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Abstract
Oxidative stress is a key driver in the development and progression of several 
diseases, including metabolic associated fatty liver disease (MAFLD). This 
condition includes a wide spectrum of pathological injuries, extending from 
simple steatosis to inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. 
Excessive buildup of lipids in the liver is strictly related to oxidative stress in 
MAFLD, progressing to liver fibrosis and cirrhosis. The nuclear factor erythroid 2-
related factor 2 (NRF2) is a master regulator of redox homeostasis. NRF2 plays an 
important role for cellular protection by inducing the expression of genes related 
to antioxidant, anti-inflammatory, and cytoprotective response. Consistent 
evidence demonstrates that NRF2 is involved in every step of MAFLD deve-
lopment, from simple steatosis to inflammation, advanced fibrosis, and ini-
tiation/progression of hepatocellular carcinoma. NRF2 activators regulate lipid 
metabolism and oxidative stress alleviating the fatty liver disease by inducing the 
expression of cytoprotective genes. Thus, modulating NRF2 activation is crucial 
not only in understanding specific mechanisms underlying MAFLD progression 
but also to characterize effective therapeutic strategies. This review outlined the 
current knowledge on the effects of NRF2 pathway, modulators, and mechanisms 
involved in the therapeutic implications of liver steatosis, inflammation, and 
fibrosis in MAFLD.

Key Words: Nonalcoholic fatty liver disease; Metabolic-associated fatty liver disease; 
Nuclear factor erythroid 2-related factor 2; Oxidative stress; Antioxidants; Liver injury
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Core Tip: This updated literature review contributes to the role of nuclear factor erythroid 2-related factor 2 
in combating inflammation, oxidative stress, steatosis, and fibrosis in metabolic associated fatty liver 
disease. There are several reviews that elucidated the advantages of nuclear factor erythroid 2-related 
factor 2 in human diseases, but this is the first review reporting the broad range of nuclear factor erythroid 
2-related factor 2 modulators and their therapeutic implications in metabolic associated fatty liver disease.
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INTRODUCTION
Nonalcoholic fatty liver disease is the most frequent chronic liver disease, affecting about 25% of the 
global population. Due to the reappraisal in its nomenclature, a group of experts changed the 
terminology from nonalcoholic fatty liver disease to metabolic-associated fatty liver disease (MAFLD), 
strengthening the link of this disease to metabolic alterations[1]. MAFLD is defined as a condition where 
hepatic fat accumulation exceeds 5% of the liver weight without alcohol consumption (< 30 g per day). It 
covers a wide spectrum of pathological conditions, extending from simple steatosis (deposit of fat in 
hepatocytes) to nonalcoholic steatohepatitis (characterized by the presence of 5% hepatic steatosis and 
inflammation with hepatocellular damage, with or without fibrosis), cirrhosis, and ultimately leading to 
hepatocellular carcinoma[2]. MAFLD is emerging with the prevalence of type 2 diabetes mellitus, 
obesity, and metabolic syndrome[3]. Of note, patients with MAFLD, and particularly with nonalcoholic 
steatohepatitis, exhibit an increased liver-related mortality rate and higher incidence of cardiovascular-
related morbidity and mortality[2].

MAFLD is the hepatic expression of metabolic syndrome, but its pathogenesis is still not clearly 
known. Insulin resistance (IR) seems to play a key role in the initiation and progression of the disease 
from simple fatty liver to advanced forms[4]. MAFLD pathogenesis is complex and multifactorial. The 
first theory was based on a two-hit hypothesis, where the first hit is liver steatosis, which is due to 
increased hepatic lipogenesis and reduced free fatty acid degradation caused by IR. This alteration is 
followed by the second hit of oxidative stress, which induces hepatocyte inflammation and cell death[5,
6]. However, this simplistic theory has been recently replaced by the multiple hit hypothesis, where 
many factors including systemic and hepatic IR, intestinal microbiota, genetic predisposition, and 
oxidative stress act simultaneously resulting in a cascade of detrimental effects such as hepatic inflam-
mation, free radical production from gut and adipose tissue, mitochondrial dysfunction, endoplasmic 
reticulum (ER) stress, and hepatocyte apoptosis[7]. Among all the contributing factors of MAFLD, 
oxidative stress plays a major role. Oxidative stress promotes inflammation by activating Kupffer cells 
and stimulating the release of proinflammatory cytokines, directly leading to lipid, protein, and 
DNA/RNA damage. Nuclear factor erythroid 2-related factor 2 (NRF2) is the most important tra-
nscription factor in preserving redox homeostasis in the cell and counteracting oxidative or electrophilic 
stress by producing antioxidant and cytoprotective enzymes such as heme oxygenase 1 (HO-1), 
NAD(P)H quinone oxidoreductase 1 (NQO1), and those involved in glutathione (GSH) metabolism[8].

Thus, due to its antioxidative and detoxicant properties, it is currently accepted that NRF2 plays a 
pivotal role and has been recognized as a potential target to prevent the pathological spectrum of 
MAFLD. Even though the beneficial role of NRF2 in human diseases has been the topic of several recent 
reviews, the broad range of NRF2 modulators and their therapeutic implications in MAFLD were not 
completely summarized in recent literature. In this review, we described the current knowledge on the 
effects of NRF2-dependent mechanisms involved in the therapeutic implications of liver steatosis, 
inflammation, and fibrosis in MAFLD.

NRF2 PATHWAY
NRF2 belongs to the basic leucine zipper transcription factors in the Cap “n” Collar subfamily including 
seven functional domains, Nrf2-ECH homology (Neh) 1 to Neh7[9]. Neh2 is important for interaction 
between NRF2 and Kelch-like ECH-associated protein 1 (Keap1), a negative modulator of NRF2[10]. 
Keap1 is a substrate for Cullin based E3 ubiquitin ligase. During homeostatic conditions, Keap1 targets 
NRF2 that is localized in cytoplasm, causing its polyubiquitination and degradation. The binding and 
regulation of NRF2 by Keap1 has been defined as the “hinge and latch model”[11]. During oxidative 
stress, hyperactive cysteine residues of Keap1 undergo thiol modification and NRF2 is dissociated from 
Keap1, preventing ubiquitination and proteasomal degradation (Figure 1). The newly generated NRF2 
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Figure 1 Kelch-like ECH-associated protein 1-dependent nuclear factor-erythroid 2-related factor 2 signaling. During oxidative stress, nuclear 
factor-erythroid 2-related factor 2 (NRF2) detaches from kelch-like ECH-associated protein 1 (Keap1) and translocates to the nucleus to bind the target genes. In 
normal conditions, NRF2 is ubiquitinylated and undergoes degradation. ARE: Antioxidant responsive element; SMaf: Small musculoaponeurotic fibrosarcoma 
oncogene homologue; Ub: Ubiquitin.

escaped from Keap1 control translocates to the nucleus and heterodimerizes with the Maf proteins, 
promoting the expression of antioxidant response element genes like HO-1, superoxide dismutase 
(SOD), catalase, glutathione-S-transferase, glutathione reductase, glutathione peroxidase (GSH-Px), 
NQO1, etc[12].

Of note, emerging evidence revealed Keap1-independent novel mechanisms of NRF2 regulation. The 
phosphatidylinositol 3’-kinase/protein kinase B pathway is protective against oxidative stress and is 
able to activate NRF2 signaling[13]. Phosphatidylinositol 3’-kinase-protein kinase B-NRF2 signaling 
pathway involves the glycogen synthase kinase-3β as a key mediator. Glycogen synthase kinase 3β can 
phosphorylate the NRF2 domain Neh6, containing serine residues that can be recognized by the β-
transducin repeats-containing protein. β-transducin repeats-containing protein is a substrate receptor 
for ubiquitin ligase complex, which targets NRF2 for ubiquitination and proteasomal degradation[14,
15]. During autophagy, NRF2 is stabilized by the binding of p62 (autophagy substrate) to Keap1 at the 
NRF2 binding site, resulting in the transcriptional activation of NRF2-target genes[16,17]. In addition, 
oxidative stress-induced protein kinase C phosphorylates Neh2 at serine and threonine residue on 
Ser40, dissociating the Keap1 homodimer and transferring NRF2 to the nucleus, thus binding to the 
antioxidant response element-mediated cytoprotective genes[18] (Figure 2).

NRF2 IN THE PATHOGENESIS OF MAFLD
MAFLD is the most widespread chronic liver condition worldwide, potentially leading to end stage 
disease, which requires liver transplantation[19,20]. MAFLD is a lipotoxic disease characterized by both 
structural and functional mitochondria abnormalities and oxidative stress. Impairment in mitochondrial 
electron transport chain causes excessive production of reactive oxygen and nitrogen species (ROS and 
RNS)[21]. ROS and RNS play a crucial role in cellular signaling, proliferation and differentiation, 
metabolism, and immune defense mechanisms. Besides mitochondria, ROS and RNS are continuously 
produced by the ER and peroxisomes as byproducts during their normal physiological processes. 
Oxidative stress is described as the imbalance between production of ROS/RNS and antioxidant 
systems[22]. Oxidative stress is intrinsically linked to the pathogenesis of MAFLD, and NRF2 has been 
found to be a key regulator to protect against the hepatocellular injury. Since MAFLD development and 
progression are characterized by alterations of redox balance, NRF2 is involved in every stage of 
disease, from simple steatosis to inflammation, advanced fibrosis, and initiation/progression of hepato-
cellular carcinoma[8].

NRF2 and liver steatosis
Accumulation of lipids in hepatocytes is the first step characterizing MAFLD development. This process 
is the result of increased fatty acid uptake/synthesis and decreased fatty acid oxidation/removal[23]. 
Fatty acid oxidation in peroxisomes produces H2O2, which in turn decreases the expression of enzymes 
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Figure 2 Kelch-like ECH-associated protein 1-independent nuclear factor-erythroid 2 signaling. During oxidative stress, selective autophagy 
substrate p62 competes with nuclear factor-erythroid 2 (NRF2) to bind with kelch-like ECH-associated protein 1 (Keap1). As a consequence, NRF2 dissociates from 
Keap1 and translocates to the nucleus to induce target genes. Glycogen synthase kinase 3β (GSK-3β) phosphorylates the NRF2 subunit Nrf-ECH homology (Neh) 6, 
leading to degradation by β-transducin repeats containing protein (β-TrCP). Phosphatidylinositol 3’-kinase-protein kinase B (AKT) signaling could inhibit GSK-3β. 
Protein kinase C phosphorylates Ser40 in Neh2, inducing NRF2 translocation to the nucleus. ARE: Antioxidant responsive element; SMaf: Small musculoaponeurotic 
fibrosarcoma oncogene homologue.

involved in fatty acid oxidation as carnitine palmitoyltransferase 1A and acyl-CoA oxidase through 
their regulatory factor peroxisome proliferator activated receptor alpha. Besides, H2O2 promotes lipid 
accumulation by upregulating the expression of sterol regulatory element-binding protein-1c (SREBP-
1c), which further activates fatty acid synthase, and stearoyl coenzyme-A desaturase 1, contributing to 
MAFLD pathogenesis[24]. In addition, ER-stress activates SREBP-1c and increases the expression of 
hepatic very-low density lipoprotein receptor, leading to deposition of triglycerides (TG)[12,24].

NRF2 is a key player in maintaining cellular homeostasis, suppressing MAFLD promotion and 
progression. A microarray analysis of mouse hepatic gene expression revealed that pharmacologic and 
genetic activation of NRF2 suppresses key enzymes involved in lipid synthesis and reduces hepatic lipid 
storage. NRF2-/- mice fed a high-fat diet (HFD) are more prone to develop steatosis and oxidative stress 
than wild-type mice[25]. Consistent to this, NRF2-knockout mice fed a methionine- and choline-
deficient (MCD) diet developed a severe form of micro- and macrovesicular steatosis and neutrophil 
recruitment compared to wild-type mice[26-28]. Studies on hepatic protein expression in NRF2-null and 
wild-type mice found two major groups of NRF2-modulated proteins. One group of proteins in NRF2 
wild-type animals was implicated in phase II drug metabolism and antioxidant defense, while the other 
group of proteins in NRF2-null animals was involved in lipid and fatty acid synthesis and metabolism
[29]. Another study in NRF2-null 8-wk old mice revealed a higher expression of SREBP-1c and fatty acid 
synthase than wild-type mice[30]. Nonetheless, NRF2 has little effect on hepatic fatty acid metabolism in 
12-25 wk old mice[31,32].

In addition, flavonoid glycoside scutellarin ameliorates MAFLD pathogenesis by reducing blood lipid 
levels and enhances antioxidant capacity by activating peroxisome proliferator-activated receptor 
gamma (PPAR-γ) and its cofactor-1α as well as NRF2-dependent enzymes HO-1 and glutathione-S-
transferase. Moreover, scutellarin suppresses nuclear factor κ B (NF-κB) and Keap1 mitigating MAFLD
[33]. Another study revealed that scutellarin contains breviscapine as its active component, possibly 
exerting its antioxidant effects through phosphatidylinositol 3’-kinase/protein kinase B activation and 
subsequent enhancement of NRF2 nuclear translocation, increasing the expression of HO-1 and NQO1. 
Thus, breviscapine could be used in MAFLD and hyperlipidemia due to its potential therapeutic effects
[34].

In addition, the food-derived compound apigenin is a modulator of PPAR-γ, which attenuates the 
NRF2-associated antioxidative response and hepatocyte lipid metabolism in MAFLD[35]. The specific 
deletion of NRF2 in mice diminished the signs of MAFLD induced by HFD, decreasing the accumu-
lation of TGs. Hepatic NRF2 deficiency dampens the expression of PPAR-γ, suggesting that the NRF2-
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dependent expression of PPAR-γ is critical in initiation and progression of MAFLD[36].
Liver X receptors are a family of nuclear receptors implicated in the modulation of lipid homeostasis. 

Directly or via SREBP-1c, liver X receptor α triggers the expression of lipogenic genes involved in the 
uptake and synthesis of fatty acids, TGs, cholesterol, and phospholipids. Treatment with the NRF2 
activator sulforaphane suppresses T0901317-induced lipogenesis, promoting deacetylation of farnesoid 
X receptor (FXR) by competitive binding of p300, a protein necessary for the acetylation of FXR. The 
FXRE chromatin immunoprecipitation assay confirmed that NRF2 may complex with p300 and, as a 
result, dissociate from the FXR complex[37-39]. Moreover, NRF2 activator inhibits SREBP-1c and 
lipogenic genes by promoting deacetylation of FXR and inducing small heterodimer partner, which 
accounts for the repression of liver X receptor α-dependent gene transcription, protecting the liver from 
excessive fat accumulation[40].

NRF2 and liver inflammation
NRF2 is further involved in the regulation of pro- and anti-inflammatory mediators. NRF2 is known for 
its anti-inflammatory effects as it inhibits the expression of proinflammatory cytokines like interleukin-6 
(IL-6), tumor necrosis factor, and inducible nitric oxide synthase. Moreover, NRF2-dependent 
antioxidant genes, such as HO-1, NQO1, and glutamate cysteine ligase catalytic and modifier subunits, 
inhibit the transcription of proinflammatory mediators by blocking NF-κB activation[41-43]. Of note, 
NRF2 also triggers the NLR family pyrin domain containing 3 inflammasome, which cleaves caspase-1 
and initiates the processing of pro-IL-1β to mature IL-1β[44]. NLR family pyrin domain containing 3-
dependent production of proinflammatory response can be inhibited by activation of NRF2 through 
dimethyl fumarate in alcoholic liver disease[45], and 4-acetylantroquinonol B in mice fed with a 
methionine- and choline-deficient diet[46] inducing the expression of NQO1, which inhibits the 
ROS/RNS-dependent priming.

NRF2-KO mice fed the methionine- and choline-deficient diet lose the antioxidant and detoxification 
enzymes and show an increase in steatosis, inflammation, oxidative stress, lipid peroxidation, and 
fibrinogenesis[26,28]. In line with these results, feeding the NRF2-KO mice with the HFD yielded 
significantly greater amounts of lipids and inflammation compared to wild-type mice. NRF2-KO mice 
fed a diet containing 4% soyabean oil and 16% lard for 12 wk exhibited massive lipid accumulation, 
inflammation, oxidative stress, and iron accumulation when compared to their wild-type counterparts
[47]. NRF2-KO mice fed a diet containing 45 kcal% fat (0.02% cholesterol) for 24 wk displayed a higher 
MAFLD activity score compared to wild-type animals. In HFD-fed NRF2-KO mice, livers scored higher 
for steatosis, ballooning, inflammation, and fibrosis when compared to Nrf2+/+ mice. The biochemical 
characterization studies of such mice revealed higher expression of sterol regulatory element binding 
transcription factor 1 and 2 and carbohydrate response element binding protein also known as MLX-
interacting protein-like in HFD-fed NRF2-KO mice, suggesting exaggerated lipogenic transcription[48]. 
In another study, NRF2-KO mice fed a high-fat plus 30% fructose in drinking water exhibited a higher 
MAFLD score than wildtype. Moreover, these NRF2-KO mice overexpress lipogenic transcription factor 
sterol regulatory element binding transcription factor 1, fatty acid synthase, stearoyl coenzyme-A 
desaturase 1, and CD36 and exhibited higher proinflammatory factors as NF-κB p65 and p50 subunits
[49].

In another investigation, NRF2-KO mice fed a chow diet were subjected to scanty inflammation with 
minimal increases in IL-1β, Cox2, and Nos2 mRNA[26,28]. This is due to the compromised expression of 
zonula occludens-1 and claudin-1, which are responsible for the translocation of lipopolysaccharides 
from the gut microbiota to the liver through the portal vein. In addition, the phagocytic ability of 
Kupffer cells is diminished in NRF2-KO due to lower expression of the macrophage receptor with 
collagenous structure that restricts TLR4 signaling and boosts the inflammatory response on exposure to 
lipopolysaccharide[50].

NRF2 and liver fibrosis
Liver fibrosis is a reversible wound healing response and degenerative condition caused by extensive 
deposition of extracellular matrix proteins like collagen fibrils[51]. Mechanisms underlying liver fibrosis 
include the activation of both hepatic stellate cells and Kupffer cells, resulting in functional and 
biological alterations[52]. Oxidative stress is a serious process involved in liver damage, and the 
activation of the Keap1/NRF2 pathway plays a protective role in liver fibrosis[12]. NRF2 activation 
triggers the reverse IR and attenuates liver fibrosis by inhibiting hepatic steatosis. These noticeable 
effects during NRF2 activation are due to the disruption of JAK2/STAT3 signaling and higher 
expression of suppressor of cytokine signaling 3[53]. Moreover, administration of fibroblast growth 
factor 1 variants carrying substitutions of heparin-binding sites in 9-mo-old mice inhibited activity and 
expression of lipogenic genes, improving both steatohepatitis and fibrosis[54].

CCl4-induced hepatic fibrosis is accompanied by elevated serum transaminases, alkaline phosphatase, 
and bilirubin, decreased albumin, and increased proinflammatory cytokines. In addition, CCl4-
intoxicated rats display an increase in NF-κB, p65, malondialdehyde and a decrease in antioxidants. 
Bone marrow-derived mesenchymal stem cells show favorable effects in ameliorating the hepatic effects 
of CCl4 through NRF2/HO-1 signaling, suppressing liver fibrosis, inflammation, and oxidative stress
[55].
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A major bioactive extract from the plant Schisandra chinesis, known as Schisandrin B, exerts anti-
inflammatory, anti-tumor, antioxidative, and hepatoprotective properties. Schisandrin B effectively 
improves liver function and decreases collagen deposition in the CCl4-induced liver fibrosis in rats 
through the modulation of NRF2-antioxidant response element and transforming growth factor-β
/Smad signaling pathways[56]. Tanshinol, a water-soluble compound isolated from Salvia miltiorrhiza 
Bunge, is known to exert a variety of biological effects, including anti-fibrotic effects. Rats with CCl4-
induced liver fibrosis treated intraperitoneally with tanshinol show lower serum levels of aspartate 
aminotransferase, alanine aminotransferase, and total bilirubin, as well as circulating hyaluronic acid, 
laminin, type IV collagen, and procollagen III peptide as compared to controls. Tanshinol is also able to 
suppress the expression of inflammatory cytokines such as transforming growth factor-β, tumor 
necrosis factor, Cox2, IL-1β, and IL-6 through regulation of the NF-κB pathway. In addition, tanshinol 
treatment is able to regulate the NRF2/HO-1 signaling pathway increasing SOD and GSH-Px and 
decreasing malondialdehyde levels. In this regard, tanshinol exerts protective effects on CCl4-induced 
liver fibrosis by activating the NRF2 pathway[57].

Asiatic acid (AA), a bioactive compound extracted from Centella asiatica, is known to have anti-inflam-
matory, antioxidative, and hepatoprotective properties[19-22]. Fan et al[34] showed that treatment with 
AA in the CCl4-induced liver fibrosis dramatically ameliorates oxidative stress, inflammation, and 
fibrosis in rats. The nuclear NRF2 levels were increased after AA treatment, and the NRF2-dependent 
proteins like HO-1, NQO-1, and Glutamate cysteine ligase catalytic subunit were significantly increased 
to counteract oxidative stress. Furthermore, AA inhibited the NF-κB/IkBα and JAK1/STAT3 signaling 
pathway to suppress the activation of hepatic stellate cells and the production of inflammatory markers, 
suggesting that AA could be used for the treatment of liver fibrosis[58]. Another water soluble 
compound, salvianolic acid A, extracted from a traditional Chinese herb Radix Salvia miltiorrhiza, was 
found to have anti-fibrotic effects. salvianolic acid A is able to modulate the NRF2/HO-1, NF-κB/IkBα, 
p38 MAPK, and JAK1/STAT3 signaling pathways, and to ameliorate the CCl4-induced liver fibrosis, 
improve morphology and attenuate collagen deposition in the fibrotic liver. Besides, salvianolic acid A 
is able to increase the levels of SOD and GSH-Px and decrease the malondialdehyde levels, indicating 
the effectiveness in preventing liver fibrosis by inhibiting inflammation and oxidative stress[59].

Pharmacological stimulation of NRF2 by acetylenic tricyclic bis (cyano enone) TBE-31 reverses IR in 
wild-type mice, decreases liver steatosis by increasing hepatic fatty acid oxidation and reducing ER 
stress, and lessens markers of oxidative stress, apoptosis, and fibrosis. Of note, histology studies showed 
that TBE-31 decreases the fibrosis score and MAFLD activity score[59]. In another study, NRF2 activator 
NK-252 (1-(5-(furan-2-yl)-1,3,4-oxadiazol-2-yl)-3-(pyridin-2-ylmethyl)urea) significantly reduced 
markers of fibrosis like COL1A1, TIMP-1, and transforming growth factor-β in rats, suggesting that this 
compound could be used as a therapeutic agent to reverse liver fibrosis. In addition, NK-252 attenuated 
the serum aspartate aminotransferase and alanine aminotransferase levels in male Fischer rats and 
upregulates NQO1 gene expression[60].

THERAPEUTIC IMPLICATIONS OF NRF2 IN MAFLD
Currently, there is no medicine that can treat MAFLD, but some therapeutic agents are useful in 
managing the problems associated with the disease (Table 1). Thus, it is necessary to develop and test 
drugs for the prevention and treatment of MAFLD, and it is conceivable that NRF2-activating 
compounds can attenuate MAFLD progression. Plant-derived compounds including resveratrol, 
curcumin, quercetin, and synthetic molecules like oltipraz and pirfenidone could be used to prevent 
oxidative stress by modulating the NRF2 pathway[12,21].

Flavonoids represent a class of bioactive antioxidants extracted from vegetables, plants, and fruits 
known to exhibit therapeutic properties in MAFLD. The flavonoid 7-mono-O-(β-hydroxyethyl)-rutoside 
activates NRF2 and improves the ratio of GSH/glutathione disulfide and increases the expression of 
HO-1 and GSH-Px3[61,62]. The flavonoid scutellarin (4′,5,6-trihydroxy flavonoid-7-glucuronide) 
increases NRF2 protein in C57BL/6J mice, increases the expression of HO-1, glutathione-S-transferase, 
and NQO1, and inhibits both NF-κB and Keap1[33]. Furthermore, 7,8-dihydroxyflavone upregulates 
NRF2 activity to counteract alcohol-induced and HFD-induced liver toxicity[63]. Apigenin (4′,5,7-
trihydroxyflavone), a flavonoid derived from fruits, inhibits lipid peroxidation and exerts protective 
effects against hepatic steatosis. Moreover, apigenin increases the activities of SOD, CAT, and GSH-Px
[35,64].

Gastrodin is a water-soluble extract of Gastrodia elata BI that exerts antioxidative activity and 
improves lipid metabolism in MAFLD mice by promoting NRF2 nuclear translocation[65]. Clusterin, a 
glycoprotein extracted from ram rete testis fluid, improves steatosis and hepatitis induced by 
methionine and choline-deficient diet by triggering NRF2 and HO-1 expression[66]. Osteocalcin 
treatment improves hepatic TG accumulation, promotes NRF2 nuclear translocation, and inhibits 
phosphorylation of c-Jun N-terminal kinase pathway[67].

In addition, compounds like scutellarin containing breviscapine, hesperitin, apigenin, scoparone, 
Schisandrin B, tanshinol, and AA and other tabulated compounds are known to exert antioxidative and 
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Table 1 Modulators of nuclear factor erythroid 2-related factor 2 pathway in metabolic associated fatty liver disease

Compound name Species Diet/duration Treatment Key findings Reference

MonoHER Female C57BL/6J 
mice (Ldlr-/-)

High fat and high 
cholesterol/13 wk

Administered daily 
subcutaneously at a 
dosage of 500 mg/kg of 
body weight (25 µL/g of 
body weight)

NRF2 activation, ↑GSH/GSSG 
ratio, ↑HO-1, GSH-Px

[62]

Male C57BL/6 
mice, hepaG2 cells

High fat/10 wk Administration of 12.5, 
25.0, and 50.0 mg/kg per 
day

↑PPARγ, PGC-1α, NRF2, HO-
1, NQO1, Keap1, NF-κB

[33]Scutellarin

Sprague-Dawley 
rats

High fat/12 wk Administered orally 50, 
100, and 300 mg/kg/d

NRF2, HO-1, NQO1; 
PI3K/AKT activation

[34]

Apigenin Male C57BL/6J 
mice

High fat/16 wk Injected intraperitonially 
30 mg/kg daily for 3 wk

NRF2 activation; PPARγ 
inhibition; SOD, CAT, GSH-Px

[35]

7,8-dihydroxyflavone Male wistar rats High fat, ethanol/12 
wk

Administered intraperito-
nially at 5 mg/kg/d for 4 
wk

Amelioration of liver 
architecture, vescicular 
changes, infiltration; restored 
serum biomarkers like AST, 
ALT, and TC; ↑NRF2; ↓NF-κB

[63]

Resveratrol Male C57BL/6 mice High fat/16 wk Supplemented with 0.4% 
resveratrol in HFD for 16 
wk

Attenuated liver steatosis; ↑
NRF2 activation; attenuated 
HFD induced methylation of 
NRF2 promoter; ↓oxidative 
stress

[68]

Quecertin HepG2 cells - Treated with quecertin at 
5-50 µM concentrations 
for 0, 10, 30, 60, 120, 240, 
and 1080 min

↑GSH, GSH-Px, GCS; p38-
MAPK is involved in NRF2 
modulation; ↓oxidative stress

[69]

Male C57BL/6 mice High fat and high 
fructose/8 wk

Administered orally 50 
and 100 mg/kg/d for 4 
wk

↑CYP3A, CYP7A; regulation of 
NRF2/FXR/LXRα pathway; ↓
SREBP-1C, FAS

[70]Curcumin (1,7-bis (4-
hydroxy-3-
methoxyphenyl)-1,6-
heptadiene-3,5-dione)

Male Sprague-
Dawley rats

High fat/6 wk Administered orally 50 
mg/kg daily for 6 wk

↓Steatosis and inflammation; ↓
Serum aminotransferases, 
lipids, and insulin resistance; ↓
TNF, IL-6, MDA; ↑NRF2, GSH, 
HO-1, SOD

[71]

Oltipraz Male Fischer 344 
rats

Choline-deficient L-
amino acid–defined/10 
wk

Administered orally at 60 
mg/kg/d for 9 wk

↑NRF2 activation; antifibrotic 
and anti-inflammatory; ↓AST 
and ALT; ↑NQO1 gene 
expression

[61]

GSTD HL-7702 cells, male 
C57BL/6J, male 
Sprague-Dawley 
rats

Oleic acid (OA)/24 h, 
high fat/10 wk; high fat 
and high cholesterol/10 
wk

Cells were treated with 
GSTD for 24 h, 
administered orally at 10, 
20, 50 mg/kg per day for 
10 wk, administered 
orally at 20, 50 mg/kg per 
day for 10 wk

↑NRF2, HO-1, SOD; activate 
AMPK/NRF2; ↓proinflam-
matory response, and hepatic 
steatosis; ↓MDA, ROS

[65]

NK-252 1-(5-(furan-2-yl)-
1,3,4-oxadiazol-2-yl)-3-
(pyridin-2-
ylmethyl)urea)

Male Fischer 344 
rats

Choline-deficient L-
amino acid–defined/10 
wk

Administered orally at 20, 
60 mg/kg/d for 9 wk

Attenuated histological 
abnormalities; ↑antifibrotic 
effects; ↓TGF-β1, collagen α1; 
NRF2 activation; ↑NQO1 
expression

[61]

Clusterin Male hCLU-tg mice MCD/3 wk Generated hepatocyte-
specific clusterin overex-
pression transgenic mice 
and fed with MCD diet

↓Hepatic TGs; less infiltration 
of macrophages; ↓TNF; ↑NRF2 
activation and mRNA of HO-1

[66]

Osteocalcin Male C57/BL6J 
mice

High fat/12 wk Injected intraperitonially 
at concentration 3 
ng/µL/d for 12 wk

↓Hepatic TG accumulation; ↑
NRF2 activation; ↑CAT, SOD, 
GSH-Px; ↓JNK activation

[67]

Orlistat Male Sprague-
Dawley rats

High fat/12 wk Administered at 10 
mg/kg/d for 12 wk

↑NRF2 activation; protection 
against insulin resistance, 
hyperlipidemia, oxidative 
stress, and liver injury

[72]

↑NRF2 activation; ↓ROS 
production; suppressed 
lipogenic factors C/EBPα and 

Garcinia Cambogia Male C57BL/6N 
mice

High fat/8 wk Administered 200, 400 
mg/kg/d for 8 wk

[73]
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PPARγ; suppressed apoptosis 
by normalizing Bcl-2/BAX 
ratio and PARP cleavage

HTT Male Sprague-
Dawley rats, 3T3-L1 
murine embryo 
fibroblast cells

High fat/4 wk, 3T3-L1 
cells treated with 
FBS/DMEM for 8 d

Administered orally HTT 
at 350, 700, and 1400 
mg/kg/d, 3T3-L1 cells 
treated with HTT at 500 
µg/mL for 24 h or 48 h

↑NRF2-HO-1 activation, 
antioxidant activities; HTT 
inhibited liver weight gain; 
reduced lipid profile; 
improved liver function; HTT 
promoted lipolysis and 
increased antioxidant activities 
in 3T3-L1 cells

[74]

Hesperitin HepG2 cells, male 
wistar rats

OA/24 h, high fat/16 
wk

Treated cells at 0.25, 0.50, 
1.00, 2.50, 5.00, and 10.00 
µM; administered 100 
mg/kg in 0.5% CMC-Na

Alleviated hepatotoxicity and 
oxidative stress by increasing 
SOD, GSH-Px, GCLC, and HO-
1; ↑NRF2 activation; 
suppressed OA induced 
inflammation; reduced TC, 
TGs, and LDLC in a dose-
dependent manner

[75]

Glucoraphanin Male C57BL/6JSlc 
mice

High fat/14 wk Administered 0.3% 
glucoraphanin orally for 
14 wk

Decrease in weight gain; 
improved insulin resistance; 
reduced hepatic steatosis and 
oxidative stress; decrease in 
circulating LPS; ↑NRF2 
activation; ↑energy 
expenditure and; UCP1 
protein expression

[76]

Scutellaria baicalensis 
extract

Male KK-Ay mice 1% Orotic acid and 33% 
sugar/7 d

Supplemented with diet 
for 7 d

Diminished increase in liver 
weight; attenuated hepatic 
steatosis; ↑NRF2 expression; 
suppress SREBP-1c gene and 
protein expression

[77]

Ginkgolide B Male C57/BL6 
ApoE-/--mice, 
HepG2 cells

High fat/5 wk, 100 µM 
palmitic acid (PA) and 
200 µM OA/24 h

Administered orally at 20, 
30, and 1.3 mg/kg/d; 
treated cells at dosages 0, 
1, 2, 4, 8, 16, and 32 
µg/mL

NRF2 activation; inhibition of 
oxidative stress and lipid 
peroxidation through NRF2 
pathway; increase in HO-1 and 
GSH-Px4

[78]

Scoparone Male C57BL/6 J 
mice, AML2 and 
RAW264.7 cells

MCD/4 wk; 
AML12/300 µM PA 
and RAW264.7/10 µM/ 
Chloroquine

Administered daily 
intraperitonially for 4 wk 
at 20, 40, and 80 mg/kg; 
AML12 and RAW264.7 
cells were pretreated with 
scoparone for 2 h

Ameliorated hepatic inflam-
mation; improved hepatic 
autophagy; suppressed inflam-
mation by inhibiting 
ROS/P38/NRF2 axis and 
PI3K/AKT/mTOR pathway

[79]

DA Male C57BL/6J 
mice, HL7702 cells

High fat/12 wk, 0.6 
mM OA/24 h

Administered by gavage 
at 10 and 20 mg/kg/d for 
9 wk; treated with 2.5, 5.0, 
and 10.0 µM DA

Ameliorated liver ferroptosis 
in mice and cells; improved 
oxidative stress and lipid 
peroxidation in vivo; ↑NRF2-
HO-1 expression; ↑GSH, GSH-
Px4

[80]

Silibinin Male C57BL/6 
mice, NCTC-1469 
cells

MCD/6 wk, OA plus 
PA/24 h

Administered by gavage 
at 10 and 20 mg/kg/d for 
6 wk, 0.25 mM/L PA and 
0.5 mM/L OA/24 h

Prevented CFLAR-JNK 
pathway; ↑β-oxidation and 
efflux of fatty acids; ↑
expression of CAT, GSH, GSH-
Px, and HO-1; ↓expression of 
CYP2E1 and CYP4A; ↑NRF2 
activation

[81]

Chicoric acid Male C57BL/6 mice High fat/9 wk Administered by gavage 
at 15 and 30 mg/kg/d for 
9 wk

Attenuated hyperglycemia, 
dyslipidemia, and systemic 
inflammation; alleviated 
hepatic lipid accumulation and 
oxidative stress; suppressed 
hepatic inflammation and NF-
κB pathway; ↑NRF2/Keap1 
activation; improved gut 
microbiota

[82]

Carbon monoxide 
releasing molecule-A1

Male C57BL/6J 
mice

High fat/16 wk Administered intraperito-
nially 2 mg/kg/d for 7 
wk

↑NRF2/ARE activation; 
improved lipid homeostasis; ↑
ATP production; improved 
mitochondrial biogenesis; 
ameliorated oxidative stress

[83]
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NRF2: Nuclear factor erythroid 2-related factor 2; GSH: Reduced glutathione; GSSG: Oxidized glutathione; HO-1: Heme oxygenase-1; GSH-Px: Glutathione 
peroxidase; PPAR-γ: Peroxisome proliferator-activated receptor-γ; PGC-1α: Proliferator-activated receptor gamma coactivator-1α; NQO1: NAD(P)H 
quinone oxidoreductase 1; DA: Dehydroabietic acid; PA: Palmitic acid; NF-κB: Nuclear factor κ B; PI3K: Phosphatidylinositol 3’-kinase; SOD: Superoxide 
dismutase; CAT: Catalase; AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; TC: Total cholesterol; HFD: High-fat diet; GCS: 
Glutamylcysteine-synthetase; MAPK: Mitogen-activated protein kinase; CYP3A: Cytochrome P450, family 3, subfamily A, CYP7A Cytochrome P450, 
family 7, subfamily A; FXR: Farnesoid-X-receptor; LXRα: Liver X receptor α; SREBP-1C: Sterol regulatory element-binding protein-1c; FAS: Fatty acid 
synthase; TNF: Tumor necrosis factor; IL-6: Interleukin-6; MDA: Malondialdehyde; AMPK: AMP kinase; ROS: Reactive oxygen species; TGF-β1: 
Transforming growth factor-β1; TG: Triglycerides; JNK: c-Jun N-terminal kinase; C/EBPα: CCAAT/enhancer binding protein α; Bcl-2: B-Cell 
Leukemia/Lymphoma 2; BAX: BCL2 associated X protein; PARP: Poly-ADP ribose polymerase; HTT: Hedansanqi Tiaozhi Tang; GCLC: Glutamate 
cysteine ligase catalytic; LDLC: Low density lipoprotein cholesterol; LPS: Lipopolysaccharide; UCP1: Uncoupling protein 1; GSH-Px4: Glutathione 
peroxidase 4; mTOR: Mammalian target of rapamycin; CFLAR: CASP8 And FADD like apoptosis regulator; CYP2E1: Cytochrome P450 family 2 subfamily 
E member 1; CYP4A: Cytochrome P450 family 4 subfamily A; ARE: Antioxidant response element; AKT: Protein kinase B; MCD: Methionine- and choline-
deficient; GSTD: Gastrodin; Keap1: Kelch-like ECH-associated protein 1.

hepatoprotective activity by modulating the NRF2 pathway.

CONCLUSION
Oxidative stress can be a potent inducer of inflammation and fibrosis in the spectrum of chronic liver 
diseases. Among them, MAFLD is the most widespread chronic liver condition worldwide. The 
transcription factor NRF2 has gained importance in recent years as a possible therapeutic target for the 
treatment of liver diseases. The expression of antioxidant protective genes through the NRF2 pathway 
counteracts oxidative stress and prevents progression of liver damage in MAFLD. The different antiox-
idative molecules modulating the NRF2 pathway have exerted beneficial effects in ameliorating liver 
damage. Currently, there is no efficient treatment to counteract the complex pathophysiology of liver 
diseases. Thus, compounds having antioxidative properties could be useful candidates for the treatment 
of liver diseases by modulating the NRF2 signaling pathway. NRF2 activators could improve and 
prevent the advanced stages of MAFLD such as liver fibrosis and liver cirrhosis. Natural plant-derived 
and synthetic NRF2 activators require further experimental validation to be promoted as efficient 
therapeutic agents. Some drugs have entered clinical trials, and further attempts are ongoing to find 
NRF2 inducers with high bioavailability, safety, and specificity.
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