combination targeted therapy as a first-
line treatment, rather than after the patients demonstrate drug-resistance and progress on treatment, 
have been an active area of research based on the efficacy of these strategies in preclinical models. 
Several clinical trials have investigated the efficacy of combination therapies targeted at two or three 
pathways; however, the high toxicity levels associated with these therapies is a limitation to bear in 
mind as it represents a critical challenge to the development of effective therapies for the treatment of 
drug-resistant and mCRC. Nevertheless, data from clinical studies are showing promising signs of 
efficacy. This has been made possible through targeting adaptive feedback pathways and the discovery 
and implementation of predictive biomarkers for targeted therapy, which are critical in identifying 
patients that could benefit from combination targeted therapy. Biomarker detection computational 
algorithms and tools are being designed for this purpose and should be followed by clinical validation 
and approval. Importantly, personalized treatment could be developed to promote survival and 
prognosis of CRC patients without causing adverse events. With the advancement of NGS and genome 
profiling, it has been possible to decipher predictive responses to anti-cancer treatments and to select the 
appropriate treatment for each individual, depending on the genetic characteristics and clinical tumor 
features. Strategic planning of treatment regimens is essential to enhance the effectiveness of targeted 
agents and to decrease the possibility of side effects. Conjugation of inhibitory molecules using 
Nanoparticle technology is an attractive approach in this case. Nanoparticles are being used for the 
targeted delivery of drugs to the affected tissues and optimization methods can be applied to increase 
their uptake efficiency.

Other tools that could help improve personalized medicine include the triphasic enhanced computed 
tomography radiomics signature that was recently tested by Cao et al[238] and has been shown to be 
effective in predicting CRC MSI status with 0.837 and 0.821 accuracy and sensitivity, respectively. 
Moreover, whole genome sequencing, multi-region whole exome sequencing, simultaneous single-cell 
RNA-sequencing, and single-cell targeted cDNA Sanger sequencing are being used to obtain single-cell 
genomic and transcriptomic landscapes of adjacent normal tissues, primary tumors, and metastatic 
tumors[239], which could also improve individualized treatment.

Given the importance of the gut microbiota in the progression of CRC, microbiome profiles can be 
integrated with other genomic and epigenomic profiles to enhance personalized targeted therapies 
against CRC, resulting in better clinical outcomes. Nonetheless, this adds another level of complexity to 
the application of this approach. Interestingly, modification of the gut microbiota through targeted 
inhibition of pathogenic bacteria can be used to prepare patients for CRC treatment by augmenting the 
host immune system.

Changes in mutations or transcription should be monitored during administration of treatment, in 
addition to changes in immune responses and inflammatory molecules that can influence the choice of 
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treatment. These immune signatures may be indispensable for improving clinical outcome. 
Interestingly, it has been reported that the peripheral blood repertoire of T cell receptor changes during 
the course of chemotherapy in patients with mCRC, and thus could have a prognostic value[12].

In summary, the application of personalized medicine requires the integration of tumor mutations 
and epigenetic modifications, TME gene expression, host immune proficiency, and their changes during 
disease progression and treatment. The constant search for novel targets involved in drug-resistance 
and metastasis will lead to the identification of interesting molecular traits that can be modulated using 
biomarker-driven treatments to overcome resistance to therapy.
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