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Abstract
Given the frequent co-existence of an aggressive tumor and underlying chronic 
liver disease, the management of hepatocellular carcinoma (HCC) patients 
requires experienced multidisciplinary team discussion. Moreover, imaging plays 
a key role in the diagnosis, staging, restaging, and surveillance of HCC. Currently, 
imaging assessment of HCC entails the assessment of qualitative characteristics 
which are prone to inter-reader variability. Radiomics is an emerging field that 
extracts high-dimensional mineable quantitative features that cannot be assessed 
visually with the naked eye from medical imaging. The main potential applic-
ations of radiomic models in HCC are to predict histology, response to treatment, 
genetic signature, recurrence, and survival. Despite the encouraging results to 
date, there are challenges and limitations that need to be overcome before 
radiomics implementation in clinical practice. The purpose of this article is to 
review the main concepts and challenges pertaining to radiomics, and to review 
recent studies and potential applications of radiomics in HCC.
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Core Tip: Radiomics is an emerging field that extracts high-dimensional mineable quantitative features that 
cannot be assessed visually with the naked eye from medical imaging. The main potential applications of 
radiomic models in hepatocellular carcinoma (HCC) are to predict histology, predict response to 
treatment, predict genetic signature, predict recurrence, and predict survival. The purpose of this article is 
to review the main concepts and challenges pertaining to radiomics, and to review recent studies and 
potential applications of radiomics in HCC.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide
[1]. Liver cancer is especially common in Asia, where 72.5% of all new liver cancer cases worldwide are 
diagnosed[2]. HCC accounts for over 90% of all primary liver cancer cases[3]. The main risk factors for 
HCC in the West is viral hepatitis (hepatitis C virus in the West and hepatitis B virus in Asia and in 
developing countries) and alcohol intake. In addition, non-alcoholic steatohepatitis is becoming a 
common risk factor, particularly in the West[3,4]. HCC patient prognosis depends on the stage of HCC 
at the time of diagnosis[5]; and advanced-staged patients at the time of diagnosis have a poor prognosis
[5-7].

The treatment of HCC is based on tumor burden, clinical performance of the patient, and liver 
function[8]. Given the frequent co-existence of an aggressive tumor and underlying chronic liver 
disease, the management of HCC requires experienced multidisciplinary team discussion[9]. Moreover, 
radiology plays a key role in the screening, diagnosis, staging, restaging, and surveillance of HCC. 
Currently, imaging assessment is based on qualitative characteristics, such as size and enhancement 
pattern, which are prone to inter-reader variability. Reliable tools that can potentially address this 
variability as well as deal with the vast amount of imaging data are warranted[10]. Over the last decade, 
radiomics has become a popular quantitative tool that can potentially address these challenges and 
provide information not previously available for precision decision-making[11].

Radiomics is an emerging field that extracts high-dimensional mineable quantitative features that 
cannot be assessed visually with the naked eye from medical imaging[12]. The main potential applic-
ations of radiomic models in HCC are to predict histology, response to treatment, genetic signature, 
recurrence, and survival[13]. Despite the encouraging results to date, there are several challenges and 
limitations that need to be overcome before the implementation of radiomics in clinical practice. The 
purpose of this study is to review the main concepts, challenges pertaining to radiomics and recent 
studies and potential applications of radiomics in HCC.

RADIOMICS
Main concepts
In the new era of precision medicine, artificial intelligence (AI) and in its various branches, such as 
machine learning (ML) and deep learning (DL), have provided new imaging biomarkers that can 
potentially provide new data that are useful for clinical decision-making. ML is related to a set of 
computational systems that improve with experience. DL is a subset of ML based on series of layers 
(trainable nonlinear operations), each of which transforms input data into a representation that 
facilitates pattern recognition[14].

Radiomics has recently emerged as a translational research field that proposes to discover new associ-
ations between clinical data and quantitative data extracted from medical images using conventional 
biostatistics or AI methods[12] and become popular, particularly in oncologic imaging. Radiomics 
involves mineable high-dimensional data extraction, characterizing intensity, shape, size, and/or 
texture from images to create big-data datasets that are then used to identify distinct sub-visual imaging 
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patterns[15]. Radiomics models usually use magnetic resonance imaging (MRI), computed tomography 
(CT) and positron emission tomography (PET) images data. Fundamentally, radiomics is motivated by 
the observation that these imaging characteristics reflect phenotype and genotype of underlying tissue 
and thus can help in clinical decision making[16].

Radiomic can be subdivided into texture, size and shape, and transformed based features. The most 
common radiomic features is texture. It can be subdivided into first-order, second-order and higher-
order statistical features. First-order features reflect the distribution of values of individual voxels 
without concern for spatial relationships; they are generally histogram-based, such as mean (average 
intensity), entropy (quantify randomness of intensity), kurtosis (flatness) and skewness (asymmetry). 
Second-order features reflect the statistical interrelationships between voxels with similar (or dissimilar) 
contrast values[12] and some of the commonly used 2nd order features are: Grey level co-occurrence 
matrix, grey level run length matrix, and grey level size zone matrix features. Taking into account the 
repetitive patterns in radiological images, higher-order statistical methods use sophisticated filter grids 
on the images - such as Minkowski functionals (to evaluate voxels whose intensity is above a 
determined threshold), Wavelet and Laplacian transforms (to identify coarse texture patterns) and 
fractal analysis (to assess the irregularity of a surface)[12]. In practice, standard libraries with predefined 
feature configurations and validated reference values (such as PyRadiomics) are frequently used to 
increase the reproducibility of radiomic models.

Workflow
Radiomic analysis is a multistep process involving the processing of medical images to generate 
different features from segmented images. The typical radiomics workflow can be summarized in the 
following steps (Figure 1):

Image acquisition and preprocessing: Standardized imaging protocols should be used to avoid 
reproducibility issues related to noise and confounding. However, standardized imaging protocols also 
decrease the generalizability of the results. Once a patient dataset has been identified, images should be 
anonymized as well as exported as Digital Imaging and Communication in Medicine files[17]. De-
noising and motion correction steps may be needed.

Segmentation: Segmentation involves the delineation of region of interests (ROIs) on the tumor or 
peritumoral zones. ROIs can be delineated manually, semiautomatically, or automatically (using ML 
tools) in either two-dimensional (2D) or three-dimensional (3D) views (Figure 2). Whenever possible, 
segmentations should be checked by a radiologist to ensure accuracy.

Feature extraction, feature selection and model building: A wide range of statistical models are 
commonly used to choose a subset of optimal features that correlate with the predenid outcome[15]. 
Many of the extracted features are in fact redundant and supervised or unsupervised approaches can be 
applied to achieve dimension reduction. ML and DL techniques are emerging as useful tools to achieve 
more accurate feature selection[18,19]. The features should be selected only based on the training data to 
avoid bias.

Of note, the number of extracted features is commonly larger than the study sample, which can 
contribute to overfitting of the model and to overoptimistic results. Some strategies can be done, for 
example, select the features in such a way to maintain the ratio or regularization methods are used to 
minimize the complexity of the respective models[20]. Once the optimal features are identified, a 
statistical model can be proposed to predict a specific clinical question using different classifiers such as 
generalized linear models, random forests, support vector machines, or neural networks[20,21].

Validation: Validation is essential to estimate model performance and can be done using subsets of the 
original training dataset (i.e., cross-validation) or using a separate hold-out dataset containing either 
internal or external data[17].

Main challenges
To date, radiomic models reproducibility is often poor, due to insufficient reporting or limited open-
source code and data, which undermines external validation and increases the subsequent risk of false-
positive results[22]. Further, researchers often face great difficulty in acquiring unbiased and 
homogeneous datasets across multiple institutions, thus hampering multi-institutional collaborations 
involving large multi-institutional datasets for the training and validation of radiomic models[14]. For 
successful multi-institutional cooperation for building large multi-institutional datasets for radiomic 
models training and validation, radiomics workflow standardization, clear reporting of study 
methodology, and data sharing across different institutions are needed[17]. Additionally, an effective 
means to interpret the vast and varied data derived from radiomics analysis is another key obstacle to 
the clinical implementation of radiomic models. Therefore, a balanced interpretation of results and an 
increased focus on interpretable models are essential to their successful integration into clinical practice
[23]. Finally, manual segmentation is a time-consuming process and one of the most common limitations 
that should be managed with automatic or semiautomatic strategies before widespread use of radiomics 
tools.
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Figure 1  Illustration summarizing radiomics workflow.

Figure 2 Illustration of hepatocellular carcinoma segmentation. 72-year-old man with cirrhosis had a new liver lesion on computed tomography, 
indeterminate. Gadoxetic acid-enhanced T1-weighted images show a 1.3 cm (arrows) lesion. A: With arterial phase hyperenhancement; B: Questionable washout 
appearance on portal venous; C: Delayed phases; D: Hypointensity on during hepatobiliary phase (20 min); E and F: A tumor bed segmentation was exemplified, the 
portal venous phase (E) was used to manually segment the volume of interest (F); G and H: Note the gross findings after surgery. Histology confirmed hepatocellular 
carcinoma.

APPLICATIONS OF RADIOMICS IN HCC
Prediction of HCC histology
Table 1 summarizes the studies in the literature to date that have evaluated the use of radiomics to 
preoperatively predict HCC histology.

Distinguishing between HCC and other malignant or benign lesions: The distinction between HCC 
and other primary hepatobiliary malignancies can be challenging on imaging, because of the overlap of 
some features, especially for combined tumors[24]. In light of this, many studies have investigated 
radiomics performance in differentiating HCC from other malignant and benign hepatic lesions. For 
instance, Liu et al[24] studied the use of MRI- and CT-based radiomics to differentiate between HCC, 
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Table 1 Summary of the studies that evaluated radiomics to preoperatively predict hepatocellular cholangiocarcinoma histology

Ref. Country n Imaging 
modality Endpoint Segmentation ROI/VOI No. of 

readers Main results Validation

Wang et al
[92], 2022

China 196 MRI cHCC-CC vs 
HCC

Manual, intrat-
umoral

ROI 1 AUC (delayed phase 
MRI): 0.91

None

Liu et al
[24], 2021

Canada 85 MRI and CT cHCC-CC vs 
HCC vs CC

Manual, intrat-
umoral

ROI 2 AUC (MRI): 0.77-0.81. 
AUC (CT): 0.71-0.81

Cross-
validation

Lewis et al
[25], 2019

United 
States

63 MRI cHCC-CC vs 
HCC vs CC

Manual, intrat-
umoral

VOI 2 AUC (LI-RADS and 
male gender): 0.90

None

Nie et al
[27], 2020

China 156 CT HCC vs FNH Manual, intrat-
umoral

ROI 2 AUC (radiomics): 0.96 
training, 0.87 
validation. AUC 
(radiomics + clinical 
factors): 0.98 training, 
0.92 validation

None

Wu et al
[28], 2019

China 369 MRI HCC vs 
hemangioma

Manual, intrat-
umoral

ROI 2 AUC: 0.86 training, 0.89 
testing

None

Mokrane 
et al[29], 
2020

United 
States

178 CT HCC 
diagnosis

Manual, intrat-
umoral

VOI 2 AUC: 0.70 training, 0.66 
validation

External

Brancato 
et al[34], 
2022

Italy 38 MRI Tumor grade Manual, intrat-
umoral

VOI 1 AUC: 0.89 None

Gao et al
[93], 2018

China Training: 
125. 
Validation: 
45

MRI Tumor grade Manual, intrat-
umoral

N/A N/A AUC: 0.83 training, 0.74 
validation

None

Wu et al
[30], 2019

China Training: 
125. 
Validation: 
45

MRI Tumor grade Manual, intrat-
umoral

ROI 1 AUC: 0.83 training, 0.74 
validation

Internal

Zhou et al
[94], 2017

China 46 MRI Tumor grade Manual, intrat-
umoral

ROI 1 AUC: 0.83-0.92 None

Mao et al
[31], 2022

China Training: 85. 
Validation: 
37

MRI Tumor grade Manual, intrat-
umoral

ROI 2 AUC: 0.97 training, 0.94 
validation

Internal

Chen et al
[33], 2021

China Training: 
112. 
Validation: 
49

CT Tumor grade Manual, intrat-
umoral

VOI 2 AUC: 0.90 training, 0.94 
validation

Internal

Yang et al
[95], 2019

China Training: 
146. 
Validation: 
62

Gadoxetic 
acid-
enhanced 
MRI

MVI Manual, intrat-
umoral

ROI 2 
(consensus)

AUC: 0.94 training, 0.86 
validation

Internal

Xu et al
[39], 2019

China 495 CT MVI Semi-automatic, 
intratumoral and 
peritumoral

VOI 3 AUC: 0.91 training, 0.89 
validation

Internal

Feng et al
[40], 2019

China 160 Gadoxetic 
acid-
enhanced 
MRI

MVI Manual, intrat-
umoral and 
peritumoral

VOI 3 AUC: 0.85 training, 0.83 
validation

Internal

Zheng et 
al[41], 
2017

United 
States

120 CT MVI Semi-automatic ROI 1 AUC: 0.80 None

Bakr et al
[96], 2017

United 
States

28 CT MVI Manual, intrat-
umoral

ROI 4 AUC: 0.76 None

Ma et al
[97], 2019

China 157 CT MVI Manual, intrat-
umoral

VOI 1 AUC (portal venous 
phase CT): 0.79

Cross-
validation

AUC: Area under the curve; cHCC-CC: Combined hepatocellular cholangiocarcinoma; CT: Computed tomography; FNH: Focal nodular hyperplasia; HCC: 
Hepatocellular carcinoma; MRI: Magnetic resonance imaging; MVI: Microvascular invasion; ROI: Region of interest; VOI: Volume of interest.
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cholangiocarcinoma, and combined HCC-cholangiocarcinoma. Using MRI, radiomic features derived 
from contrast-enhanced phases demonstrated excellent performance to differentiate HCC from non-
HCC [area under the curve (AUC) ≥ 0.79], with the highest AUC obtained from the arterial phase (AUC 
of 0.81); meanwhile, using CT, radiomic features derived from the pre-contrast and portal venous phase 
yielded AUC values of 0.81 and 0.71, respectively. In another study, Lewis et al[25] found that the 
combination of the apparent diffusion coefficient 5th percentile radiomic feature with Liver Imaging 
Reporting and Data System classification and male gender achieved an accuracy of 80%-81.5% in distin-
guishing HCC from intrahepatic cholangiocarcinoma (ICC) and combined HCC-ICC, and outperformed 
either measure alone. Other studies showed that radiomics is helpful to distinguish between HCC and 
benign tumors in non-cirrhotic livers, e.g., from hepatocellular adenoma (AUC of 0.96 in the training set 
and 0.94 in the test set)[26], from focal nodular hyperplasia (AUC of 0.979 in the training set and 0.917 in 
the test set)[27], and from hemangioma (AUC: 0.86 in the training set and 0.89 in the test set)[28]. 
Mokrane et al[29] validated a radiomics signature to diagnose HCC in patients with cirrhosis and 
increased radiologists’ confidence.

Prediction of histologic grade: Histologic grade is an important prognostic factor in patients with HCC 
and is only available preoperatively in patients who undergo biopsy. Therefore, studies have aimed to 
identify non-invasive imaging features such as radiomic features that could potentially predict the 
tumor grade. Wu et al[30] found that MRI-based radiomics can successfully categorize low-grade and 
high-grade HCC, with the radiomic model outperforming the clinical model (AUC 0.742 for the 
combined T1-weighted and T2-weighted MRI-based radiomic model vs AUC 0.6 for the clinical one) 
and the combined radiomic and clinical model (AUC 0.8) outperforming both models alone. Mao et al
[31] also investigated MRI-based radiomic features, with Gd-EOB-DTPA contrast administered for the 
MRI exams, finding that the artificial neural network combining radiomic features from the contrast-
enhanced arterial phase and hepatobiliary phase yielded the highest AUC of 0.944. Moreover, they 
found that the artificial neural network models were superior to the logistic regression models. In other 
studies, CT-based radiomics has been found to have high performance in distinguishing between low- 
and high-grade tumors[32-34]; for instance, Chen et al[33] found an AUC of 0.937 for a ML-based 
radiomics model based on the CT portal phase.

Prediction of microvascular invasion: Microvascular invasion (MVI) is found in about 15%-57% of 
patients with HCC who undergo surgery[35,36] and is associated with higher rates of recurrence and 
shorter survival after surgery[37]. Although imaging can be used to diagnose macrovascular invasion 
(or tumor in vein), preoperative imaging identification of MVI is difficult. Studies have evaluated the 
performance of radiomics as a tool to predict MVI, with most predictive models combining radiomics 
and clinical biomarkers[38]. For instance, Xu et al[39] proposed a model combining CT-based radiomic 
features with radiologic and clinical parameters; the model was not only an independent predictor of 
histologic MVI (AUC of 0.909 in the training/validation set and 0.889 in the test set) but was also an 
independent predictor of worse prognosis (disease-specific recurrence and disease-specific mortality). 
Of note, the radiomics-only model did not add significant value to radiologist scores alone. Since MVI 
occurs primarily at the tumor periphery (approximately 85% of MVI is located within one centimeter 
from the tumor margin), studies have investigated radiomic features derived from the peritumoral 
tissue. For instance, Feng et al[40] demonstrated that a model combining intratumoral and peritumoral 
radiomic features was superior in predicting MVI using Gd-EOB-DTPA-enhanced MRI compared to the 
model containing only intratumoral radiomics features. Additionally, Zheng et al[41] demonstrated that 
peritumoral textural features had an AUC of 0.80 and a multivariate model combining alfa-fetoprotein, 
tumor size, hepatitis status and quantitative features achieved an AUC of 0.88.

Prediction of HCC genetic expression
Compared to the prediction of histology, fewer researches in the literature have evaluated the use of 
radiomics to predict genetic expression in patients with HCC (Table 2). Overall, studies on the use of 
radiomics to predict genetic expression have focused on using radiomics to predict Ki67 expression as 
well as cytokeratin 19 (CK19), P53, and phosphatidylinositol-3 kinase (PI3K) status. Of note, in 2007, 
Segal et al[42] investigated for the first time the correlation between HCC genetic expression and CT 
imaging traits, finding 32 CT imaging traits that were correlated with the expression levels of 116 
genetic markers.

Ki67 expression: High Ki-67 expression in HCC patients is associated with fast progression and poor 
prognosis[43]. To determine if radiomics can be useful to predict Ki67 expression, Wu et al[44] 
developed and validated a radiomic nomogram based on the combination of CT-based radiomic 
features and clinical factors. Using Gd-EOB-DTPA-enhanced MRI, Li et al[45] found that texture analysis 
of the hepatobiliary phase, arterial phase, and portal vein phase were helpful for predicting Ki67 
expression. In their study, a single slice with the largest proportion of the lesion was delineated, and the 
predictive performance of models were compared by misclassification rate. In another study by Fan et al
[46] using Gd-EOB-DTPA-enhanced MRI, the authors delineated the whole lesion, and the predictive 
performance of different models were compared using the receiver operating curve, calibration curve, 
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Table 2 Summary of the studies that evaluated radiomics models to predict genetic profile in patients with hepatocellular 
cholangiocarcinoma

Ref. Country n Imaging 
modality Endpoint Segmentation ROI/VOI No. of 

readers Main results Validation

Xia et al
[98], 
2018

China 38 CT Association with 
gene expression 
profile

Manual, intrat-
umoral

ROI 1 Individual textural 
features predicted 
gene modules

No

Wu et 
al[44], 
2022

China Training: 
120. 
Validation: 
52

CT Ki-67 expression Manual, intrat-
umoral

VOI 2 AUC: 0.85 (training), 
0.74 (validation)

Internal

Li et al
[45], 
2019

China 83 MRI Ki-67 expression Manual, intrat-
umoral

ROI 2 Some features were 
associated, no model

No

Ye et al
[47], 
2019

China 89 MRI Ki-67 expression Manual, intrat-
umoral

VOI 2 C-index: 0.878 No

Fan et 
al[46], 
2021

China Training: 
103. 
Validation: 
48

MRI Ki-67 expression Manual, intrat-
umoral

VOI 2 AUC: 0.88 (training), 
0.80 (validation)

Internal

Hu et al
[48], 
2022

China Training: 87. 
Validation: 
21

MRI Ki-67 expression Manual, intrat-
umoral

ROI 1 AUC: 0.90 (training), 
0.83 (validation)

Internal

Wang 
et al
[50], 
2019

China 78 MRI CK19 positivity Manual, intra- and 
peritumoral

ROI 1 AUC: 0.76 No

Chen et 
al[51], 
2021

China Training: 
102. 
Validation: 
19

MRI CK19 positivity Manual, intrat-
umoral

ROI 2 AUC: 0.82 (training), 
0.78 (external 
validation)

Internal and 
external

Yang et 
al[52], 
2021

China 
(multi-
center)

Training: 
143. 
Validation: 
75

MRI CK19 positivity Manual, intrat-
umoral

ROI 2 AUC: 0.85 (training), 
0.79 (external 
validation)

Internal and 
external

Wu et 
al[55], 
2019

China 63 CT P53 mutation status Manual, intrat-
umoral

ROI 2 AUC: 0.62-0.79 No

Li et al
[99], 
2022

China 92 MRI Gene signatures 
associated with 
disease recurrence

Manual, intrat-
umoral

ROI 2 MRI radiomics 
features could help 
quantify GOLM1, 
SETD7, and RND1 
expression levels

Internal

Liao et 
al[56], 
2022

China Training: 86. 
Validation: 
46

CT Somatic mutations of 
the PI3K signaling 
pathway

Manual, intrat-
umoral and 
peritumoral

VOI 2 AUC: 0.74 (training), 
0.73 (external 
validation)

Internal and 
external

Che et 
al[60], 
2022

China Training: 69. 
Validation: 
30

CT β-arrestin1 
phosphorylation

Manual, intrat-
umoral

ROI 1 AUC: 0.89 (training), 
0.74 (validation)

Internal

AUC: Area under the curve; CT: Computed tomography; MRI: Magnetic resonance imaging; ROI: Region of interest; VOI: Volume of interest; CK19: 
Cytokeratin 19; PI3K: P53, and phosphatidylinositol-3 kinase.

and decision cure analysis. The optimal model combining the arterial phase radiomic score and serum 
alpha-fetoprotein (AFP) levels showed high AUCs (AUC of 0.922 and 0.863 in the training and 
validation cohorts, respectively) for the preoperative Ki-67 expression prediction. In yet another study 
using Gd-EOB-DTPA-enhanced MRI, Ye et al[47] showed that the nomogram combining the texture 
signature (using the segmentation of the whole lesion) and clinical factors demonstrated a high discrim-
ination ability (C-index of 0.936) for predicting Ki-67 group (high vs low). Finally, Hu et al[48] explored 
the added value of viscoelasticity measured by magnetic resonance elastography to predict Ki-67 
expression, showing that shear wave speed and phase angle significantly improved the performance of 
the radiomic model.
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CK19 expression: CK19 expression is associated with aggressive tumor behavior, resistance to therapy, 
and poor outcomes including worse overall survival and recurrence[49]. To date, three studies have 
focused on developing radiomic models to predict CK19 expression[50-52], all using MRI. Wang et al[50] 
showed that their texture model independently predicted CK19-positive HCC cases and improved the 
diagnostic performance of AFP level ≥ 400 ng/mL and arterial rim enhancement. The two remaining 
studies developed a radiomics model based on Gd-EOB-DTPA-enhanced MRI, with external validation 
AUC varying from 0.78-0.79; of note, one of the studies was a multicenter study with over 250 patients
[51,52].

P53, PI3K, and other genetic expression: P53 can be used as a tumor biomarker, since it plays an 
important role in the pathogenesis of HCC[53]. P53 mutation has also been suggested as a feasible target 
for antitumor therapy[54]. Wu et al[55] demonstrated a direct relationship between P53 mutations in 
patients with HCC and the gray-level co-occurrence matrix on CT. PI3K signaling is a key pathway 
regulating HCC aggressiveness and is associated with response to sorafenib. Liao et al[56] developed a 
CT-based radiomics model that yielded an AUC of 0.73 in the external validation set for prediction of 
PI3K status.

The phosphorylation status of β-arrestin1 is associated with sorafenib resistance[57-59]. Che et al[60] 
developed a model combining a CT-based radiomics score with clinico-radiological risk factors which 
yielded an AUC of 0.898 in predicting β-arrestin1 phosphorylation, and the predicted β-arrestin1 
phosphorylation was in turn significantly associated with overall survival in both the training and 
validation cohorts (P < 0.05).

Prediction of recurrence, treatment response, and liver failure
Tumor recurrence, liver failure and treatment response rates are major concerns during HCC treatment. 
Radiomics has emerged as a promising tool to predict recurrence and treatment response beyond the 
current predictive criteria[61,62]. Table 3 summarizes the studies to date that have evaluated the use of 
radiomic models to predict recurrence and treatment response. Most of these studies were single-center 
studies performed in China, with only a few studies incorporating external validation[63,64]. 
Segmentation strategies were predominantly manual strategies, including manual segmentation of the 
tumor region or area of interest, with only a few studies involving the segmentation of the peritumoral 
liver parenchyma[63,65-67]. Overall, the radiomic models yielded an AUC between 0.59 and 0.94 (see 
Table 3).

Of the studies evaluating the use of radiomics to predict recurrence, most involved the prediction of 
recurrence after surgical resection on CT or MRI, demonstrating a validation AUC between 0.59 and 
0.84 (Table 3). Zhou et al[68] demonstrated that combining the radiomic signature with conventional 
preoperative variables significantly improved clinical model accuracy in early recurrence prediction 
(AUC of 0.84). Ji et al[64] developed and externally validated a radiomic model with better prognostic 
ability (C index ≥ 0.77, AUC of 0.78), lower prediction error (Brier score ≤ 0.14), and better clinical use 
compared with other staging systems and models. A few other studies evaluating the use of radiomics 
to predict recurrence involved the prediction of recurrence after liver transplant[69], transarterial 
chemoembolization (TACE)[67,70], and radiofrequency ablation (RFA)[71], demonstrating a validation 
AUC between 0.71 and 0.82.

Of the studies evaluating the use of radiomics to predict treatment response, a few involved the 
prediction of treatment response post-TACE[63,72,73]. In Canada, Ivanics et al[73] developed a CT-
based radiomic model and achieved an AUC of 0.87 on the internal validation set. A large multi-center 
Chinese study by Chen et al[63] evaluating treatment response after TACE performed semi-automatic 
segmentation of the tumor and of the peritumoral region on contrast-enhanced CT in 585 patients, and 
the validation AUC was 0.90. One small study by Horvat et al[74] assessed treatment response after RFA 
using tumor 3D volumes of interest on MRI, yielding an AUC of 0.76 for the radiomics model, although 
the model lacked validation. Finally, two studies from China evaluated the use of radiomics to predict 
liver failure after surgical resection[75,76].

Prediction of survival
Table 4 summarizes the studies to date that have evaluated the use of radiomics to predict survival in 
patients with HCC. Four studies evaluated the use of CT-based radiomics to predict survival after 
hepatic resection, demonstrating an AUC between 0.71 and 0.81, with two of the four studies 
performing internal validation[39,77-79]. A few other studies evaluated the use of radiomics to predict 
survival after TACE[80], TARE[81], and RFA[82], all without validation.

Of the studies that involved the prediction of survival after hepatic resection, Xu et al[39] had the 
largest sample size. In their study, a risk model integrating clinico-radiological factors and a high CT-
based radiomic score was independently associated with long-term mortality and disease-specific 
recurrence. Kim et al[80] evaluated the use of CT-based radiomics in survival prediction in patients after 
TACE. They demonstrated a combined model integrating radiomic features and clinical data (HCC size, 
Child-Pugh score and AFP) outperformed the clinical sore model or the radiomic score model. 
Petukhova-Greenstein et al[82] found that a higher MRI-based radiomic signature based on nodular and 
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Table 3 Summary of the studies that assessed radiomics to predict recurrence and treatment response in patient with hepatocellular 
cholangiocarcinoma who underwent surgery, liver transplantation or locoregional treatment

Ref. Country n Imaging 
modality Endpoint Treatment 

type Segmentation ROI/VOI No. of 
readers Main results Validation

Hui et al
[100], 
2018

Singapore 50 MRI Recurrence Hepatic 
resection

Manual, intrat-
umoral

ROI 3 AUC: 0.78-
0.84

None

Kim et al
[65], 
2019

South 
Korea

Training: 128. 
Validation: 39

MRI Recurrence Hepatic 
resection

Semiautomatic, 
intra- and 
peritumoral

VOI 2 C-index: 0.716 Internal

Zhao et 
al[101], 
2021

China Training: 78. 
Validation: 35

MRI Recurrence Hepatic 
resection

Manual, intrat-
umoral

VOI 2 AUC: 0.83 
(training), 0.77 
(validation)

Internal

Zhou et 
al[68], 
2017

China 215 CT Recurrence Hepatic 
resection

Manual, intrat-
umoral

ROI 2 AUC: 0.84 
(combined 
model)

None

Ji et al
[64], 
2020

China Internal: 177. 
External: 118

CT Recurrence Hepatic 
resection

Manual, intrat-
umoral

VOI 1 AUC: 0.77 
(internal), 0.78 
(external)

External

Guo et al
[69], 
2019

China Training: 93. 
Validation: 40

CT Recurrence Liver 
transplant

Semiautomatic, 
intratumoral

ROI 1 AUC: 0.79 
(training), 0.79 
(validation)

Internal

Shan et 
al[66], 
2019

China Training: 109. 
Validation: 47

CT Recurrence Hepatic 
resection or 
ablation

Manual, intra- 
and peritumoral

ROI 2 AUC: 0.80 
(training), 0.79 
(validation)

Internal

Zheng et 
al[79], 
2018

China Training: 212. 
Validation: 
107

CT Recurrence 
and survival

Hepatic 
resection

Manual, intrat-
umoral

ROI 2 AUC: 0.64 
(training), 0.59 
(validation)

Internal

Song et 
al[67], 
2020

China Training: 110. 
Validation: 74

MRI Recurrence TACE Semiautomatic, 
intra- and 
peritumoral

VOI 2 C-index: 0.82 Internal

Lv et al
[71], 
2021

China Training: 40. 
Validation: 18

MRI Recurrence RFA Semiautomatic, 
intratumoral

VOI 2 AUC: 0.94 
(training), 0.82 
(validation)

Internal

Sun et al
[70], 
2020

China Training: 67. 
Validation: 17

MRI Recurrence TACE Manual (intrat-
umoral)

VOI 2 AUC: 0.71-
0.79

Internal

Cai et al
[75], 
2019

China Training: 80. 
Validation: 32

CT Liver failure Hepatic 
resection

Semiautomatic, 
intratumoral

ROI 2 AUC: 0.82 
(training), 0.76 
(validation)

Internal

Zhu et al
[76], 
2020

China 101 MRI Liver failure Hepatic 
resection

Manual, entire 
liver

ROI 2 AUC: 0.81-
0.89

None

Ivanics 
et al[73], 
2021

Canada 88 CT Treatment 
response

TACE Manual, intrat-
umoral

VOI 1 AUC: 0.70-
0.87

None

Kong et 
al[72], 
2021

China Training: 69. 
Validation: 30

MRI Treatment 
response

TACE Manual, intrat-
umoral

VOI 2 AUC: 0.81 
(training), 0.87 
(validation)

Internal

Chen et 
al[63], 
2021

China Training: 355. 
Internal: 118. 
External: 122

CT Treatment 
response

TACE Semiautomatic, 
intra- and 
peritumoral

ROI 2 AUC: 0.94 
(internal), 0.90 
(external)

Internal and 
external

Horvat 
et al[74], 
2021

Brazil 34 MRI Treatment 
response

RFA Manual, intrat-
umoral

VOI 1 AUC: 0.76 None

AUC: Area under the curve; CT: Computed tomography; MRI: Magnetic resonance imaging; RFA: Radiofrequency ablation; ROI: Region of interest; TACE: 
Transarterial chemoembolization; VOI: Volume of interest.

perinodular radiomic features predicted poorer survival after RFA. A study evaluated the survival 
prediction after TARE, using 18-fuoro-deoxyglucose PET-based radiomics[81]. They observed that 
whole-liver radiomics textural features were an independent negative predictor of survival. 
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Table 4 Summary of the studies that evaluated radiomics to predict survival in patients with hepatocellular cholangiocarcinoma

Ref. Country n Imaging 
modality Endpoint Treatment 

type Segmentation ROI/VOI No. of 
readers Main results Validation

Kiryu et al
[77], 2017

Japan 122 CT Survival Hepatic 
resection

Manual, intra- 
and peritumoral

ROI 1 OS and DFS 
were 
significantly 
different 
between 2 rad 
score groups

None

Xu et al[39], 
2019

China Training: 
350. 
Validation: 
145

CT Survival Hepatic 
resection

Semiautomatic, 
intratumoral

VOI 3 AUC: 0.91 
(training), 0.81 
(validation)

Internal

Akai et al
[78], 2018

Japan 127 CT Survival Hepatic 
resection

Manual, intrat-
umoral

ROI 1 OS and DFS 
were 
significantly 
different 
between 2 rad 
score groups

None

Kim et al
[80], 2018

South Korea 88 CT Survival TACE Manual, intrat-
umoral

ROI 1 Combined 
clinical and 
radiomics score 
was a better 
predictor of 
survival

None

Blanc-
Durand et al
[81], 2018

Switzerland 47 18F-FDG 
PET-CT

Survival TARE Semiautomatic, 
whole liver

VOI N/A PFS-Rad Score 
and OS-Rad 
Score were 
independent 
negative 
predictors

None

Petukhova-
Greenstein et 
al[82], 2022

United 
States

65 MRI Survival RFA Semiautomatic, 
intra- and 
peritumoral

VOI 2 OS was 
significantly 
different 
between 2 rad 
score groups

None

Zheng et al
[79], 2018

China Training: 
212. 
Validation: 
107

CT Survival Hepatic 
resection

Manual, intrat-
umoral

ROI 2 AUC: 0.71 
(training and 
validation)

Internal

AUC: Area under the curve; CT: Computed tomography; DFS: Disease-fee survival; MRI: Magnetic resonance imaging; OS: Overall survival; PFS: 
Progression-free survival; RFA: Radiofrequency ablation; ROI: Region of interest; TACE: Transarterial chemoembolization; TARE: Transarterial 
radioembolization; VOI: Volume of interest; PET: Positron emission tomography.

Furthermore, radiomic scoring system did not differ after stratification by tumor size and Barcelona 
Clinic Liver Cancer staging.

Other applications of radiomics in HCC
Immunotherapy represents a paradigm shift in the management of patients with advanced HCC. 
Preoperatively assessing the immune status can assist the multidisciplinary team to identify which 
patients are suitable for immunotherapy, potentially improving treatment efficiency and overall 
survival rate. A few studies have evaluated the use of radiomics to predict programmed cell death 
ligand 1 (PD-L1) expression[83], CD8+ T cell infiltration[84], immunoscore[85,86], and anti-PD-1 
treatment efficacy[87] in patients with HCC, with none of them performing external validation. Tian et 
al[83] were the first group to explore the efficacy of MRI-based radiomics to predict PD-L1 status. They 
proposed a model integrating radiomic and DL features for the quick and accurate assessment of PD-L1 
expression levels in HCC patients before immune checkpoint inhibitor therapy which yielded an AUC 
of 0.897. Chen et al[85] demonstrated in 207 patients that radiomic features including those from the 
peritumoural region were associated with a validated “immunoscore”. This score characterizes the 
tumor infiltrating lymphocyte population and theoretically reflects the immune phenotype of the tumor 
microenvironment.
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RADIOMICS REPRODUCIBILITY IN HCC
Reproducibility refers to variations of the same patient across different imaging scenarios (e.g., scanner 
or imaging parameters), while repeatability refers to variations of the same patient using the same 
imaging protocol. Table 5 summarizes the 13 studies to date that have studied the reproducibility of 
radiomics in HCC patients. Most of these studies were conducted in China (8/13; 62%). Seven were 
performed using CT (54%), 5 using MRI (38%), and 1 using both CT scan and MRI (8%). Different 
software programs were used for segmentation and feature extraction. Most studies adopted manual 
segmentation (11/13; 85%), and most evaluated first- and second-order features, with a few including 
shape and higher-order features. In addition to intra and inter-reader reproducibility, some also 
assessed the repeatability of radiomic features obtained through two separate exams from the same 
scanner, different scanners from different vendors and centers, 3D vs 2D segmentation, different 
contrast imaging phases, injection rates and pixel resolutions on contrast-enhanced CT, and different b-
values on diffusion-weighted imaging on MRI.

Of note, one study showed that intra-reader tumoral and peritumoral reproducibility were greatest in 
MRI[88]. Another study showed that for test-retest (same MRI system, 2 different MRI exams), the 
intraclass correlation coefficient varied from 0.53-0.99 and the inter-platform reproducibility (MRI 
systems from 2 different vendors) varied from 0.58-0.99[89]. Regarding different contrast phases, 
Ibrahim et al[90] showed that 25% of extracted features had a concordance correlation coefficient (CCC) 
> 0.9 across arterial and portal venous phases. Perrin et al[91] demonstrated that the number of 
reproducible features decreased with variations in contrast injection rate, pixel resolution, and scanner 
model.

FUTURE DIRECTIONS OF RADIOMICS IN HCC
Despite the increasing and encouraging results in the literature concerning radiomics in patients with 
HCC, there are challenges and limitations to be overcome before its clinical implementation, particularly 
related to reproducibility and repeatability, lesion segmentation, model overfitting, multidisciplinary 
acceptance, and multi-modal data integration[23].

Patient selection, imaging data, segmentation strategy, image processing, feature selection, and 
computational processing are some factors that may affect the reproducibility and repeatability. 
Transparent patient accrual, data normalization, standard image manipulation, and feature extraction 
data are some strategies that may improve these challenges. Additionally, multi-center studies are 
recommended to increase reproducibility of the results.

Overfitting occurs when the model performs better in the training set with limited generalization of 
the results. The main factors contributing to overfitting are the number of included features being 
higher than the number of events and overoptimistic feature selection. Multiple strategies can be 
implemented to decrease overfitting, such as increasing the number of patients and events, using 
regularization methods, and including external validation cohorts. Multidisciplinary acceptance may 
improve with clear methods and a close relationship between radiologists, surgeons, oncologists, 
statistician, and data scientists to improve the interpretability of the results and to make way for clinical 
translation.

Multi-omics data integration is an additional step to improve the clinical acceptance of radiomics. 
Radiomics requires a multistep workflow process using different software and expertise; technological 
investments to create integrated and user-friendly tools are necessary to facilitate its widespread use in 
clinical practice. Finally, segmentation is a time-consuming process, susceptible to intra and inter-
observer variability. Automatic and semi-automatic segmentations are required, particularly using DL 
strategies to facilitate this crucial step.

Additionally, some heterogeneity related to patients with HCC should be take into consideration. 
Since pathological confirmation is not always performed, the definition of clear and reproducible 
endpoints, like the LI-RADS criteria, are relevant strategies. Combined data integrating imaging and 
clinical variables are important to address the issue that patients with HCC are also dealing with 
systemic consequences related to cirrhosis.

CONCLUSION
Radiomics is an evolving computer-assisted tool with the potential to improve the multidisciplinary 
management of patients with HCC and to provide personalized treatment optimizing the available 
resources. Multiple studies have evaluated the use of radiomics in HCC with promising applications, 
including the prediction of pre-surgical histology, genetic signature, recurrence, and treatment 
response, as well as survival rates. Although promising, several challenges need to be overcome before 
radiomics can achieve clinical translation, including workflow optimization, model validation in multi-
center studies, and the development of integrated models to facilitate clinical use and acceptance.
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Table 5 Summary of the studies that assessed reproducibility of hepatocellular cholangiocarcinoma textural features

Ref. Country n Imaging 
modality Segmentation Segmentation 

software ROI/VOI No. of readers Intra-reader reproducibility Inter-reader 
reproducibility Other reproducibility

Duan et al
[88], 2022

China 19 CT, MRI Manual, intra- and 
peritumoral

3D-Slicer ROI 2 (1 radiologist and 
1 radiation 
oncologist)

Features with ICC ≥ 0.75 in both 
tumoral and peritumoral tissue 
greatest in MR

Features with ICC ≥ 0.75 in 
both tumoral and 
peritumoral tissue greatest 
in MR

N/A

Zhang et al
[102], 2022

China 90 (31 
HCC)

MRI Manual, intrat-
umoral

ITK-SNAP ROI and 
VOI

2 radiologists N/A ICC > 0.8 used N/A

Carbonell 
et al[89], 
2022

United 
States

55 (16 
HCC)

MRI Manual, intrat-
umoral and liver 
parenchyma

Olea sphere 3.0, 
Olea Medical

ROI for 
normal 
liver, VOI 
for HCC

2 radiologists N/A CCC: 0.80-0.99 For test-retest (same MRI system, 2 
different MRI exams): ICC: 0.53-0.99; 
and in liver parenchyma: ICC: 0.53-
0.73. For inter-platform reproducibility 
(MRI systems from 2 different 
vendors): CCC: 0.58-0.99

Park et al
[103], 2022

South 
Korea

249 CT Manual followed by 
automatic 
segmentation, 
intratumoral

MEDIP PRO ROI and 
VOI

1 radiologist For VOI: Manual: ICC 0.594-0.998 for 
FO, 0.764-0.997 for shape, and 0.190-
0.926 for SO; DL-AS: ICC > 0.75 for all. 
For ROI: Manual: 0.698-0.997 for FO, 
0.556-0.997 for shape, and 0.341-0.935 
for SO; DL-AS ICC > 0.75 for all

N/A

Haniff et al
[104], 2021

Malaysia 30 MRI Manual and semi-
automatic, intrat-
umoral

3D-Slicer VOI Manual: 4 readers. 
Semi-automatic: 2 
readers

N/A Manual segmentation: ICC 
0.897. Semi-automatic 
segmentation: ICC 0.952

NA

Ibrahim et 
al[90], 2021

Germany 61 
patients, 
104 
lesions

CT Manual, intrat-
umoral

MIM software ROI 1 nonradiologist 
revised by 
radiologist

N/A N/A Across different contrast imaging 
phases: 25% of extracted features had 
CCC > 0.9 across arterial and portal 
venous phases 

Hu et al
[105], 2021

China 30 CT Manual, intrat-
umoral

MaZda software ROI 2 radiologists ICC > 0.7 ICC > 0.7 N/A

Mao et al
[32], 2020

China 30 CT Manual, intrat-
umoral

ITK-SNAP ROI 2 radiologists N/A ICC ≥ 0.8 N/A

Hu et al
[106], 2020

China 50 CT Semi-automatic, 
peritumoral

Not mentioned ROI 2 radiologists N/A ICC > 0.6 N/A

Qiu et al
[107], 2019

China 26 CT Manual and semi-
automatic, intrat-
umoral

GrowCut and 
GraphCut

ROI Manual: 5 radiation 
oncologists. Semi-
automatic: 2 
radiation oncologists

N/A ICC ≥ 0.75 in 69% of 
features extracted from 
manual segmentation, 73% 
from GraphCut, and 79% 
from GrowCut

Across different centers: Poor reprodu-
cibility of CT-based peritumoral-
radiomics model

Across different b-values: radiomic 
features extracted from b = 0, 20, 50, 

Zhang et al
[108], 2019

China 46 (34 
HCC)

MRI Manual, intrat-
umoral

MIM software VOI 1 radiologist N/A N/A
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100, 200 s/mm2 and b = 1000 s/mm2 
and nearby b-values DWIs showed a 
high reproducibility (ICC ≥ 0.8)

Feng et al
[40], 2019

China 160 (110) MRI Manual, intra- and 
peritumoral

ITK-SNAP VOI 3 radiologists 85% ICC ≥ 0.8 82% ICC ≥ 0.8 N/A

Perrin et al
[91], 2018

United 
States

38 (6 
HCC)

CT Semi-automatic, 
intratumoral and 
liver parenchyma

Scout Liver VOI 1 research fellow 
under supervision of 
radiologist

N/A N/A Across different contrast injection 
rates, pixel resolutions, and scanner 
models: Number of reproducible 
radiomic features (CCC > 0.9) 
decreased with variations in contrast 
injection rate, pixel resolution, and 
scanner model

CT: Computed tomography; MRI: Magnetic resonance imaging; ROI: Region of interest; VOI: Volume of interest; TACE: Transarterial chemoembolization; ICC: Intraclass correlation coefficient; DWI: Diffusion-weighted imaging; CCC: 
Concordance correlation coefficient; HCC: Hepatocellular carcinoma; N/A: Not applicable; FO: First order; SO: Second order; DL-AS: Deep learning-based auto-segmentation.
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