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Abstract
Despite the recent progress of medical technology in the diagnosis and treatment 
of tumors, pancreatic carcinoma remains one of the most malignant tumors, with 
extremely poor prognosis partly due to the difficulty in early and accurate 
imaging evaluation. This paper focuses on the research progress of magnetic 
resonance imaging, nuclear medicine molecular imaging and radiomics in the 
diagnosis of pancreatic carcinoma. We also briefly described the achievements of 
our team in this field, to facilitate future research and explore new technologies to 
optimize diagnosis of pancreatic carcinoma.

Key Words: Pancreatic carcinoma; Magnetic resonance imaging; Molecular imaging; 
Positron emission tomography-computed tomography; Positron emission tomography-
magnetic resonance; Artificial intelligence
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Core Tip: Pancreatic carcinoma remains high incidence and poor prognosis. Molecular imaging enables 
early and precise diagnosis, efficient assessment, non-invasive pathological classification. This paper aims 
to review the recent research progress of nuclear medicine, magnetic resonance imaging and radiomics in 
the diagnosis of pancreatic carcinoma, and also briefly describe our team's work in this field.

Citation: Pang XX, Xie L, Yao WJ, Liu XX, Pan B, Chen N. Advancements of molecular imaging and radiomics in 
pancreatic carcinoma. World J Radiol 2023; 15(1): 10-19
URL: https://www.wjgnet.com/1949-8470/full/v15/i1/10.htm
DOI: https://dx.doi.org/10.4329/wjr.v15.i1.10

INTRODUCTION
In the past decade, significant progress has been made in the medical technology for the treatment of 
cancers. However, the prognosis of pancreatic carcinoma remains extremely poor due to its insidious 
location, high malignancy, easy metastasis and rapid progression, which increases the difficulty of early 
and accurate assessment. Radical surgical resection rate of pancreatic cancer patients is less than 20%. 
Pancreatic carcinoma is also resistant to radiotherapy and chemotherapy. Moreover, targeted drug 
therapy, and cytotoxic T-lymphocyte-associated protein 4 and programmed death-1/programmed 
death-ligand 1 antibody immunotherapy are ineffective. The five-year survival rate of patients remains 
below 5%-9%, and the number of deaths is the fourth highest among malignant tumors[1]. Early and 
accurate diagnosis as well as efficacious assessment of pancreatic carcinoma have important clinical 
significance.

Conventional imaging techniques makes important significance in theranostic of pancreatic cancer; 
however, these technologies are still deficiencies yet. First of all, magnetic resonance (MR) and 
computed tomography (CT) only detects limited range with regional scan in clinical routine diagnosis of 
pancreatic carcinoma, therefore, many patients with distant metastasis are misdiagnosed or never 
diagnosed. Secondly, the rate of misdiagnosis was high in lymphatic metastasis by MR and CT scan. By 
reason of no static image provided, ultrasound examination is very unfavorable for reading in clinical 
work, even this method has the double advantage of real time imaging and radiation lessness. What's 
more, ultrasound is affected greatly by operators. Finally, some patients who cannot have a proper 
assessment in regional lymphatic metastasis, especially patients after chemotherapy, even whole body 
18F-FDG positron emission tomography (PET)/CT scan.

Molecular imaging has advanced rapidly in recent years. It enables early and precise diagnosis, 
efficacy assessment, non-invasive pathological classification, and acts as an important "bridge" to 
achieve precise diagnosis and treatment[2]. It can meet clinical demands and better protect patient 
privacy compared to genetic testing. This paper aimed to review the recent research progress of nuclear 
medicine, magnetic resonance imaging, molecular imaging and radiomics in the diagnosis and 
treatment of pancreatic carcinoma, and also briefly describe our team's work in this field.

NUCLEAR MEDICINE MOLECULAR IMAGING
Nuclear medicine molecular imaging is based on the principle of injecting microscopic molecular probes 
into the body and selectively targeting them to appropriate sites based on different properties, in order 
to qualify or quantify organs, tissues or lesions for assessing diseases at the molecular level. Molecular 
imaging in nuclear medicine has made significant advances in the treatment of pancreatic carcinoma in 
recent years.

Glucose metabolism imaging
18F-FDG is a glucose analogue, which is rapidly taken up by the glucose-transporter on the cell surface 
after intravenous injection. Various tumor cells, including pancreatic carcinoma, and inflammatory cells 
in the tumor microenvironment absorb a large amount of 18F-FDG, but the uptake is influenced by 
various conditions and the underlying mechanisms are complex[3].

18F-FDG PET/CT has high specificity, accuracy and sensitivity in the diagnosis of pancreatic 
carcinoma, and has important clinical value in the diagnosis, staging, surgical indication and evaluation 
efficacy of pancreatic carcinoma[4]. 18F-FDG PET/CT is more sensitive and accurate than CT in detecting 
tumor metastasis, and its whole-body scan is beneficial for tumor staging[5]. This technique detected 
distant metastases in about one-third of pancreatic carcinoma patients and changed the staging of 
approximately 26.8% of patients[6]. Its standardized uptake value (SUV) quantification and the rate of 
change were significantly correlated with tumor size[7], malignancy[8], vascular invasion[9], and lymph 
node metastasis. In addition, 18F-FDG PET has significant value in efficacy assessment[10] and survival 
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prediction[11]. For example, the patients with baseline SUV < 3.5 (and/or) SUV decrease ≥ 60% had 
better overall survival (OS) and progression-free survival (PFS)[12]. In locally advanced or metastatic 
pancreatic carcinoma, the PFS of patients with SUVmax < 6.8 was significantly longer than that of patients 
with SUVmax ≥ 6.8[13]. 18F-FDG PET/CT-guided radiotherapy with metabolic tumor volume and total 
lesion glycolysis (TLG) can be used as independent factors affecting prognosis[14]. Yamamoto et al[15] 
found that the early postoperative recurrence rate of pancreatic carcinoma in patients with SUVmax ≥ 6.0 
was higher than that of patients with SUVmax < 6.0, and median OS of the former was lower than the 
latter  (Table 1)[16].

With the increasing application of 18F-FDG PET/CT in recent years, several shortcomings have been 
gradually revealed. First, as a non-tumor-specific imaging agent, 18F-FDG PET reflects glucose 
metabolism and is not directly related to the biological properties of the tumor. So non-neoplastic 
lesions such as inflammation, tuberculosis, or even non-specific uptake with increased glucose 
metabolism can lead to false positive results. Second, if the patient has high blood glucose levels, uses 
short-acting insulin or exercises, 18F-FDG can also lead to reduced sensitivity due to increased 
background uptake. In order to address these problems, nuclear medicine researchers have developed a 
series of more specific imaging agents for different targets.

Non-glucose metabolism imaging
The highly specific non-FDG molecular probes with different targets achieve accurate diagnosis of 
pancreatic carcinoma, and also enable non-invasive visualization of the expression of different receptors 
in tumors, facilitating individualized precision medicine. These imaging agents have been particularly 
successful in imaging of integrin receptor, somatostatin receptor, tumor-associated fibroblasts, etc. Our 
team has also conducted in-depth research on PD-L1-targeted imaging, non-radioactive molecular 
imaging and highly specific targeted radiotherapy.

Somatostatin receptor imaging
Somatostatin receptor imaging is mainly used in pancreatic neuroendocrine tumors, with sensitivity of 
86%-100% and specificity of 79%-100%[17]. The precursors of somatostatin receptor (SSTR) imaging 
agents are mainly Tyr(3)-octreotate, 1-Nal(3)-octreotide and D-Phe1-Tyr(3)-octreotide, which have 
different affinities for different somatostatin receptor subtypes[17]. The neuroendocrine tumors with 
high differentiation (G1-G2, Ki-67 < 10%) generally showed high expression of SSTR and positive SSTR 
imaging. Moreover, the degree of malignancy was low, the level of glycolysis was decreased, and the 
metabolism of FGD was only slightly increased or defective, which led to low sensitivity of 18F-FDG PET
[18,19]. In contrast, due to the loss of SSTR and negative SSTR imaging, the increase of malignant degree 
led to increased glycolysis[20], high metabolism of FGD and increased sensitivity of 18F-FDG PET/CT. 
In addition to the above three SSTR agonists, SSTR inhibitors have other advantages such as several 
binding sites, low degradation rate and longer retention in tumors[21] (Table 2)[17].

Fibroblast activation protein imaging
Cancer-associated fibroblasts (CAFs) are a major component of the mesenchyme surrounding epithelial 
cancer cells. Fibroblast activating protein (FAP) is a marker of CAFs. It is highly expressed in tumor 
stromal fibroblasts of most common human epithelial carcinomas, and has lower expression in normal 
tissues[22]. CAFs can form physical and metabolic barriers, which is partly responsible for the resistance 
of pancreatic carcinoma to chemotherapy and radiotherapy, by reducing the therapeutic effect of 
combined chemotherapy on pancreatic carcinoma[23]. High expression of CAFs in pancreatic carcinoma 
is associated with shorter OS and disease-free survival[24,25].

At present, the commonly used FAP-targeted imaging agents are various radionuclide-labeled small 
molecular FAP inhibitors (FAPIs), mainly FAPI-04, FAPI-21 and FAPI-46. The commonly used imaging 
agent 68Ga/18F-labeled FAPI-04 shows a significantly high uptake in pancreatic carcinoma, which has a 
good diagnostic efficacy for the primary focus of pancreatic carcinoma. In a comparative study of 
pancreatic carcinoma and pancreatitis, 68Ga-FAPI-04 PET/MR and 18F-FDG PET/CT positive rates were 
both 100%, but the former SUVmax was significantly higher than the latter SUVmax (P < 0.05). In addition, 
68Ga-FAPI-04 could detect more lymph node metastases, but 18F-FDG was able to detect more liver 
metastases than 68Ga-FAPI-04[26]. 68Ga-FAPI-04 may be superior to 18F-FDG and CT in the diagnosis of 
lymph node, bone, liver, lung, peritoneal and pleural metastases of pancreatic carcinoma[27,28]. Deng et 
al[29] reported a 65-year-old male patient with pancreatic head cancer and liver metastasis. 18F-FDG 
showed slight uptake in the pancreatic lesions and the tenth rib on the right, but not in many low-
density or isodensity nodules in the liver, while 68Ga-FAPI PET/CT showed strong FAPI uptake in the 
pancreatic lesions and the tenth rib on the right, as well as multiple liver lesions.

Our team conducted a comparative study of FAPI and FDG imaging of pancreatic cancer (Figure 1), 
and redesigned FAPI based on new ideas, which is expected to exceed the existing FAPI-04, FAPI-21 
and FAPI-46 in imaging and therapeutic effects. At present, chemical synthesis has been completed and 
radionuclides such as iodine and technetium have been labeled, and further cellular and animal 
experiments will be conducted soon.
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Table 1 Summary of sensitivity and specificity of different imaging modalities for the diagnosis of pancreatic cancer[16]

18F-FDG PET-CT CT MRI EUS
Year Study type Pancreatic cancer–all 

(n) Sens Spec Sens Spec Sens Spec Sens Spec

2016 Retrospective study 139-139 0.78 – 0.76 – – – – –

2014 Retrospective study 33–52 1 0.9 0.92 0.5 0.89 0.75 1 0.88

2009 Meta-analysis 38571 0.9 0.8 – – – – 0.81 0.93

2017 Meta-analysis 3567–5399 0.89 0.7 0.9 0.87 0.93 0.89 0.91 0.86

2014 Retrospective study 80–91 0.68 0.73 – – – – – –

2018 Prospective study 278–583 0.93 0.76 0.89 0.71 – – – –

2015 Retrospective study 50–70 0.92 0.65 0.82 0.65 – – – –

1The study included a total of 3857 patients, but we were unable to obtain the specific number of pancreatic cancer.
This table is adopted from[16]. Sens: Sensitivity, Spec: Specificity. PET: Positron emission tomography; CT: Computed tomography; MRI: Magnetic 
resonance imaging; EUS: Endoscopic ultrasound.

Table 2 Summary of the main clinical key points of the two EANM/ENETS recommended radiopharmaceuticals[17]

Clinical key points

Radiopharmaceuticals Main indication Diagnostic 
accuracy False positive findings

68Ga-TATE, TOC, NOC Staging and restaging any non-insulinoma 
panNET case; detection of the unknown primary 
tumour site or early relapse; evaluation in-vivo 
SRE; selection for PRRT and/or cold SSA

Sensitivity: 86% to 
100%; specificity: 
from 79% to 100%

Pancreatic uncinate process, accessory spleens 
(including intra-pancreatic, splenules, 
infectious/inflammatory findings, non-neuroen-
docrine tumours)

18F-FDG High grade G2, G3 and NEC; prognosis; rapid 
tumour progression in earlier diagnosed G1–G2 
tumours

Sensitivity: 40% in 
G1, 60% in G2; 95% 
in G3 patients

Infectious/inflammatory findings, non-neuroen-
docrine tumours

This table is adopted from[17]. TATE: Tyr(3)-octreotate; NOC: 1-Nal(3)-octreotide; TOC: D-Phe1-Tyr(3)-octreotide; NEC: Neuroendocrine carcinomas.

Integrin receptor imaging
Tumor neovascularization (angiogenesis) is necessary for maintaining the growth of malignant tumors, 
which plays a key role in tumor growth, invasion and metastasis, it is an important target for tumor 
diagnosis and treatment.

Integrin αvβ3 receptor is an important component of the 24 integrins, which is highly expressed on the 
cell surface of tumor neovascular endothelial cells and many solid tumors. However, it has low or no 
expression in mature vascular endothelial cells and most normal tissues and organs in healthy people, 
and plays an important role in angiogenesis, metastasis and tumor invasion[30,31]. The integrin αvβ3 
receptor is highly expressed in about 60% of invasive pancreatic carcinomas, and the small polypeptide 
arginine glycine aspartic acid sequence (RGD) can be targeted to bind to αvβ3 receptor. Using 
radionuclide-labeled RGD peptides, such as 111In, 18F, 68Ga-labeled RGD, can be used to visualize and 
treat pancreatic carcinoma. Our research team has also studied RII and RIT based on molecular probes 
constructed by different radionuclide-labeled RGD and RRL peptides[32].

In addition to the integrin αvβ3 receptor, integrin αVβ6 is also highly expressed in pancreatic 
carcinoma[33]. Radiation molecular pancreatic probes constructed from the radionuclide 99mTc and 111In-
labeled HHK can target αvβ6 with high specificity to achieve early diagnosis of pancreatic carcinoma and 
its metastases[34,35]. Based on previous studies, our research team redesigned the HHK peptide 
(Figure 2). The Gd-DOTA-HHK compound was obtained by chelating Gd3+, which can achieve high 
specific enhancement of tumor αvβ6 receptor during MRI T1WI scanning. Single photon emission CT 
imaging with high sensitivity and MRI with high soft tissue resolution combine perfectly to achieve 
high sensitivity and non-invasive visualization of αvβ6 targets at high resolution.

In addition, some researchers have explored the application of radionuclide labeling dopa, Exendin-4, 
CXCR4, and PSMA in pancreatic carcinoma.
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Figure 1 Two patients with pancreatic cancer imaged with 18F-FDG-positron emission tomography compared with 18F-FAPI-positron 
emission tomography. Patient 1 was a 69-year-old female. Patient 2 was a 70-year-old female. 18F-FAPI-positron emission tomography (PET) detected more 
lesions than 18F-FDG-PET, and also had better contrast. PET: Positron emission tomography.

Figure 2 Structure of the redesigned HHK peptide.

MAGNETIC RESONANCE MOLECULAR IMAGING
MRI utilizes magnetic resonance to obtain electromagnetic signals from the human body, which can be 
reconstructed by computer to show the different chemical components in the same tissue. Because MRI 
has the advantages of high soft tissue resolution, non-radiation, unrestricted imaging depth and multi-
sequence imaging, and with the development of MRI-specific imaging agents, it is possible to evaluate 
lesions from multiple dimensions of functional and molecular images by MRI.

Diffusion-weighted imaging
Diffusion-weighted imaging (DWI) is the most widely used conventional MRI technique in addition to 
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T1WI and T2WI. The diffusion movement of water molecules reflects the microstructure of the tumor, 
such as internal cell density, extracellular space and heterogeneity. When the cell density increases, 
edema, fibrosis, etc., affect the cell membrane function, which can be detected due to enhanced signal.

Increased b-value (>1000 s/mm2) DWI can increase lesion detection, but high b-value DWI images 
often exhibit low signal noise ratio, large diffusion-sensitive gradients that tend to distort images and 
longer scan times. The emergence of computed DWI has partially solved the above problem[36]. Liang 
et al[37] explored the value of computed DWI (cDWI) technique in the diagnosis of pancreatic 
carcinoma, and the results initially showed that a b-value of c1000-c1500 s/mm2 at cDWI technique 
could effectively display pancreatic carcinoma as well as maintain the image quality. Compared to DWI, 
intravoxel incoherent motion imaging is based on a biexponential model, which can quantify the 
diffusion and perfusion motions of water molecules separately. It can reflect the diffusion and perfusion 
characteristics of tissue cells, respectively, and has the advantages of fast-imaging, low-noise, and multi-
parameters[38].

MR dynamic enhancement/Perfusion imaging
MR enhanced or perfusion imaging facilitates T-staging of pancreatic carcinoma by observing the 
relationship between the lesion, its surrounding tissue and vascular invasion. Both dynamic contrast-
enhanced MRI (DCE-MRI) and perfusion MRI can provide quantitative information on blood flow 
perfusion of lesions (such as tumor tissue)[39]. The most common forms include T2*-weighted dynamic 
susceptibility contrast (DSC) perfusion and T1-weighted DCE perfusion[40]. However, there are 
significant differences between the two imaging methods, PWI (DCE and DSC) can reflect the tumor 
microenvironment such as blood vessel density and blood flow state by quantitative and functional 
parameters, such as first transit time, mean transit time, time to peak, etc. while dynamic enhancement 
can only obtain time perfusion curves through multi-phase dynamic enhancement, but they are not 
molecular imaging per se.

MR targeted molecular imaging
The basic principle of MR targeted molecular imaging is similar to nuclear medicine molecular imaging. 
The first step is to construct a specific molecular probe, and then introduce it into the body. After the 
probe actively and specifically binds to the imaging target, the lesions containing specific molecular 
targets in the body will be imaged by MRI[41]. Due to the high specificity of the molecular probe, 
delayed scan time, continuous enhancement within the tumor and relatively high signal on T1WI 
during the delayed scan, the specificity of the diagnosis is greatly improved[42,43], which helps to 
improve the detection rate of early microscopic pancreatic carcinoma lesions.

MR molecular probes meet the requirements of high specificity, affinity and signal elements that can 
be detected by MRI, such as T1 contrast agent represented by gadolinium (Gd), manganese, zinc 
chelates (Positive) and T2 contrast agent represented by MNP (Negative). Gd is used as a signal 
component to synthesize paramagnetic molecular imaging probes, mainly to shorten the longitudinal 
relaxation time of hydrogen protons, increase the T1 relaxation rate and produce positive T1WI contrast
[43]. The traditional Gd agent enhanced MRI is diagnosed by the hemodynamic characteristics of lack of 
blood supply in pancreatic carcinoma, with low relaxation rate and lack of tissue specificity[44]. In 
recent years, MNP, as represented by SPION, has been applied in MR molecular imaging studies, 
mainly to shorten the transverse relaxation time, improve the T2 relaxation rate and produce negative 
T2WI contrast. Compared with Gd and SPION, it has better magnetization and biocompatibility, and no 
risk of nephrogenic systemic fibrosis[45,46].

In recent years, MR molecular imaging of pancreatic carcinoma is mainly based on basic scientific 
research. At present, the main targets involved are SSTR[47], urokinase-type plasminogen activator 
receptor[48], insulin-like growth factor-1 receptor, αVβ6, epidermal growth factor receptor, vascular 
endothelial growth factor receptor-2[49], etc., but their prospect of clinical application requires further 
study. In addition, targets such as reticulin-1 (plectin-1)[50], mucin-1[51], MUC4, carcinoembryonic 
antigen-related cell adhesion molecule 6[52], γ-glutamyltransferase 5[53], P32 protein[54], mesothelin
[55], thymus fine cell differentiation antigen-1, cathepsin E, neutrophil gelatinase-associated lipid 
transport protein[56] were also examined, which could lead to a new imaging target for pancreatic 
carcinoma.

The slow progress of MR targeted molecular imaging compared to nuclear medicine molecular 
imaging is mainly due to its own limitations. First, the specificity of the above-mentioned types of 
targets is poor, which affects the specificity of MR molecular imaging[56]. Second, high concentrations 
of Gd molecular probes are required for imaging, which is difficult to achieve when some molecular 
targets are expressed at low levels. Finally, factors such as low blood supply, low perfusion in 
pancreatic carcinoma, denser stromal components in the tumor, and excessive uptake of the molecular 
probe by the reticuloendothelial system such as liver and spleen in vivo decrease the aggregation dose in 
the tumor, thus affecting the effect of MR molecular imaging[57]. It can be optimized from the following 
aspects: (1) Improve the biocompatibility of molecular probes and appropriately prolong their blood 
circulation time to promote more molecular probes to bind to the tumor; (2) The molecular probe 
simultaneously combines more Gd ions to obtain higher relaxation rate[43]; (3) Multi-target molecular 
imaging facilitates specific imaging of lesions[42]; and (4) Reduce the volume and molecular weight of 
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molecular probe to achieve better penetration efficiency, paramagnetic resonance effect, reduce 
immunity and reticuloendothelial system uptake in vivo[42].

Different imaging techniques have their advantages and disadvantages, and their combined 
application can achieve complementary advantages and improve the value of clinical applications[58]. 
In addition, the management of radiopharmaceuticals is extremely strict in some countries, and very 
few radiopharmaceuticals are clinically approved. Therefore, in addition to the research and 
development of various imaging agents with high specificity and high sensitivity mentioned above, AI 
technology to improve diagnostic performance or complement existing technologies may be worth 
exploring.

ARTIFICIAL INTELLIGENCE AND RADIOMICS
AI, artificial intelligence, can be used to mine various medical images for biometric information and 
imaging features that are not easily perceived by physicians. In recent years, the application of AI-based 
radiomics has been used for lesion detection, pathological diagnosis, radiotherapy target delineation 
and curative effect prediction, so as to improve effective treatment decision-making for cancer patients. 
Based on radiomics, the cross-validated support vector machine classification diagnostic model can 
automatically extract quantitative features from MDCT[59]. Liu et al[60] used the AI system of R-CNN 
depth neural network to verify the diagnosis of CT images of pancreatic carcinoma in 100 cases, and 
established an AI diagnosis system of pancreatic carcinoma based on enhanced CT images. The system 
can assist doctors to identify pancreatic carcinoma, normal pancreatic tissue, chronic pancreatitis or 
benign pancreatic tumors. Mori et al[61] constructed 18F-FDG-PET/CT radiomic model to predict the 
recurrence survival value of patients with LAPC after radiotherapy for locally advanced pancreatic 
cancer, which could significantly improve treatment outcome while avoiding over-treatment of patients 
with poorer expected outcomes.

Radiomics based on AI has the potential to supplement information for clinical diagnosis and 
treatment and help solve certain clinical problems, but there are some limitations, such as incorrect 
tumor screening, insufficient design of database, case number and sensitive feature algorithm.

CONCLUSION
Nuclear medicine molecular imaging is based on the principle of injecting microscopic molecular probes 
into the body and selectively targeting them to appropriate sites based on different properties, in order 
to qualify or quantify organs, tissues or lesions for assessing diseases at the molecular level. Molecular 
imaging in nuclear medicine has made significant advances in the assessment of pancreatic carcinoma in 
recent years.
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