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some contents. 
 
We are very grateful to the reviewer for their evaluation of our manuscript and their 
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impact of AI on every step of the radiology workflow. We have tried to include sufficient 
information in every section to offer the reader an ample and thorough vision of the current 
and future outlook of AI with regard to hepatic and pancreatic radiology. We have, 
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throughout as best as possible and eliminating any redundant or superfluous studies, thus 
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the other reviewers. 



 
Reviewer #3:  
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We thank the reviewer for their thorough evaluation of our manuscript. We will be replying 
individually to each of the reviewer´s requests.  
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approach.  
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print. PMID: 35997607.  
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Abstract: 30 

Artificial intelligence (AI) has experienced substantial progress over the last ten 31 

years in many fields of application, including healthcare. In hepatology and 32 

pancreatology, major attention to date has been paid to its application to the 33 

assisted or even automated interpretation of radiological images, where AI can 34 

generate accurate and reproducible imaging diagnosis, reducing physicians' 35 

workload. AI can provide automatic or semi-automatic segmentation and 36 

registration of the liver and pancreatic glands and lesions. Furthermore, using 37 

radiomics, AI can introduce new quantitative information which is not visible to 38 

the human eye to radiological reports. AI has been applied in the detection and 39 

characterization of focal lesions and diffuse diseases of the liver and pancreas, 40 

such as neoplasms, chronic hepatic disease, or acute or chronic pancreatitis, 41 

among others. These solutions have been applied to different imaging techniques 42 

commonly used to diagnose liver and pancreatic diseases, such as ultrasound 43 

(US), endoscopic ultrasound (EUS), computerized tomography (CT), magnetic 44 

resonance imaging (MRI), and positron emission tomography (PET)/CT. 45 

However, AI is also applied in this context to many other relevant steps involved 46 

in a comprehensive clinical scenario to manage a gastroenterological patient. AI 47 

can also be applied to choose the most convenient test prescription, to improve 48 

image quality or accelerate its acquisition, and to predict patient prognosis and 49 

treatment response. In this review, we summarize the current evidence on the 50 

application of AI to hepatic and pancreatic radiology, not only in regard to the 51 

interpretation of images, but also to all the steps involved in the radiological 52 

workflow in a broader sense. Lastly, we discuss the challenges and future 53 

directions of clinical application of AI methods. 54 

 55 

Key words: Artificial Intelligence; Machine Learning; Deep Learning; Imaging; 56 

Liver; Pancreas. 57 
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Core Tip: The gastroenterology field is changing with the application of artificial 59 

intelligence (AI) solutions capable of assisting and even automating the 60 

interpretation of radiological images (ultrasound, endoscopic ultrasound, 61 

computerized tomography, magnetic resonance imaging, and positron emission 62 

tomography), generating accurate and reproducible diagnoses. AI can further be 63 

applied to other steps of the radiological workflow beyond image interpretation, 64 

including test selection, image quality improvement, acceleration of image 65 

acquisition, and prediction of patient prognosis and outcome. We herein discuss 66 

the current evidence, challenges, and future directions on the application of AI 67 

to hepatic and pancreatic radiology. 68 

  69 



INTRODUCTION 70 

Malignant tumors of the liver and pancreas are among the most common and 71 

lethal types of cancer. According to the recent GLOBOCAN 2020 data[1], liver and 72 

pancreas are the 6th and 12th most common sites for primary cancer, with 905677 73 

and 495773 new cases in 2020, respectively. However, they also represent the 3rd 74 

and 7th neoplasia with the highest mortality, causing 830180 and 466003 deaths 75 

worldwide in 2020, respectively. If taken combined, cancer at the liver or 76 

pancreas thus represent the 5th most incident and the second most lethal one.  77 

Cancer at these locations account for almost as many deaths as cases. Five-year 78 

survival rates are 20% for liver cancer[2] and as low as 11% for pancreatic cancer[3], 79 

making them two of the cancer sites with the poorest prognosis. Other non-80 

oncologic diseases affecting these organs are also highly prevalent, such as 81 

diffuse liver disease, including chronic liver disease, which affects tens of 82 

millions of people globally and represents a substantial socioeconomic burden[4]. 83 

Clinical outcomes of patients with these types of disease depend on a variety of 84 

factors, including stage and disease extension as assessed by imaging, and correct 85 

election of treatment. Thus, there is an unmet need for new tools capable of 86 

assisting specialists in early detection, characterization, and management of these 87 

diseases.  88 

In recent years, artificial intelligence (AI) has shown promise in different areas of 89 

healthcare. The evaluation of medical images by machine learning (ML) 90 

approaches is a leading research field which, in gastroenterology, has 91 

applications in automatic analysis of different types of images, such radiology, 92 

pathology, and endoscopy studies[5]. 93 

The first applications of AI to radiology have been dominated by anatomic 94 

locations such as the brain or the breast. Image analysis of abdominal organs, 95 

such as the liver and pancreas, are more challenging. Magnetic resonance 96 

imaging (MRI) in these locations, especially at 3 T, is prone to motion and field 97 

inhomogeneity artifacts, which are aggravated by larger fields of view[6]. As a 98 



result, advances in automatic analyses of abdominal images have gathered 99 

comparatively less attention. Nonetheless, the application of AI in liver and 100 

pancreas imaging is also gaining increasing interest (figure 1). The goal of this 101 

review is to summarize the current experience on the use of AI to assist 102 

radiologists in their workflow, acquisition, and interpretation of medical images 103 

of the liver and the pancreas. 104 

 105 

AI IN RADIOLOGY: BASIC PRINCIPLES 106 

Artificial intelligence is expected to revolutionize the medical field, deeply 107 

impacting the hospital and clinical settings by potentially improving diagnostic 108 

accuracy, treatment delivery, and allowing a more personalized medical care[7]. 109 

Radiology will arguably be one the most changed areas of medicine because of 110 

AI implementation in its workflows, as the information-rich images generated in 111 

this field are an excellent source of data for the development of AI algorithms. 112 

Broadly, the term AI refers to a wide range of technologies and computing 113 

processes capable of imitating human intelligence to extract information from 114 

input data to solve a problem. This rapidly evolving area has a vocabulary of its 115 

own (figure 2) that can be daunting to those not familiar with the field, including 116 

terms that are oftentimes used as synonyms to AI, such as ML.  117 

Machine learning is actually a subset of AI consisting of those methods capable 118 

of training a computer system to perform a given task based on provided 119 

information or experience without explicit programming, thus conferring 120 

machines the ability to learn[8]. The aim of ML is to predict an output based on a 121 

given input (a training dataset). Common ML applications in radiology include 122 

classification, image segmentation, regression, and clustering[9]. Machine 123 

learning can be sub-divided into supervised and unsupervised learning[10]. In 124 

supervised learning, the most common type used in medical research, the 125 

algorithm is trained with labeled examples (i.e., the correct output for these 126 

training data, known as ground truth, is already known). Among the methods 127 

employed in supervised learning, random forest (RF), and specially, support 128 



vector machine (SVM), are powerful algorithms frequently used for the 129 

classification of images[7], including image segmentation. Conversely, in 130 

unsupervised learning, the ground truth is not known, as the algorithm is trained 131 

with unlabeled data that must be classified by the algorithm itself.  132 

Artificial neural networks (ANNs), named after their brain-inspired structure 133 

and functioning process, can be trained via both supervised and unsupervised 134 

ML. In these ANNs, input information flows through a variable number of layers 135 

composed of artificial neurons, joined by weighted connectors, that process the 136 

data to obtain an output that matches the ground truth as closely as possible. 137 

Generative adversarial networks (GANs) are an example of ANN trained via 138 

unsupervised learning. GANs include two networks: one which creates new data 139 

based on input examples (i.e., generator), and one which distinguishes between 140 

different types of data (i.e., discriminator)[11]. These networks can be used to 141 

produce realistic, synthetic images as a strategy for data augmentation[12]. 142 

Similarly, the structure of convolutional neural networks (CNNs), a type of ANN 143 

specially designed for computer vision tasks, is based on that of the animal visual 144 

cortex. Typically used in image recognition and classification, in CNNs the input 145 

information is filtered and analyzed through a convolutional layer, and the size 146 

of the resulting image is subsequently reduced by a pooling layer. This two-step 147 

process will be repeated as many times as layers integrate the CNN, with a final 148 

step in which an ANN will classify the image (figure 3). Fully convolutional 149 

networks (FCNs, a type of ANN that only performs the convolution step) are the 150 

basis for U-net, a modified architecture that consists of a contracting path 151 

including several convolutional and pooling layers to capture context, followed 152 

by a symmetric expanding path including a number of up-sampling and 153 

convolutional layers to enable accurate localization. U-net is a popular network 154 

for the development of automatic segmentation algorithms, as it requires 155 

relatively small datasets for algorithm training[13].  156 

Deep learning (DL) is a section of ML that utilizes multi-layered ANNs, referred 157 

to as deep neural networks (DNN), allowing the exploration of more complex 158 



data[14]. Deep learning algorithms are gaining attention and raising considerable 159 

enthusiasm thanks to their scalability, easy accessibility, and ability to extract 160 

relevant information from the data without further indications other than input 161 

data. The recently developed nnU-Net, a publicly available DL-based 162 

segmentation tool capable of automatically configuring itself, has set a new state-163 

of-the-art standard thanks to the systematization of the configuration process, 164 

which used to be a manual, complicated, and oftentimes limited task in previous 165 

approaches[15]. Improvement of the computational resources and the 166 

development of cloud technologies are also contributing to the application of DL 167 

architectures in a wide variety of research fields beyond medicine[14].  168 

Closely related to the development of AI, the term radiomics refers to the 169 

computational extraction (via ML and DL algorithms) of quantitative data from 170 

radiological image features[16]. A particularly useful and valuable application of 171 

radiomics is the analysis of radiologic textures, defined as the differences in the 172 

grayscale intensities in the area of interest, which have been associated with 173 

intratumor heterogeneity[17], and that can potentially provide clinically relevant 174 

information that otherwise would remain unknown.  175 

 176 

IMAGE ACQUISITION 177 

The ultimate aim of computerized tomography (CT) and MRI is to unveil 178 

clinically relevant information; thus, the importance of this information relies 179 

heavily on the quality of the image. For CT, radiation dose is a parameter as 180 

important as image quality, and both are closely related to acquisition and 181 

reconstruction times. Iterative reconstruction (IR) algorithms[18] are the current 182 

technique of choice to transform the raw data into a 3D volume presented as an 183 

anatomical image. These algorithms generate an image estimate that is 184 

projected forward into a synthetic sinogram; subsequently, this image estimate 185 

is iteratively rectified by comparison with the real raw data sinogram until the 186 

algorithm's predefined endpoint condition is met, resulting in enhanced image 187 

quality and thus allowing an important dose reduction[19]. Deep learning 188 



reconstruction algorithms (DLR) are currently being developed with the aim to 189 

further improve image quality, therefore further reducing radiation doses. 190 

Compared to IR algorithms, DLR algorithms trained with low-dose data offer 191 

an improved signal-to-noise ratio, as demonstrated by the U-net-based CNN 192 

developed by Jin et al.[20], thus facilitating the detection of lesions of any kind 193 

and the increased use of low-dose imaging. Currently, there are two 194 

commercially available DLRs: TrueFidelity (GE Healthcare, Chicago, IL, USA) 195 

and AiCE (Canon Medical Systems, Otawara, Japan). Akagi et al. employed 196 

AiCE in their study and reported improved contrast-to-noise ratio and image 197 

quality in CT images, compared to images created with a hybrid IR 198 

algorithm[21]. Although the preliminary results are exciting, further validation 199 

for these DLR algorithms is required, and real dose reduction in the clinical 200 

setting has yet to be demonstrated. 201 

 202 

An important setback of MRI is the long acquisition time, forcing the patient to 203 

lay still for a relatively long period and with any movement affecting the 204 

quality of the image. One way to reduce acquisition time is compressed sensing, 205 

based on the idea that if signal information is only present in a small portion of 206 

pixels, that sparsity can be used to reconstruct a high-definition image from 207 

considerably less collected data (undersampling). Kaga et al. evaluated the 208 

usefulness of the Compressed SENSE algorithm (Philips, Amsterdam, The 209 

Netherlands) in MRI of the abdomen using diffusion weighted images (DWIs) 210 

and reported a significantly improved image noise and contour of the liver and 211 

pancreas and higher apparent diffusion coefficient (ACD) values, thus offering 212 

superior image quality compared to parallel imaging (PI)-DWI[22]. 213 

 214 

AI applications have also been designed to automate MRI and CT protocol 215 

selection with the aim to standardize workflows and increase effectiveness in 216 

the radiology setting. The selection of an appropriate imaging protocol requires 217 

taking into account factors including the type of procedure, clinical indication, 218 

and the patient’s medical history. The increasing incorporation of electronic 219 



medical records and other digital content has opened opportunities for the 220 

application of natural language processing (NLP) methods to extract structured 221 

data from unstructured radiology reports. Lopez-Ubeda et al. developed an 222 

NLP-based classification system for automated protocol assignment[23] that 223 

offered an overall accuracy of 92.25% for the CT and 86.91% for the MRI 224 

datasets. This system has already been successfully implemented and is 225 

currently in use at the HT Medica centers.  226 

 227 

Information about the respiration of the patient can be used for functional 228 

studies, overall monitoring, or motion compensation during the performance of 229 

an MRI. Typically, breathing is measured via belts or nasal sensors that can 230 

potentially alter the raw MRI data. Using adaptive intelligence, the laser-based 231 

VitalEye system (Philips) registers a contactless continuous respiratory signal, 232 

with up to 50 body locations analyzed simultaneously and in real time, thus 233 

producing a more robust respiratory trace compared to traditional respiratory 234 

belts[24]. Moreover, as soon as the patient is lying on the table, the BioMatrix 235 

Respiratory Sensors (Siemmens AG, Munich, Germany) embedded in the spinal 236 

coil produce a local magnetic field that changes with the variation of lung 237 

volume during breathing. These changes are registered, and the breathing 238 

pattern is integrated to optimize image quality[25]. By standardizing and 239 

accelerating the workflow, these advances allow technicians and radiologists to 240 

concentrate on the patient. 241 

 242 

IMAGE ANALYSIS 243 

Segmentation of liver and pancreas  244 

Image analysis has experimented a huge progression with the advent of AI, and 245 

especially with DL, that has reached state-of-art performance in many biomedical 246 

image analysis tasks (table 1)[26–28]. Among them, segmentation is one of the most 247 

important in radiology. For instance, accurate pancreas segmentation has 248 

applications in surgical planning, assessment of diabetes, and detection and 249 



analysis of pancreatic tumors[29]. Another key application of organ and lesion 250 

contouring is treatment volume calculation for radiotherapy planning. However, 251 

boundary delimitation of anatomical structures in medical images remains a 252 

challenge due to their complexity, particularly in the upper abdominal cavity, 253 

where there are constant changes in the position of the different organs with the 254 

respiratory cycle, as well as the occurrence of anatomical variants and 255 

pathological changes of organs[30].  256 

The intersubject variability and complexity of the pancreas make segmentation 257 

of this organ a demanding task. Segmentation of pancreatic cancer lesions is 258 

particularly challenging because of their limited contrast and blurred boundaries 259 

against the background pancreatic parenchyma in CT and MR images[31]. In 260 

addition, other factors such as body mass index, visceral abdominal fat, volume 261 

of the pancreas, standard deviation of CT attenuation within pancreas, and 262 

median and average CT attenuation in the immediate neighborhood of the 263 

pancreas may affect segmentation accuracy[29,32].  264 

These problems lead to high segmentation uncertainty and inaccurate results. To 265 

tackle these problems, Zheng et al.[33] proposed a 2D, DL-based method that 266 

describes the uncertain regions of pancreatic MR images based on shadowed sets 267 

theory. It demonstrated high accuracy, with a Dice similarity coefficient (DSC) of 268 

73.88% on a cancer MRI dataset and 84.37% on the National Institutes of Health 269 

(NIH) Pancreas dataset (which contains 82 CT scans of healthy pancreas), 270 

respectively. The same authors reported[34] a more sophisticated 2.5D network 271 

that benefits from multi-level slice interaction. They surpassed state-of-art 272 

performances in the NIH dataset, with a DSC of 86.21 ± 4.37%, sensitivity of 87.49 273 

± 6.38%, and a specificity of 85.11 ± 6.49%. 274 

The liver is also a popular target for automated segmentation algorithms. 275 

Automatic segmentation of this organ is regarded as somewhat less challenging 276 

than that of the pancreas, with reported DSC scores typically in the > 0.90 277 

range[35].  278 



Yang Li et al.[36] presented a liver segmentation method from abdominal CT 279 

volumes for both healthy and pathological tissues, based on the level set and 280 

sparse shape composition (SSC) method. The experiments, performed using 281 

public databases SILVER07 and 3Dicardb, showed good results, with mean ASD, 282 

RMSD, MSD, VOE, and RVD of 0.9 mm, 1.8 mm, 19.4 mm, 5.1%, and 0.1% 283 

respectively. Moreover, Winther et al.[37] used a 3D deep neural network for 284 

automatic liver segmentation along with a Gd-EOB-DTPA-enhanced liver MR 285 

images dataset. Results show an intraclass correlation coefficient (ICC) of 0.987, 286 

DSC of 96.7± 1.9%, and a Hausdorff distance of 24.9 ± 14.7 mm compared with 287 

two expert readers who corresponded to an ICC of 0.973 and a DSC of 95.2 ± 2.8%. 288 

Finally, Mohagheghi et al.[38] used a CNN but further incorporated prior 289 

knowledge. The model learnt the global shape information as prior knowledge 290 

by using a convolutional denoising auto-encoder; then, this knowledge was used 291 

to define a loss function and combine it with the Dice loss in the main 292 

segmentation model. This model with prior knowledge improved the 293 

performance of the 3D U-Net model and reached a DSC of 97.62% segmenting 294 

CT images of the Silver07-liver dataset. 295 

Organ segmentation is even more challenging in pediatric patients studied with 296 

CT, as it is acquired at a low dose to minimize harmful radiation to children, thus 297 

having a lower signal-to-noise (SNR) ratio. Nakayama et al.[39] proposed a liver 298 

segmentation algorithm for pediatric CT scans using a patient-specific level set 299 

distribution model (LSDM) to generate a probabilistic atlas, obtaining a DSC 300 

index of 88.21% in the segmentation. This approach may be useful for low dose 301 

studies in general, i.e., also in the adult population. 302 

Algorithms for automatic segmentation of liver using MR images have proven 303 

equally efficient. For instance, Bobo et al. used a 2D FCN architecture to segment 304 

livers on T2-weighted MR images with a DSC score of 0.913[40]. In a recent paper, 305 

Saunders et al. systematically analyzed the performance of different types of MR 306 

images in the training of CNN for liver segmentation, using a 3D U-net 307 



architecture. Water and fat images outperformed other modalities, such as T2* 308 

images, with a DSC of 0.94[41].  309 

Conversely, high-quality automatic segmentation of liver lesions is not an easy 310 

task, since the low contrast between tumors and healthy liver parenchyma in CT 311 

images, their inhomogeneity, and its complexity pose a challenge for liver tumor 312 

segmentation. In addition, motion-induced phase errors due to peristaltic and 313 

respiratory movements negatively affect image quality and assessment of liver 314 

lesions in MR images. A 3D CNN was used by Meng et al.[42] where a special 315 

three-dimensional dual path multiscale convolutional neural network (TDP-316 

CNN) was designed for liver tumor segmentation. Results achieved in the LiTS 317 

public dataset were a DSC of 68.9%, Hausdorff distance of 7.96 mm, and average 318 

distance of 1.07 mm for liver tumor segmentation and a DSC of 96.5%, Hausdorff 319 

distance of 29.162 mm, and average distance of 0.197 mm for liver segmentation. 320 

A different approach for liver tumor segmentation was proposed by Chen et al.[43]. 321 

In this work, an adversarial densely connected network algorithm was trained 322 

and evaluated using the Liver Tumor Segmentation challenge dataset. Results 323 

revealed an average Dice score of 68.4% and ASD, MSD, VOE, and RVD of 21 324 

mm, 124 mm, 0.46%, and 0.73%, respectively.  325 

Automatic contouring of hepatic tumor volumes has also been reported using CT 326 

scans, a modified SegNet CNN[44], and dynamic contrast enhanced (DCE)-MRI 327 

images in a U-net-like architecture[45], for example. 328 

Some medical imaging vendors incorporate solutions for liver segmentation and 329 

hepatic lesion characterization integrated in the proprietary radiologist's 330 

workflow. For instance, the Liver Analysis research application from Siemens 331 

Healthcare (Erlangen, Germany) aims to provide AI support for liver MRI and 332 

CT reading. The tool includes DL-based algorithms for automatic segmentation 333 

of whole liver, functional liver segments, and other abdominal organs like spleen 334 

and kidneys (figure 4A). It also features an AI method to automatically detect 335 

and segment focal liver lesions, providing lesion diameters, volume, and 3D 336 

contours (figure 4B). 337 



   338 

Registration 339 

Medical image registration seeks to find an optimal spatial transformation that 340 

best aligns the underlying anatomical structures. Medical image registration is 341 

used in many clinical applications such as image guidance systems (IGS), motion 342 

tracking, segmentation, dose accumulation, image reconstruction, etc.[46]. In 343 

clinical practice, image registration is a major problem in image-guided liver 344 

interventions, especially for the soft-tissues, where organ shape changes 345 

occurring between pre-procedural and intra-procedural imaging pose significant 346 

challenges[47]. Schneider et al.[48] showed how semi-automatic registration in IGS 347 

may improve patient safety by enabling 3D visualization of critical intra- and 348 

extrahepatic structures. A novel IGS (SmartLiver) offering augmented reality 349 

visualization was developed to provide intuitive visualization by using DL 350 

algorithms for semi-automatic image registration. Results showed a mean 351 

registration accuracy of 10.9 ± 4.2 mm (manual) vs. 13.9 ± 4.4 mm (semi-352 

automatic), hence significantly improving the manual registration. Kuznetsova 353 

et al.[49] assessed the performance of structure-guided deformable image 354 

registration (SG-DIR) relative to rigid registration and DIR using TG-132 355 

recommendations for 14 patients with liver tumors to whom stereotactic body 356 

radiation therapy (SBRT) was applied. The median DSC for rigid registration was 357 

88% and 89% for DIR, and 90% for both SG-DIR using liver contours only and 358 

using liver structures along with anatomical landmarks. However, most of the 359 

existing volumetric registration algorithms are not suitable for the intra-360 

procedural stage, as they involve time-consuming optimization. In the report by 361 

Wei et al.[47], a fast MR-CT image registration method was proposed for 362 

overlaying pre-procedural MR (pMR) and pre-procedural CT (pCT) images onto 363 

an intra-procedural CT (iCT) image to guide thermal ablation of liver tumors. 364 

This method, consisting of four DL-based modules and one conventional ANTs 365 

registration module, showed higher Dice ratios (around 7% improvement) over 366 

tumors and compatible Dice ratios over livers. However, its main advantage was 367 



the computational time cost of around 7 seconds in the intra-procedural stage, 368 

which is only 0.1% runtime in the conventional way (i.e., ANTs). 369 

Treatment planning concepts using the mid-ventilation and internal-target 370 

volume concept are based on the extent of tumor motion between expiration and 371 

inspiration. Therefore, four-dimensional (4D) imaging is required to provide the 372 

necessary information about the individual respiration-associated motion 373 

pattern. Weick et al.[50] proposed a method to increase the image quality of end-374 

expiratory and end-inspiratory phases of retrospective respiratory self-gated 4D 375 

MRI data sets using two different non-rigid image registration schemes for 376 

improved target delineation of moving liver tumors. In the first scheme, all 377 

phases were registered directly (dir-Reg), while in the second next neighbors 378 

were successively registered until the target was reached (nn-Reg). Results 379 

showed that the Median dir-Reg coefficient of variation of all regions of interest 380 

(ROIs) was 5.6% lower for expiration and 7.0% lower for inspiration compared 381 

with nn-Reg. Statistically significant differences were found in all comparisons. 382 

 383 

DIAGNOSIS 384 

Two decades ago, the methods proposed for ML-based diagnosis required 385 

manually extracting the features from the images. This tedious step has been 386 

partially relieved with the irruption of CNNs. However, techniques such as 387 

radiomics are still in use to try to improve the performance of novel AI methods 388 

for medical diagnosis. Radiomics concerns the high throughput extracting of 389 

comprehensible features from radiological images that can be further analyzed 390 

in ML algorithms for classification or regression tasks. In this section, different 391 

methods proposed for liver and pancreas imaging diagnosis are reviewed (table 392 

2).  393 

 394 

Liver-CT 395 



Starting with chronic liver disease, Choi et al.[51] presented a CNN model for 396 

staging liver fibrosis from contrast-enhanced CT images. Before using the CT 397 

image as input of the CNN, the liver is segmented. The testing dataset included 398 

891 patients and the CNN achieved a staging accuracy of 79.4% and an AUC of 399 

96%, 97%, and 95% for diagnosing significant fibrosis, advanced fibrosis, and 400 

cirrhosis, respectively. A different approach was proposed by Nayak et al.[52], 401 

where SVM was used instead of CNN for aiding in the diagnosis of cirrhosis and 402 

hepatocellular carcinoma (HCC) from multi-phase abdomen CT. Features were 403 

extracted from the segmented liver in all the phases, which were previously 404 

registered. Using 5-fold cross validation, they reported an accuracy of 86.9% and 405 

81% for detection of cirrhosis and HCC, respectively. 406 

There are also several reports exploring the role of DL in the characterization of 407 

focal liver lesions (figure 5). In this sense, Matake et al.[53] applied an ANN to 408 

assist in the diagnosis of hepatic mases using clinical and radiological parameters 409 

extracted from CT images. The authors used 120 cases of liver diseases and 410 

implemented a leave-one-out cross-validation method for training and testing 411 

the ANN, reporting an AUC of 96.1%. Also using CT images, Yasaka et al.[54] used 412 

a CNN for the differentiation of five different types of liver masses from contrast-413 

enhanced CT. For testing, they used 100 liver mass images, reporting an accuracy 414 

of 84%. Similarly, Khan and Narejo[55] proposed Fuzzy Linguistic Constant (FLC) 415 

to enhance low contrast CT images of the liver before training a SVM to 416 

distinguish between cancerous or non-cancerous lesions. The classification 417 

accuracy reported was 98.3%. The proposed method also showed the ability to 418 

automatically segment the tumor with an improved detection rate of 78% and a 419 

precision value of 60%.  420 

 421 

Liver and biliary system MRI 422 

Techniques concerning MR images have also been developed for the diagnosis 423 

and classification of focal liver lesions (figure 6). Zhou et al.[56] proposed a method 424 

using a novel CNN to grade HCC from DWIs. They applied a 2D CNN to log 425 



maps generated from different b-value images. In their work, they reported a 426 

validation AUC of 83% using 40 cases. A CNN was also trained by Hamm et al.[57] 427 

and Wang et al.[58] to classify six different focal hepatic lesions from T1-weighted 428 

MR images in the postcontrast phase. They used 60 cases for testing and reported 429 

a sensitivity and specificity of 90% and 98%, respectively. In the second part of 430 

their study, they transformed it into an "interpretable” DL system by analyzing 431 

the relative contributions of specific imaging features to its predictions in order 432 

to shed light on the factors involved in the network’s decision-making process. 433 

Finally, DCE-MRI and T2-weighted MRI, together with risk factor features, were 434 

applied to build an extremely randomized trees classifier for focal liver lesions[59], 435 

achieving an overall accuracy of 77%.  436 

Some advancements have also been reached in the automatic diagnosis of lesions 437 

in the biliary system from MR cholangiopancreatography (MRCP) sequences. 438 

Logeswaran[60,61] trained an ANN classifier for assisting in the diagnosis of 439 

cholangiocarcinoma. He utilized 55 MRCP studies for testing and reported an 440 

accuracy of 94% when differentiating healthy and tumor images and of 88% in 441 

multi-disease tests. 442 

MRI is a superior technique in the evaluation of chronic liver disease in 443 

comparison with CT, but making the most of it requires considerable skills and 444 

optimization at the acquisition, post-processing, and interpretation phases[62]. AI 445 

has proved useful to assist radiologists in the MR-guided diagnosis and grading 446 

of these diseases, including liver fibrosis and non-alcoholic fatty liver disease[63].  447 

Radiomics studies have been proposed to aid in the diagnosis of liver fibrosis. 448 

Kato et al. performed texture analysis of the liver parenchyma processed by an 449 

ANN to detect and grade hepatic fibrosis, with varying success depending on the 450 

type of MR sequence used (AUC of 0.801, 0.597, and 0.525 for gadolinium-451 

enhanced equilibrium phase, T1-weighted, and T2-weighted images, 452 

respectively)[64]. 453 

Later, Hectors et al. developed a DL algorithm for liver fibrosis staging using 454 

gadolinium enhancement sequences acquired in the hepatobiliary phase, which 455 



showed good to excellent diagnostic performance[65], comparable to that of MR 456 

elastography.  457 

 458 

Liver-US 459 

Ultrasound (US) and endoscopic ultrasonography (EUS) are commonly used in 460 

the diagnostic work-up of several pancreatic and liver lesions. AI-based solutions 461 

have also been applied to US images in the assessment of focal and diffuse liver 462 

diseases in order to enhance their diagnostic capabilities. Acharya et al.[66] 463 

suggested a method for aiding in the diagnosis of focal liver lesions from liver 464 

US images. The authors extracted features from US images and trained several 465 

classifiers, obtaining the highest AUC (94.1%) using a PNN classifier. Another 466 

approach is shown in Yao et al.[67], where a radiomics analysis was established for 467 

the diagnosis and clinical behavior prediction of HCC, showing an AUC of 94% 468 

for benign and malignant classification. Rightly, CNN architectures have also 469 

been developed for US images as in the report by Schmauch et al.[68], where a 470 

CNN was employed to help in the diagnosis of focal liver lesions from US images. 471 

The authors used a dataset composed by 367 2D US images for training and 472 

another dataset from 177 patients for testing, reporting a mean score of 89.1%. 473 

There is limited experience in the use of AI with US images with regards to 474 

diffuse liver disease. Li et al.[69] used a SVM classifier to help in the diagnosis of 475 

fatty liver from US images. Input features were computed from ROIs selected by 476 

examiners. A total of 93 images were used for training and testing using leave-477 

one-out cross-validation. The authors reported an 84% accuracy for normal livers 478 

and 97.1% for fatty livers. Moreover, a mix of radiomics features and DL 479 

techniques were used with two-dimensional shear waver elastography (2D-SWE) 480 

for assessing liver fibrosis stages in Wang et al.[70]. Results reached AUCs of 97% 481 

for cirrhosis, 98% for advanced fibrosis, and 85% for significant fibrosis. 482 

 483 

Pancreas CT and PET/CT 484 



The role of AI in the detection of pancreatic lesions from CT has extensively been 485 

investigated. Pancreatic cancer detection is a challenging task for radiologists and 486 

its improvement is a hot research topic. Chen et al. developed a DL-based tool 487 

including a segmentation CNN and a 5-CNN classifier for the detection of 488 

pancreatic cancer lesions, with a special focus on lesions smaller than 2 cm, in 489 

abdominal CT scans. Their model was able to distinguish between cancer and 490 

control scans with an AUC of 0.95, 89.7% sensitivity, and 92.8% specificity. 491 

Sensitivity for the detection of lesions smaller than 2 cm was 74.7%[71]. Still 492 

focused on the identification of lesions smaller than 2 cm, Alves et al. proposed 493 

an automatic framework for pancreatic ductal adenocarcinoma (PDAC) 494 

detection based on state-of-the-art DL models. They trained an nnUnet 495 

(nnUnet_T) on a dataset including contrast-enhanced CT scans from 119 PDAC 496 

patients and 123 healthy individuals for automatic lesion detection and 497 

segmentation. Additionally, two other nnUnets were trained to investigate the 498 

impact of anatomy integration, with nnUnet_TP segmenting both the pancreas 499 

and the tumor and nnUnet_MS segmenting the pancreas, tumor, and adjacent 500 

anatomical structures. All three networks were compared on an open access 501 

external dataset, with nnUnet_MS offering the best results with an AUC of 0.91 502 

for the entire dataset and of 0.88 for lesions smaller than 2 cm[72]. Several studies 503 

have focused on the role of AI-based solutions in the detection of pancreatic cystic 504 

lesions. Wei et al.[73] presented a ML-based computer-aided diagnosis (CAD) 505 

system to help in the diagnosis of pancreas serous cystic neoplasms from CT 506 

images. They extracted radiomic features from manual ROIs outlining the 507 

peripheral margin of each neoplasm. After selecting the most important features 508 

by using least absolute shrinkage selection operator regression, they trained a 509 

SVM classifier by a 5-fold cross validation with 200 patients. The authors used a 510 

validation cohort of 60 patients and reported and AUC of 83.7%, a sensitivity of 511 

66.7%, and a specificity of 81.8%. Along the same lines, Li et al.[74] also proposed 512 

a computer-aided framework for early differential diagnosis of pancreatic cysts 513 

without pre-segmenting the lesions by using densely connected convolutional 514 

networks (Dense-Net). In this approach, saliency maps were integrated in the 515 



framework to assist physicians to understand the decisions of the DL methods. 516 

Accuracy reported on a cohort of 206 patients with four pathologically confirmed 517 

subtypes of pancreatic cysts was 72.8%, significantly higher than the baseline of 518 

48.1% according to the authors. Park et al. developed a 3D nnU-Net-based model 519 

for the automatic diagnosis of solid and cystic pancreatic neoplasms on 520 

abdominal CT scans. The model was trained on CT scans (852 patients) from both 521 

patients who underwent resection for pancreatic lesions and subjects without any 522 

pancreatic abnormalities, and performance was evaluated using receiver 523 

operating characteristic analysis in a temporally independent cohort (test set 1, 524 

including 603 patients) and a temporally and spatially independent cohort (test 525 

set 2, including 589 patients). This approach showed a remarkable capacity to 526 

identify solid and cystic pancreatic lesions on CT, with an AUC of 0.91 for the 527 

test set 1 and 0.87 for the test set 2. Furthermore, it offered a high sensitivity in 528 

the identification of solid lesions of any size (98-100%) and cystic lesions of at 529 

least 1 cm (92-93%)[75]. 530 

In the pursuit of more accurate models, some authors have combined CT images 531 

with other biomarkers, such as molecular markers or multimodal images. For 532 

example, Quaio et al. used CT scans and serum tumor markers (including serum 533 

carbohydrate antigens 50, 199, and 242) to train different types of networks (CNN, 534 

FCN, and U-Net) to diagnose pancreatic cancer with high sensitivity and 535 

specificity[76]. Li et al.[77] also used a hybrid SVM-RF model to classify normal and 536 

pancreas cancer from PET/CT images. First, they segmented the pancreas from 537 

CT images and registered the CT and PET series, then they extracted features 538 

from the segmented ROI in both types of studies. The authors tested the model 539 

using 10-fold cross validation with 80 cases and achieved 96.47% accuracy, 95.23% 540 

sensitivity, and 97.51% specificity.  541 

 542 

Pancreas-MRI 543 

MR is the technique of election for the assessment of complex pancreatic 544 

conditions. Thus, its association with AI is regarded as promising to help 545 



radiologists in diagnostic dilemmas regarding this organ. For instance, radiomics 546 

has been proposed as a way to predict the malignant potential of pancreatic cystic 547 

lesions, differentiating benign cysts from those likely to transform into pancreatic 548 

cancer[78].  549 

There is limited experience with the use of AI in the detection of focal lesions 550 

with pancreatic MR studies. Corral et al.[79] proposed the use of SVM to classify 551 

intraductal papillary mucinous neoplasms (IPMN). First, features were extracted 552 

using a CNN from T2-weighted and post-contrast T1-weighted MR images. For 553 

validation, authors used 10-fold cross-validation using 139 cases. They achieved 554 

an AUC of 78%. Kaissis et al. also developed a supervised ML algorithm which 555 

predicted the above-versus-below median overall survival of patients with 556 

pancreatic ductal adenocarcinoma, with 87% sensitivity and 80% specificity, 557 

using preoperative DWIs[80]. 558 

Lastly, the generation of synthetic MR images of pancreatic neuroendocrine 559 

tumors (PNET) has been explored using GANs. This data augmentation 560 

technique can alleviate the relative low abundance of these type of pancreatic 561 

tumors in order to train AI models. Gao and Wang then used the synthetic images 562 

to evaluate the performance of a CNN in the prediction of PNET grading on 563 

contrast-enhanced images[81]. 564 

 565 

Pancreas-EUS 566 

Application of AI to EUS has focused on the differentiation of focal pancreatic 567 

lesions. In this sense, Sǎftoiu et al.[82] developed an ANN to help in the difficult 568 

differentiation between PDAC and focal chronic pancreatitis (CP) with EUS-569 

elastography. They included 258 patients in the study and reported 84.27% 570 

testing accuracy using 10-fold cross-validation. In addition, Kuwahara et al.[83] 571 

used a CNN to assist in the distinction between benign and malignant IPMNs of 572 

the pancreas from EUS images. For testing, the authors used images from 50 573 

patients, obtaining an AUC of 98% and sensitivity, specificity, and accuracy 574 



values of 95.7%, 92.6%, and 94%, respectively. Finally, in the report by Marya et 575 

al.[84] an EUS-based CNN model was trained to differentiate autoimmune 576 

pancreatitis (AIP) from PDAC, CP and normal pancreas (NP). Results obtained 577 

from 583 patients (146 AIP, 292 PDAC, 72 CP, and 73 NP) demonstrated a 578 

sensitivity of 99% and a specificity of 98% to distinguish between AIP and NP, 579 

94% and 71% for AIP and CP, and 90% and 93% for AIP and PDAC. Furthermore, 580 

the sensitivity and specificity to distinguish AIP from all study conditions (i.e., 581 

PDAC, CP, and NP) were 90% and 85%, respectively. In view of these results, the 582 

application of AI to EUS in the assessment of focal pancreatic lesions is promising, 583 

although limited due to the short number of available databases for algorithm 584 

training and validation[85].  585 

 586 

TREATMENT PREDICTION  587 

Prediction of treatment response and patient outcome based on AI is a very 588 

appealing idea which has been explored in a number of liver and pancreatic 589 

diseases, particularly in patients with HCC (table 3). 590 

The idea of using ML to predict the prognosis of patients with HCC emerged 591 

decades ago. Already in 1995 the progression of hepatectomized patients with 592 

HCC was analyzed using ANN[86]. Liver volume, which was measured in CT 593 

studies, was used, among others, as an input parameter. Fifty-four example cases 594 

were used to train an ANN composed of three layers, and the model was 595 

successfully used to predict the prognosis of 11 patients. Nevertheless, the model 596 

was not tested with enough cases to determine its usefulness in actual clinical 597 

activity. However, the rise of AI has prompted many more works to be developed 598 

in the last few years. The response to intra-arterial treatment of HCC prior to 599 

intervention has been predicted using ML[87,88]. Specifically, logistic regression 600 

(LR) and RF models were trained with 35 patients using features extracted from 601 

clinical data and the segmentations of liver and liver lesions in a contrast-602 

enhanced 3D fat-suppressed spoiled gradient-echo T1-weighted sequence in the 603 

arterial phase. Both trained models predicted treatment response with an overall 604 



accuracy of 78% (62.5% sensitivity, 82.1% specificity). Other authors tried to 605 

predict the early recurrence of HCC employing a CNN model based on the 606 

combination of CT images and clinical data[89]. They used 10-fold cross-validation 607 

with data from 167 patients and reported an AUC of 0.825. A RestNet CNN 608 

model was also trained for preoperative response prediction of patients with 609 

intermediate-stage HCC undergoing transarterial chemoembolization[90]. The 610 

model used the segmented ROI of the tumor area in a CT study as input. The 611 

training cohort included 162 patients and the two validation cohorts included 89 612 

and 138 patients, respectively. The authors reported an accuracy of 85.1% and 613 

82.8% in the two evaluation datasets. 614 

Radiomics has also been applied to predict treatment response of HCC to 615 

different therapies based on studies of several imaging modalities. The early 616 

recurrence of HCC after curative treatment was evaluated using an LR model 617 

based on radiomics features[91], which were extracted from manually delineated 618 

peritumoral areas in CT images. They used 109 patients for training and 47 619 

patients for validation, reporting an AUC of 0.79 with the validation dataset. Guo 620 

et al. also predicted the recurrence of HCC after liver transplantation[92]. For that 621 

purpose, authors extracted radiomic features from ROIs delineated around the 622 

lesion in arterial-phase CT images. Then, they combined clinical risk factors and 623 

radiomic features to build a multivariable Cox regression model. The authors 624 

used a training dataset of 93 patients and a validation dataset of 40 patients and 625 

they reported a C-index of 0.789 in the validation dataset.  626 

Machine learning models have also been used to predict hepatobiliary toxicity 627 

after liver SBRT[93]. The authors built a CNN model which was previously 628 

pretrained using CT images of human organs. Then, using transfer learning, the 629 

model was trained with liver SBRT cases. They used 125 patients for training and 630 

validation using a 20-fold cross-validation approach, reporting an AUC of 0.79. 631 

Regarding the pancreas, postoperative pancreatic fistulas were predicted using 632 

ML-based texture analysis[94] performed to extract features from ROIs segmented 633 

in non-contrast CT images. Then, after dimension reduction, several ML 634 



classifiers were built using Auto-WEKA 2.0, obtaining the best results using a 635 

REPTree classifier. The authors used 10-fold cross-validation using data from 110 636 

patients, and reported an AUC of 0.95, sensitivity of 96%, and specificity of 98%. 637 

 638 

DISCUSSION 639 

In recent years, a large number of AI-based solutions have been developed with 640 

the aim of easing and streamlining the radiologist’s workflow. Many of these 641 

tools are focused on imaging of the liver, biliary system, and pancreas. The 642 

developed tools range from improving image quality to the prediction of the 643 

patient’s prognosis after treatment. The literature shows that many AI-based 644 

solutions targeting liver and pancreas imaging allow for improved disease 645 

detection and characterization, lower inter-reader variability, and increased 646 

diagnostic efficiency. A key factor for their success in the clinical setting is to 647 

attain a seamless integration in the radiologist’s workflow, requiring minimal 648 

additional work by the radiologist and adding significant value to the 649 

radiologist´s work. In this sense, it is crucial that there is a fluid collaboration 650 

between the radiologists, technicians, and bioengineers in charge of the tools. 651 

Image analysis and processing are transversal parts of most AI methods 652 

described in this review. Improving their performance is thus a key task. 653 

Unfortunately, some image processing techniques such as registration are still 654 

time-consuming, hence making the incorporation of some of these procedures in 655 

clinical practice unfeasible. Some new methods are arising to minimize this 656 

impact[95], especially in critical applications like image IGS. Semi-automatic or 657 

even automatic segmentation is another important step that some of the AI tools 658 

may incorporate for diagnosis or prognosis purposes[96]. Therefore, it is of 659 

paramount importance for these algorithms to achieve a high level of 660 

performance. 661 

The literature reports many applications of AI to aid in the detection and 662 

characterization of pancreatic and liver focal lesions using a variety of imaging 663 



modalities as input, either single (e.g., T1-weighted MRI) or in combination with 664 

other techniques and data (e.g., T2-weighted and DCE-MRI plus risk factors). In 665 

chronic liver disease, radiomics-based tools have been developed to assist in the 666 

diagnosis and grading of hepatic fibrosis, among others. These models have been 667 

built using different imaging modalities, such as MRI or US. 668 

With regard to the prognosis of liver, biliary or pancreatic diseases, tools based 669 

on radiological information have hardly been developed. Many of these tools are 670 

focused on the prognosis of HCC based on information extracted from CT[97]. In 671 

this field of research, literature shows a clear trend toward integrating genetic 672 

information[98–102]. There are also studies that try to include variables extracted 673 

from clinical data and laboratory values[103,104]. In a scenario that advances 674 

towards integrated diagnosis, increasing volumes of data of different nature are 675 

available. This should allow for the generation of more accurate predictive 676 

models of clinical prognosis using information from many sources. 677 

For the AI-based tools developed to be used in daily clinical practice, they must 678 

obtain regulatory clearance, such as Food and Drug Administration (FDA) 679 

approval in the USA or CE marking in Europe. Despite the explosive production 680 

of such tools in the last years, to date only a small group of them have obtained 681 

this approval. One of the main problems is the lack of appropriate annotated data. 682 

Without large datasets of properly labeled studies, the performance of data-683 

hungry algorithms like CNNs will not be sufficient to be massively deployed in 684 

clinical environments. Furthermore, algorithms demand diverse data, such as 685 

multi-centric and multi-vendor, to avoid selection biases that would challenge 686 

their implementation in a real-world environment[105]. Another limitation of most 687 

AI-based tools found today is that they are aimed at a very concrete application 688 

(narrow AI applications), within a specific imaging modality, rather than being 689 

valid for a wide range of tasks at the radiologist’s work practice.  690 

Yet, the general attitude of radiology staff toward AI is positive. In a recent 691 

survey, European radiographers declared excitement about AI (83%), although 692 

only 8% had been taught on this matter in their qualification studies[106]. 693 



In another survey, European radiologists regarded the outcomes of AI 694 

algorithms for diagnostic purposes as generally reliable (75.7%), and algorithms 695 

for workload prioritization as very helpful (23.4%) or moderately helpful (62.2%) 696 

to reduce the workload of the medical staff[107]. 697 

The sentiment of gastroenterologists toward AI is also generally favorable, with 698 

a wide majority of UK[108] and European[109] specialists perceiving it as beneficial 699 

to key aspects of their clinical practice. Their main concerns according to these 700 

studies are related to algorithm bias, lack of guidelines, and potential increase in 701 

procedural times and operator dependence. 702 

 703 

CONCLUSIONS 704 

The rapid advance of AI is already transforming the gastrointestinal field with 705 

the development of applications aimed to assist and streamline image diagnosis. 706 

Traditional diagnostic imaging techniques such as US, EUS, CT, MRI, and 707 

PET/CT are already benefitting from a variety of AI algorithms that can perform 708 

automatic or semi-automatic segmentation and registration of the liver and 709 

pancreas and their lesions, aid the diagnosis and characterization of pancreatic 710 

and liver focal lesions and diffuse illnesses, improve image quality, accelerate 711 

image acquisition, and anticipate treatment response and patient prognosis. 712 

Moreover, with the use of radiomics, AI can add quantitative information 713 

previously undetected by radiologists to radiological reports. 714 

The massive adoption of AI in radiology of pancreatic and liver diseases is still 715 

incipient, but irreversible, and the sector is clearly moving in this direction. 716 

Advances in the field, such as the availability of regulatory cleared, robust 717 

algorithms trained and validated multicentrically, increased awareness on AI by 718 

the medical staff, and access to products that seamlessly integrate with their 719 

workflow, should pave the way for a rapid adoption of AI in the clinical practice, 720 

impacting outcomes of hepatic and pancreatic patients for the better. 721 

 722 



  723 
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FIGURE LEGENDS 1231 

 1232 

 1233 

 1234 

Figure 1. PubMed results by year using the search terms. artificial intelligence 1235 

radiology (top) and artificial intelligence AND (liver OR pancreas) (bottom). 1236 
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 1238 

 1239 

Figure 2. Relation between artificial intelligence and related subdisciplines, 1240 

neural network architectures, and/or techniques. 1241 

 1242 

 1243 

 1244 

Figure 3. Diagram of a convolutional neural network used for classification of a 1245 

focal liver lesion in a computerized tomography image. 1246 

 1247 



 1248 

Figure 4. In-house experience on liver assessment with artificial intelligence. 1249 

Magnetic resonance studies of a patient with liver focal lesions (liver 1250 

hemangiomas), processed with the Liver Analysis research application from 1251 

Siemens Healthcare. A: Automatic segmentation of whole liver, liver segments, 1252 

and other abdominal organs. B: Automatic detection, segmentation, and 1253 

measurement of the two liver hemangiomas. 1254 

 1255 



 1256 

 1257 

Figure 5. Computerized tomography scan of a 61-year-old male patient with 1258 

colon carcinoma and liver metastases. The intensity histograms of regions with 1259 

and without metastases are different; hence, the first order radiomic features[110], 1260 

which are based on the intensity histogram will potentially be different. 1261 

 1262 

 1263 

 1264 

Figure 6. 67-year-old patient with pancreatic carcinoma and liver metastases 1265 

treated with chemotherapy. The Digital Oncology Companion (Siemens 1266 

Healthineers, Germany) artificial intelligence-based prototype automatically 1267 

segments liver, portal and hepatic vessels, lesions, and surrounding anatomical 1268 

structures. From left to right: screenshots of the segmented liver, vessels, and 1269 

lesions; and generated 3D models. 1270 



TABLES 1271 

Table 1. Works proposed for automated image analysis. 1272 

Image 

analysis 

Anatomical 

area 

Modality AI model References 

Segmentation Pancreas MRI CNN [33,34,111] 

UDCGAN [112] 

3D-Unet [113] 

Liver CT SSC (no 

AI) 

[36] 

PA (Atlas-

no AI) 

[39] 

MRI CNN [37,38,42,114] 

GAN [43] 

Registration Liver CT 

MRI 

CNN [48] 

SG-DIR 

(no AI) 

[49] 

Cycle-

GAN + 

UR-Net 

[47] 

4D-MRI Non-rigid [50] 

MRI: Magnetic resonance imaging; CT: Computerized tomography; 4D-MRI: 1273 

Four-dimensional magnetic resonance imaging; CNN: Convolutional neural 1274 

network; UDCGAN: U-Type densely connected generation adversarial 1275 

network; SCC: Sparse shape composition; AI: Artificial intelligence; PA: 1276 

Probabilistic atlas; GAN: Generation adversarial network; SG-DIR: Structure‐1277 

guided deformable image registration; UR-Net: Unsupervised registration 1278 

network. 1279 

  1280 



Table 2. Summary of works based in artificial intelligence for automated 1281 

diagnosis of pancreas and hepatobiliary system diseases. 1282 

Anatomical 

area 

Modality AI model What is diagnosed? Refs. 

Liver Scintiscan ANN Chronic hepatitis and cirrhosis [115] 

CT ANN HCC, intra-hepatic peripheral 

cholangiocarcinoma, 

hemangioma, metastases 

[53] 

CNN HCC, malignant liver tumors, 

indeterminate mases, 

hemangiomas, cysts 

[54] 

Liver fibrosis [116],[51

] 

SVM Cirrhosis and HCC [52] 

Malignant liver tumors [55] 

KNN, SVM, 

RF 

HCC [117] 

MRI CNN HCC [56] 

Simple cyst, cavernous 

hemangioma, FNH, HCC, ICC 

[57,58] 

Extremely 

randomized 

trees 

Adenomas, cysts, 

hemangiomas, HCC, 

metastases 

[59] 

US PNN Benign and malignant focal 

liver lesions 

[66] 

SVM Fatty liver [69] 

HCC [67] 

CNN Focal liver lesions: Angioma, 

Metastasis, HCC, 

Cyst, FNH 

[68] 



Liver fibrosis stages [70] 

Biliary 

system 

MRI ANN Cholangiocarcinoma [60,61] 

SVM Lymph node status in ICC [118] 

Pancreas CT Hybrid 

SVM-RF 

Pancreas cancer [77] 

SVM Serous cystic neoplasms [73] 

CNN IPMN, mucinous cystic 

neoplasm, serous cystic 

neoplasm, solid 

pseudopapillary tumor 

[74] 

MRI SVM IPMN [79] 

US ANN Chronic pancreatitis, 

pancreatic adenocarcinoma 

[82] 

CNN Malignancy in IPMN [83] 

Autoimmune pancreatitis, 

pancreatic ductal 

adenocarcinoma, chronic 

pancreatitis 

[84] 

CT: Computerized tomography; MRI: Magnetic resonance imaging; US: 1283 

ultrasound; ANN: Artificial neural networks; CNN: Convolutional neural 1284 

network; SVM: Support vector machine; KNN: K-nearest neighbors; RF: Random 1285 

Forest; PNN: Probabilistic neural network; HCC: Hepatocellular carcinoma; 1286 

FNH: Focal nodular hyperplasia; ICC: Intrahepatic cholangiocarcinoma; IPMN: 1287 

Intra-ductal papillary mucinous neoplasm. 1288 



Table 3. Summary of the works proposed to predict patient prognosis using artificial intelligence 1289 

Anatomical Area Pathology Modality AI model What is prognosed? Refs. 

Liver HCC CT 

 

ANN Progression of hepatectomized 

patients with HCC 

[86] 

CNN Early recurrence of HCC [89] 

Response to transarterial 

chemoembolization for patients with 

intermediate-stage HCC 

[90] 

LASSO Cox regression Early recurrence of HCC [91] 

Recurrence of HCC after liver 

transplantation 

[92] 

Recurrence of HCC after resection [119] 

MRI  LR, RF Response to intra-arterial treatment 

of HCC 

[87,88] 

US CNN, SVM Response to transarterial 

chemoembolization for patients with 

HCC 

[120] 



Biliary system Liver metastases, HCC, 

Cholangiocarcinoma 

CT CNN Prediction of hepatobiliary toxicity 

after liver SBRT 

[93] 

Pancreas Postoperative pancreatic 

fistula 

CT RepTree Prediction of postoperative pancreas 

fistulas after 

pancreatoduodenectomy 

[94] 

HCC: Hepatocellular carcinoma; CT: Computerized tomography; MRI: Magnetic resonance imaging; US: ultrasound; ANN: 1290 

Artificial neural networks; CNN: Convolutional neural network; LR: Logistic regression; RF: Random Forest; SVM: Support vector 1291 

machine; SBRT: Stereotactic body radiotherapy. 1292 

 1293 

 1294 
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