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Abstract
This work aims to summarize and evaluate the current planning progress based 
on the linear accelerator in stereotactic radiotherapy (SRT). The specific 
techniques include 3-dimensional conformal radiotherapy, dynamic conformal arc 
therapy, intensity-modulated radiotherapy, and volumetric-modulated arc 
therapy (VMAT). They are all designed to deliver higher doses to the target 
volume while reducing damage to normal tissues; among them, VMAT shows 
better prospects for application. This paper reviews and summarizes several 
issues on the planning of SRT to provide a reference for clinical application.

Key Words: Stereotactic radiotherapy; Treatment technology; Energy; Isocenters; 
Coplanar/noncoplanar fields; Calculation algorithm; Multileaf collimator leaf width; 
Flattening filter free mode; Small field dosimetry; Grid size

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In recent years, stereotactic radiotherapy (SRT) has been moving towards 
large-scale applications with radiotherapy device hardware and software development. 
SRT has the advantages of a high single dose (6-30 Gy/fraction), low treatment 
frequency (1-5 fraction), a high biological effect dose ≥ 100, high target volume 
conformity index, and a hefty dose gradient index outside the target volume. This paper 
analyzes the SRT planning issues such as the treatment technology, energy, number of 
isocenters, number of fields, coplanar/noncoplanar issue, the dose calculation algorithm 
of treatment planning system, multileaf collimator leaf width, flattening filter free mode, 
auxiliary contours such as ring/shell, small field dosimetry, grid size and auto planning.
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INTRODUCTION
Stereotactic radiotherapy (SRT) is a technique that delivers high doses of radiation to tumors while 
preserving normal tissue function and has high requirements for planning. SRT includes stereotactic 
radiosurgery (SRS), fractioned SRT (FSRT), and stereotactic body radiotherapy (SBRT). Generally, SRS is 
a single fractional head treatment, FSRT is a multiple fractional head treatment, and SBRT is a multiple 
fractional body treatment[1,2]. Among SRS/FSRT/SBRT, SRS was the first to emerge and inspired the 
use of SBRT[3]. In recent years, SRT has been moving toward large-scale applications with radiotherapy 
device hardware and software development. SRT has the advantages of a high single dose (6-30 
Gy/fraction), low treatment frequency (1-5 fraction), a high biological effect dose ≥ 100, high target 
volume conformity index (CI), and a high dose gradient index (GI) outside the target volume. However, 
there are also controversial points, such as the increased probability of organ damage, applicability to 
small tumors with a target volume diameter between 2-5 cm, and uneven dose distribution within the 
target volume[4-6].

SRT is generally part of the multidisciplinary treatment of cancer; however, in some cases, it can even 
replace surgery as the preferred treatment option, showing a bright future of application. Persson et al[7] 
suggested that SRS is superior to microsurgery when vestibular schwannoma < 3 cm requires 
intervention. Chang et al[8] showed that the estimated 3-year overall survival rate for inoperable stage I 
non-small cell lung cancer (NSCLC) was 95% in the SBRT group compared with 79% in the surgical 
group, and the 3-year recurrence-free survival rate was 86% in the SBRT group compared with 80% in 
the surgical group, making SBRT a possible alternative to surgery in the treatment of stage I NSCLC. 
Voglhuber et al[9] found that there appeared to be no high-grade toxicities > grade 2, and 79.4% of 
treated metastases were progression-free after SBRT for adrenal metastases. Tandberg et al[10] similarly 
concluded that SBRT should be considered an alternative to surgery or systemic therapy under certain 
conditions in patients with poor pulmonary reserve, advanced age, or other comorbidities who are 
considered at excessive risk for complications after surgery. Park et al[11] found that short-term 
outcomes after SBRT for stage I NSCLC were significantly better than resection, did not affect the 
quality of life, and mean lung function was not altered; however, a few patients may gradually develop 
late toxicity.

Initially, SRT was performed on specialized equipment, such as gamma knife (GK) and Cyber Knife
[12-15]. A large number of studies in recent years have shown that SRT based on linear accelerators and 
multileaf collimators (MLCs) has gradually matured and been widely used[16-18]. Brezovich et al[19] 
suggested that SRS can be planned and delivered on a standard linear accelerator without a dedicated 
collimator system, with spatial accuracy better than 0.5 mm and dosimetric error less than 5%. Liu et al
[20] compared the dosimetric parameters between linac-based volumetric-modulated arc radiotherapy 
(VMAT)-SRS and GK-SRS for multiple brain metastases and found that VMAT plans had a smaller CI 
(1.19 ± 0.14 vs 1.50 ± 0.16, P < 0.001) but an enormous GI (4.77 ± 1.49 vs 3.65 ± 0.98, P < 0.01). GK 
appeared better at reducing only very low-dose spread (< 3 Gy); however, the treatment time of VMAT-
SRS was significantly reduced (3-5 times) compared to GK-SRS.

SRT planning faces several critical issues. Based on the search strategy of “stereotactic radiosurgery” 
OR “stereotactic body radiotherapy” OR “SABR” AND “planning” AND “linac”, we studied 161 
English articles on SRT planning issues based on a linear accelerator included in PubMed from 2017 to 
September 2022. Excluding nonlinac planning articles, 113 articles were included in the research. In 
addition, some articles on SRT planning were covered or overlapped by other representative articles, 
and therefore we finally selected 13 representative articles. The detailed data are listed in Table 1[5,21-
32]. This paper analyzes SRT planning issues such as the treatment technology, energy, number of 
isocenters, number of fields, coplanar/noncoplanar issue, dose calculation algorithm of the treatment 
planning system (TPS), MLC leaf width, flattening filter free (FFF) mode, auxiliary contours such as 
ring/shell, small field dosimetry, grid size (GS) and autoplanning (AP). The purpose of this paper is to 
serve as a reference for the clinical application of SRT planning.

TREATMENT TECHNIQUES
Techniques that can be used for linac-based SRT include 3-dimensional conformal radiotherapy 
(3DCRT), dynamic conformal arc therapy (DCAT), intensity-modulated radiotherapy (IMRT), and 
VMAT[33-35]. Among them, 3DCRT and DCAT are forward designs with few control variables and 

https://www.wjgnet.com/2307-8960/full/v10/i35/12822.htm
https://dx.doi.org/10.12998/wjcc.v10.i35.12822
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Table 1 The detailed data of 13 representative articles on stereotactic radiotherapy planning

Ref. Planning issues Conclusions

Podder et al[5], 2018 Treatment technology In SBRT treatment of prostate cancer, IMRT/VMAT was superior to 
3DCRT/DCAT in terms of target dose conformality and protection of 
organs at risk

Fernandez et al[21], 2020 Interplay effects Interplay effects were most evident for large amplitude respirations, 
complex elds, and small eld margins

Tahmasebi et al[22], 2019 Energy Mixing different ratios of 6 MV and 18 MV X-rays in radiotherapy 
could fit PDD data equivalent to 6-18 MV energies, thus controlling the 
incidence of hot spots and better regulating the dose distribution in the 
target volume

Ruggieri et al[23], 2018 Number of isocenters Using the novel VMAT technique to perform single-isocenter treatment 
of multiple intracranial metastases could achieve similar plan quality as 
multiple-isocenters while significantly reducing treatment time

Tajaldeen et al[24], 2019 Number of fields In the 3DCRT plans, a minimum of nine beams were used to reduce the 
dose to the chest wall

Hanna et al[25], 2019 Coplanar/noncoplanar issue The noncoplanar plans were superior to the coplanar plans in terms of 
CI of the target volume and protection of healthy brain tissues

Hoffmann et al[26], 2018 The dose calculation algorithm of treatment 
planning system

Both AcurosXB and MC algorithms had matured to a level where their 
differences were below the typical experimental detection thresholds 
for clinical treatment

Younge et al[27], 2017 MLC leaf width In spinal SBRT, 2.5 mm MLC had limited improvement in planning 
quality yet increased planning complexity and decreased dose delivery 
accuracy compared with 5 mm MLC

Ma et al[28], 2019 FFF mode The FFF mode was fully available for all sizes of clinical fields and had 
outstanding advantages in reducing treatment time, and predicted a 
trend of complete replacement of the FF mode by the FFF mode

Duan et al[29], 2020 Auxiliary contours such as ring/shell When the numbers of peripheral lung cancer SBRT plans shells did not 
exceed 6, it could consistently improve CI and GI in the target volume 
and reduce the maximum dose in the spinal cord and V20 and V10 to the 
bilateral lung

Huq et al[30], 2018 Small field dosimetry The beam model used to simulate the small field in TPS should pay 
special attention to the influence of the primary beam source and 
collimator in the calculation of energy fluence and dose

Snyder Karen et al[31], 2017 Grid size The use of the 1.5 mm grid size balanced dose accuracy and calculation 
time

Visak et al[32], 2021 Auto planning The KBP program reduced the maximum dose of OARs compared to 
the manual VMAT plans, and each of the planning time was less than 
30 min

SRT: Stereotactic radiotherapy; SBRT: Stereotactic body radiotherapy; IMRT: Intensity-modulated radiotherapy; VMAT: Volumetric-modulated arc 
therapy; 3DCRT: Three-dimensional conformal radiotherapy; DCAT: Dynamic conformal arc therapy; PDD: Percentage depth dose; CI: Conformity index; 
MC: Monte carlo; MLC: Multi-leaf collimator; FFF: Flattening filter free; GI: Gradient index; V20, V10: Greater than or equal to 20 Gy/10 Gy dose wrap 
volume as a percentage of total volume; TPS: Treatment planning system; OAR: Organ at risk; KBP: Knowledge-based planning; OARs: Organs at risk.

thus have low geometric complexity, high tolerance, and no interplay effects. IMRT and VMAT are 
inverse designs that can set auxiliary contours such as rings and shells, with high modulation freedom, 
low tolerance, and the need to overcome interplay effects. The quality of the SRT plans includes the 
prescription dose coverage, the maximum dose in the target volume (Dmax), the CI/GI of the target 
volume, and the dose of organs at risk (OARs)[36].

Soda et al[37] concluded that 3DCRT and DCAT had more significant advantages over IMRT and 
VMAT in terms of tolerances. Moon et al[38] found that for liver SBRT, DCAT was an effective 
alternative to VMAT to meet the plan goals proposed by the RTOG protocol for SBRT and increased the 
efficiency of plan execution. Stathakis et al[34] concluded that in lung and liver SBRT, DCAT 
demonstrated a plan validation passing rate consistent with VMAT and 2.5 times less monitor units 
(MUs) than VAMT, leading to the conclusion that DCAT could replace VMAT in lung and liver SBRT. 
However, some authors also proposed that the VMAT-based SRS plan was significantly better than 
DCAT in terms of CI in radiotherapy for solitary brain metastases[39]. SRT requires IGRT and a 
respiratory management system to correct patients’ positional error and reduce the planned target 
volume (PTV) margin to manage and monitor patients’ respiratory motion error, so the high tolerance 
of 3DCRT and DCAT has no prominent advantage[40]. Scaringi et al[41] concluded that SRS based on 
IMRT and VMAT can increase the dose to brain tumor target volume and reduce exposure to OARs 
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compared to 3DCRT; meanwhile, VMAT reduced the number of MUs and treatment time compared to 
IMRT. Podder et al[5] similarly concluded in their study of SBRT for prostate cancer that better dose 
conformality to target volume and to spare OARs were usually achievable using IMRT/VMAT 
compared to 3DCRT. Navarria et al[42] proposed that VMAT provided better lung protection than 
3DCRT in NSCLC-SBRT. Dwivedi et al[43] also concluded that VMAT-SBRT-based lung cancer plans 
were of better quality, with a lower OAR dose and a 57.09% to 60.39% reduction in treatment time 
compared to 3DCRT. Rauschenbach et al[44] had similar conclusions; they found that IMRT- and 
VMAT-based plans were superior to DCAT- and 3DCRT-based plans in terms of CI and GI of the target 
volume and protection of OARs and therefore recommended that IMRT- and VMAT-based SBRT 
should be carried out in priority in radiotherapy where available; if only DCAT and 3DCRT were 
available, then DCAT was superior to 3DCRT.

In thoracic SBRT, interplay effects occur due to respiratory rates, respiratory amplitudes, fractions, 
dose rates, inaccurate calculation of small field boundary doses, and plan complexity, manifesting as 
potential consequences such as inaccurate dose delivery[21,45]. Moon et al[38] found that for liver SBRT, 
DCAT overcame the interplay effect compared to VMAT. Wu et al[46] studied liver metastatic cancer 
SBRT and found that the interplay effect was less pronounced with 3DCRT and DCAT than IMRT. The 
interplay effect of IMRT occurred mainly at the edge of the target volume, resulting in a maximum dose 
error of 20%. However, IMRT was still the best choice among the three techniques under respiratory 
motion control. The simulation of Edvardsson et al[47] showed a significant interplay effect for the 
single treatment modality. Ong et al[48] found that VMAT using two or more arcs and increasing the 
fraction of treatment to more than 2 reduced the interplay effect to a clinically negligible level. Some 
authors also concluded that the interplay effect was minimal with controlled motion amplitude (< 30 
mm), reduced motion cycles (< 5 s), and a deviation of less than ± 2.5% from the D99% dose index in the 
target volume[49].

The interplay effect was minimal with the 3DCRT and DCAT techniques, and the interplay effect was 
significantly reduced with the IMRT technique by the respiratory management system. In contrast, 
using more than two arcs and a fraction of more than two arcs can reduce the interplay effect on VMAT 
to a clinically negligible level.

Based on the above four techniques, other authors have practiced a mixture of two of them. Zhao et al
[50] designed IMRT and VMAT hybrid radiotherapy, IMRT alone and VMAT alone for nasopharyngeal 
carcinoma and found that IMRT and VMAT hybrid techniques could improve CI and HI in the target 
volume and reduce OAR endangerment and therefore concluded that IMRT and VMAT hybrid 
techniques may be feasible radiotherapy techniques. Huang et al[51] compared a hybrid technique of 
DCAT and IMRT with IMRT alone and VMAT alone for the implementation of spinal SBRT and found 
that all three plans could meet clinical needs, but quality efficiency and dose delivery accuracy were 
highest with VMAT alone. Raturi et al[52] found little difference in OAR protection between the hybrid 
IMRT and VMAT plans compared with IMRT alone and VMAT alone techniques in olfactory 
neuroblastoma radiotherapy and little clinical benefit in optic nerve protection with the hybrid IMRT 
and VMAT technique compared with the other two techniques. Current research shows that SRT can 
meet clinical needs using one technique alone, and there is not much practice in applying hybrid 
radiotherapy techniques. However, hybrid radiotherapy techniques may have unique advantages in 
certain diseases. Therefore, considering the planning quality, treatment efficiency, and dose delivery 
accuracy, SRT based on VMAT is the best under current techniques and qualified quality control levels. 
If technical conditions are insufficient, SRT based on DCAT and 3DCRT can be considered appropriate.

ENERGY
Most linear accelerators are equipped with 6 MV X-rays, whose proper energy has a small dose build-
up depth and a strong penetration ability and is the energy commonly used in SRT. According to the 
laws of physics, the higher the X-ray energy is, the greater the penumbra and the greater the dose 
calculation error in areas of low tissue density; also, low-energy X-rays have more significant scattering, 
and high-energy X-rays have neutron contamination; medium-energy rays such as 10 MV X-ray may be 
a reasonable energy choice for SRT[53,54].

It has been suggested that electronic devices such as pacemakers are sensitive to high linear energy 
transfer radiation; therefore, low energy radiation has a unique advantage in treating such individuals
[53]. Weiss et al[55] analyzed the effects of 6 MV and 18 MV X-rays on lung cancer patients using the 
IMRT technique and found that 6 MV X-ray was superior to 18 MV X-ray in protecting most OARs. In 
proximal gastric cancer (PGCC) radiotherapy, 10 MV-VMAT produced a higher dose gradient than 6 
MV-VMAT and was more suitable for PGCC radiotherapy[56]. Ost et al[57] concluded that no difference 
was found between the 6- and 18-MV photon beams, except for a reduction in the number of MUs 
needed for 18 MV (P < 0.05). Tahmasebi Birgani et al[22] suggested that mixing different ratios of 6 MV 
and 18 MV X-rays in radiotherapy could fit percentage depth dose (PDD) data equivalent to 6-18 MV 
energies, thus controlling the incidence of hot spots and better regulating the dose distribution in the 
target volume. Park et al[58] investigated the characteristics of IMRT plans using mixed energies and 
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found no significant differences in target volume coverage, CI, and GI; however, mixed energies 
improved the overall plan quality for IMRT plans targeting deep tumors. In conclusion, 6 MV X-rays for 
SRT are appropriate, mixed energy photons have some dosimetric advantages, and 10 MV X-rays may 
be the most promising energy source.

NUMBER OF ISOCENTERS
The number of isocenters for multiple independent target volumes is also critical when conducting SRT. 
In general, using a single isocenter can improve treatment efficiency, and using multiple isocenters can 
improve plan quality and reduce the low-dose volume in OARs.

Huang et al[59] found that when conducting intracranial multiple metastases SRS, the number of 
treatment isocenters for 3DCRT and DCAT must be consistent with the number of independent target 
volumes and that VMAT using a single isocenter would ensure plan quality, with a 42% reduction in the 
number of MUs and 49% reduction in treatment time compared with 3DCRT. Algan et al[60] concluded 
that when conducting IMRT-SRS for multiple intracranial metastases (> 3), there was no significant 
difference between single- and multiple-isocenter plans for target volumes V95, V99, and D100 and similar 
doses for OARs such as the hippocampus and normal brain but a 35% reduction in beam-on time for 
single-isocenter plans. Zhang et al[61], Ballangrud et al[62] and Ruggieri et al[23] also concluded that 
using the novel VMAT-SRS technique to perform single-isocenter treatment of multiple intracranial 
metastases can achieve similar plan quality as multiple-isocenters while significantly reducing treatment 
time. Sanford et al[63] showed that in isocenter selection for SBRT treatment of lung cancer with an 
average isocenter distance of 6.7 ± 2.3 cm between two independent target volumes, both single- and 
multiple-isocenters could meet the requirements with no significant differences in CI, GI, and lung V20; 
however, with increasing distance between target volumes, there was a slight increase in V5, V10, and 
mean lung dose (MLD) for single isocenter plans. Similarly, van Timmeren et al[64] designed single- and 
multi-isocenter SBRT plans based on the VMAT technique for multiple lung cancer targets and found an 
11.6% increase in bilateral lung MLD and a 0.2% increase in bilateral lung V20 for the single-isocenter 
plans. Pokhrel et al[65] found that the low-dose volume of bilateral lung and other normal tissues 
increased when the VMAT-SBRT plans for double-lesion lung cancer used a single isocenter.

In conclusion, when performing multiple intracranial metastases SRS, single isocenter treatment 
based on VMAT or IMRT is a more reasonable choice considering the brain volume size, while VMAT is 
superior to IMRT; if 3DCRT or DCAT is used, multiple isocenters are a compromise of last resort. When 
performing SBRT with multiple independent targets in the lung, multiple isocenters are required based 
on 3DCRT and DCAT; when performing single isocenter therapy based on the VMAT technique, 
normal lung V20, V10, V5, MLD, and the maximum dose of 1000 cc normal lung volume are increased 
with increasing distance between the target volume and the isocenter[65]. Considering the treatment 
efficiency, the complexity of technicians’ positioning and the error caused by repeated positioning, 
when the target spacing is small, using a single isocenter can improve the treatment efficiency and 
reduce the cumulative error caused by multiple positioning. When the target spacing is large or the 
target volume is large, using multiple isocenters can reduce the low-dose volume of normal tissues 
while maximizing the advantage of thinner leaves in some MLC center regions.

NUMBER OF FIELDS AND COPLANAR/NONCOPLANAR ISSUE
In clinical practice, 3DCRT, DCAT, IMRT, and VMAT can be applied to SRT plans, depending on the 
equipment and patient conditions. In general, VMAT has the highest degree of freedom of modulation 
and the broadest range of applicability.

The 3DCRT and IMRT plans generally use multiple coplanar or noncoplanar fields to reduce the dose 
on the path[66,67], with some authors suggesting six[68], others seven[46], and still others nine[24] and 
ten[67], with the collimator angle of each field also adjusted to the shape of the target volume and the 
IMRT technique avoiding the mirror field. DCAT and VMAT can use 1-3 full arcs or partial arcs; the 
advantage of full arcs is that the CI of the target volume is good, and the dose falls evenly in all 
directions, which is more suitable for the central target volume; partial arcs have poorer CI than full 
arcs. Clark et al[69] found that both 3-arc coplanar VMAT and 3-arc noncoplanar VMAT could be 
designed for qualified intracranial multiple metastases SRS plans, and the 3-arc noncoplanar VMAT 
plans were superior to the coplanar plans in terms of CI and other dosimetric parameters when applied 
to multiple target volumes nearby; the 3-arc coplanar and noncoplanar VMAT plans did not show 
significant differences when applied to multiple target volumes at a greater distance. Hanna et al[25] 
found that the noncoplanar VMAT-SRS plans were superior to the coplanar plans in terms of CI of the 
target volume and protection of healthy brain tissues. Pursley et al[35] used DCAT for lung cancer. For 
peripheral tumors with chest wall interference, additional oblique fields were used to help pull the dose 
off of the chest wall; for tumors located in the central region or close to the spine, multiple arcs were 
used, and the PTV coverage of the 100% isodose line was ≥ 95% in all cases; the conformality index 
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ranged from 1.12-4.5, with an average of 2.5. Ishii et al[70] conducted VMAT-SBRT in central lung cancer 
with two coplanar partial arcs (CP-VMAT), two noncoplanar partial arcs (NCP-VMAT), and one full 
coplanar arc (Full-VMAT) and found that the prescription dose coverage in the target volume was 
almost the same for all plans, with the CP-VMAT plan having a significantly lower whole-lung V10 Gy 

than the NCP-VMAT plan. At the same time, no significant differences were observed for MLD, V5 Gy, 
V20 Gy, or V40 Gy. Full-VMAT increases contralateral lung V5 by 12.57% and 9.15% compared to NCP-
VMAT and CP-VMAT, respectively, so from the perspective of protecting healthy lungs, CP-VMAT is 
optimal.

3DCRT and IMRT plans generally need many fields (6-10), and DCAT and VMAT plans require 1-3 
full or partial arcs. The use of noncoplanar fields in 3DCRT and DCAT is necessary in many cases, while 
using noncoplanar fields or arcs in IMRT and VMAT can improve the quality of plans. The use of the 
VMAT technique in SRT increases OAR low-dose volume, but the reasonable use of multiple 
noncoplanar partial arcs can circumvent this problem. The choice of specific treatment techniques must 
consider device availability and expected patient outcomes.

THE DOSE CALCULATION ALGORITHM OF TPS
The TPS is a vital tool to simulate the distribution of doses in the human body. The accuracy of its dose 
calculation is closely related to its built-in algorithm, and the accuracy of the dose calculation algorithm 
directly affects the clinical treatment effect[71]. The accuracy of the dose calculation algorithm has a 
direct impact on clinical outcomes. The difficulties in dose calculation are dose accumulation in inhomo-
geneous media, small field dose, and dose accumulation at high- and low-density junctions[72-74]. SRT 
requires higher accuracy of the TPS algorithm due to the high fractional dose and low fraction of 
treatments.

Common TPS algorithms for calculating SRT plan dose in clinical practice are the collapsed cone 
convolution (CCC)[75], the anisotropic analytic algorithm (AAA)[76], the Monte Carlo (MC), and the 
AcurosXB, among which the computational accuracy of the CCC and AAA algorithms is lower than that 
of the MC and AcurosXB algorithms[77-79]. The latest commercial TPSs, such as Monaco and Eclipse, 
have built-in CCC and AAA algorithms, respectively, both of which are convolutional superposition 
algorithms. Saadatmand et al[80] found that the CCC algorithm for head and neck dose calculation 
resulted in a discrepancy of -19.77% to 27.49% between the dose calculation results and thermolumin-
escent dosimeter measurements due to the use of high-Z materials for dental repair, which was then 
analyzed as a result of the CCC algorithm’s inaccurate calculation of attenuation and scattering-induced 
dose perturbations caused by high-Z materials. Fogliata et al[78] found that the AAA algorithm had a 
significant error in calculating dose accumulation at high- and low-density junctions, such as the lung. 
Chen et al[81] found that the AAA algorithm overestimated the tumor dose by 15% and underestimated 
the lung V9 by approximately 5% when performing lung SBRT using a 15 MV X-ray compared to the 
MC algorithm.

Monaco and Eclipse also have built-in MC and AcurosXB algorithms, respectively, which are 
improved transport models for secondary electrons based on the CCC and AAA algorithms, resulting in 
more accurate results[77,82,83]. Tugrul[84] used the RANDO lung phantom to study the accuracy of 
radiotherapy dose calculation for esophageal cancer and found that the MC algorithm was the most 
accurate; therefore, they recommended using the MC algorithm when calculating dose accumulation in 
inhomogeneous tissues. Yan et al[85] found that the AcurosXB algorithm was more accurate in inhomo-
geneous media compared to the AAA algorithm. The findings of several authors all support the above 
statement[24,43,85,86]; that is, the AcurosXB algorithm is more accurate than the AAA algorithm in lung 
cancer SBRT dose calculation. Both MC and AcurosXB have been simplified to strike a balance between 
computational accuracy and computational time, although the overall accuracy level of both algorithms 
remains highly consistent. The high-precision dose algorithms represented by the AcurosXB and MC 
algorithms have matured to a level where their differences are below the typical experimental detection 
thresholds for clinical treatment[26]. Based on the above analysis, more accurate dose calculation results 
can be achieved by preferentially using the MC and AcurosXB algorithms when designing SRS/SBRT 
plans.

MLC LEAF WIDTH
In SRT planning, the choice of MLC leaf width affects parameters such as CI, GI, plan complexity, and 
dose delivery accuracy. In general, the smaller the leaf width is, the better the dose modification 
capability, but the leaves are not as small as possible. This is because the virtual source of the accelerator 
has a certain size, the X-ray and secondary electrons have a certain scattering, and the leaf width is small 
to a critical value that does not further improve the dose distribution.
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Some studies concluded that a 5-mm MLC could meet clinical requirements when the target volume 
is larger than 3 cm in diameter[4]; when the target volume is smaller than 3 cm in diameter, an MLC 
smaller than 5 mm in width can be selected. Serna et al[39] found that 2.5 mm MLC provided better dose 
gradients in noncoplanar DCAT and VMAT plans for isolated brain metastases smaller than 10 cc 
compared to 5 mm MLC, and 2.5 mm MLC significantly improved the CI of DCAT plans. Yoganathan et 
al[87] found that for small target volumes (mean volume, 42.99 cc), 3 mm MLC had better CI than 5 mm 
and 10 mm MLC; for large target volumes (mean volume, 361.14 cc), no significant differences in CI and 
OARs protection were observed between 5 mm and 10 mm MLC. Abisheva et al[88] applied 2.5 mm 
MLC and 5 mm MLC to VMAT-SRS for intracranial metastases and found no significant difference in 
the target volume of CI. Monk et al[89] concluded that in the SRT plan, compared to 3 mm MLC, 5 mm 
MLC increased the wrapping volume of 50% and 70% isodose line by 5.7% and 4.9%, respectively, and 3 
mm MLC improved the IC of PTV; however, these improvements were minor, so the choice of 3 mm 
MLC should be cautious. Younge et al[27] based on the SBRT spinal radiotherapy plan, compared a 
high-definition MLC (HD-MLC) with 32 pairs of 2.5 mm widths in the center and 28 pairs of 5 mm 
widths on the outer side with a standard Varian Millennium MLC (M120) with 40 pairs of 5 mm widths 
in the center and 20 pairs of 10 mm widths on the outside. They found that the HD-MLC had limited 
improvement in planning quality yet increased planning complexity and decreased dose delivery 
accuracy.

In conclusion, using 5 mm MLC for SRT plans is sufficient for most cases, especially for VMAT 
technology. An MLC width less than 5 mm has some advantages in the small target volume of SRS 
plans, and there is a trade-off between plan complexity and plan quality when using less than 5 mm 
MLC.

FFF MODE
The features of the FFF mode that distinguish it from the FF mode are the ultrahigh dose rate and the 
variable dose intensity of the field. The FFF mode has become the standard for accelerators in today’s 
rapidly developing radiotherapy technology. FFF significantly reduces treatment time without 
compromising plan quality or dose delivery accuracy[90-92]. Stieler et al[93] found that the FFF mode 
reduced treatment time by 51.5% compared to the FF mode without altering the plan quality when 
performing the SRS to the brain based on IMRT and VMAT techniques. Prendergast et al[94] invest-
igated the advantages of the FFF mode applied to SBRT and concluded that the FFF mode reduced the 
treatment time by more than 50%. Ma et al[28] studied all clinical treatment fields used for IMRT and 
VMAT techniques and found that the FFF mode was fully available for all sizes of clinical fields, had 
outstanding advantages in reducing treatment time, and predicted a trend of complete replacement of 
the FF mode by the FFF mode. Vassiliev et al[95] believed that compared with FFF mode, FF mode 
would increase the dose loss at the edge of the radiation field, resulting in insufficient dose in the 
spherical shell area approximately 5 mm thick at the edge of the field, which extended to 2-3 mm inside 
the radiation field; therefore, for smaller tumors and lower density lung tissues, FFF mode had higher 
dose coverage in the target volume. Pokhrel et al[91] similarly concluded in their study that 6X-FFF-
VMAT-SBRT plans provided similar target volume coverage while improving dose coverage at the 
target-OAR junction, providing better OAR protection and significantly reducing treatment time 
compared to conventional 6X-FF-VMAT-SBRT plans. The AAPM TG158 has more detailed information 
on the advantages of the FFF mode[53]; in SRT, the FFF mode reduces the leakage of the accelerator 
collimator, which is more conducive to small field therapy and dramatically reduces the dose outside 
the target volume. Fiorentino et al[96] concluded that the FFF mode had acceptable acute and late 
toxicity with no severe events (no ≥ G2 adverse events recorded). Some studies have also concluded that 
the FFF mode leads to an earlier radiation response in NSCLC patients than the FF mode[42]. In 
conclusion, when applied to SRT, the FFF mode shows strong application prospects by better protecting 
OARs and significantly shortening the treatment time without changing the quality of plans.

AUXILIARY CONTOURS SUCH AS RING/SHELL
Appropriate setting of ring/shell auxiliary contours can significantly help improve the plan quality by 
improving the CI and GI of the target volume and protecting the OARs. Clark et al[97] used VMAT-SRS 
to treat multiple intracranial metastases. Three rings were set outside the target volume to reduce the 
dose of OARs, limiting 100% of the prescribed dose volume, 50% of the prescribed dose volume, and 
40% of the prescribed dose volume in turn, and eventually achieved good results. Price et al[98] pointed 
out that setting different rings outside the target volume could increase the dose consistency and reduce 
the treatment time of IMRT plans, with a 15.7% reduction in the off-target volume of the prescription 
dose envelope and more than a 29% reduction in treatment time. While Desai et al[99] went one step 
further, they proposed a new optimized shell structure OptiForR50 based on RTOG 0813 and 0915 
protocols; the structure was designed based on a series of mathematical formulas to extend the PTV in 
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VMAT-SBRT-based lung cancer plans, which made significant progress in improving the CI, off-target 
dose attenuation of the target volume, and reducing the dose to normal lung, heart, and aorta. Duan et al
[29] found that when the numbers of peripheral lung cancer SBRT plan shells did not exceed 6, it could 
consistently improve CI and GI in the target volume and reduce the maximum dose in the spinal cord 
and V20 and V10 to the bilateral lung. Wang et al[100] found that the modified GI (mGI) and Paddick CI 
(PCI) of the VMAT-SRS plans for multiple intracranial metastases were limited by setting three and four 
shells in the target volume and outside the target volume, respectively.

The mGI of the target volume was significantly reduced, and the PCI was significantly improved. 
Hence, the authors concluded that this method was applied to intracranial VMAT-SRS planning and 
could increase the protection of OARs. However, Reese et al[101] concluded that shells, in reducing the 
IMRT plan site-specific dose, necessarily increased the dose at locations at a similar distance from the 
specific site, i.e., shell only redistributed the dose within the tissue surrounding the target volume, not 
reduced it. After the above analysis, it can be seen that 3-6 rings/shells are more suitable for 
IMRT/VMAT plans, and these rings/shells can be set inside and outside the target volume, which is 
helpful to improve the CI and GI of the target volume and protect OARs.

SMALL FIELD DOSIMETRY AND GS
To achieve high CI and GI when treating smaller lesions, SRT plans extensively use small fields less 
than 10 mm in diameter. Small field dose calculations are subject to significant errors due to inadequate 
lateral electron balance, small average volume, cross-sectional detector artifacts, collimator action, etc
[102]. Both the IAEA TRS 483[30] and the AAPM TG155[103] are specialized reports on small field 
dosimetry, which analyze small field dosimetry parameters such as percent depth dose, tissue model 
ratio/tissue maximum ratio, off-axis ratio, and field output factor (FOF), as well as the necessary 
perturbation corrections for various detectors, discuss errors and uncertainties in measurements and 
suggest that the beam model used to simulate the small field in TPS should pay special attention to the 
influence of the primary beam source and collimator in the calculation of energy fluence and dose. 
Mamesa et al[104] performed FOF correction for small fields less than 10 mm × 10 mm in an Eclipse TPS 
based on IAEA TRS 483 and found that the standard deviation of MU calculated based on IMRT-SRS 
decreased from 6.0% to 2.5%, and the standard deviation of MU calculated by the VMAT-SRS decreased 
to less than 2.0% after correction, indicating that the correction of FOFs can improve the dose calculation 
accuracy of small fields. Baek and Beachey[105] used an EBT3 film to collect small field data at different 
depths and sizes and found that as the small field size decreased, the field center fell within the 
penumbra of each MLC edge for megavoltage photon energies and suggested that careful character-
ization of small field dose and leaf end modeling within a TPS were crucial in both predicting accurate 
small field dosimetry and off-axis dosimetry.

The computational GS in the TPS also affects the dose calculation accuracy. Dempsey et al[106] found 
that the dose error of 2.5 mm GS was less than 1%. Bedford et al[107] found that the dose error of 4 mm 
GS was less than 5%. Chung et al[108] showed that the dose error of 2 mm and 4 mm GS for head and 
neck tumors was 2.3% and 5.6%, respectively, compared with 1.5 mm GS in the dose calculation of 
shallow target volume 0.5 cm below the skin, and 2.0% and 4.6%, respectively, compared with 1.5 mm 
GS in the dose calculation of deep target volume 6 cm below the skin; they also recommended that a 2 
mm or less GS be used during SRS dose calculation, especially in the high dose gradient region, to 
ensure the accuracy of the dose calculation. Snyder Karen et al[31] set 1 mm, 1.5 mm, and 2.5 mm GS in 
the design of vertebral VMAT-SBRT plans and found that the distance-to-falloff between the 90% and 
50% isodose levels in the axial plane for 2.5 mm, 1.5 mm and 1 mm GS plans were tightened sequen-
tially, with the lowest spinal cord dose and highest gamma passing rates in the 1.5 mm GS plans and a 
61% and 84% increase in plan calculation time for the 1 mm GS over the 1.5 and 2.5 mm GS, 
respectively, concluding that using 1.5 mm GS balanced dose accuracy and calculation time.

Therefore, the smaller the GS in the TPS, the smaller the dose error is in general and the longer the 
planning time is. Considering the dose calculation accuracy and planning time, 1.5 mm is a reasonable 
GS for SRT; 1 mm GS can be chosen for special scenarios such as high dose gradient areas or small field 
dose calculations.

AUTO PLANNING
Auto planning is a new field in radiation therapy. Auto planning dramatically improves planning 
efficiency and ensures the stability of plan quality, and it is being increasingly studied and applied. 
Gallio et al[109] compared the SBRT-VMAT plans for hepatocellular carcinoma designed by the AP 
module of Pinnacle TPS with the SBRT-VMAT plan designed by the manual planning (MP) module, 
comparing metrics including various dosimetric parameters of target volumes and OARs, MU, the 
number of segments, plan complexity metrics, and plan time-consumption, and found that AP plans 
were comparable to MP plans in terms of plan metrics, but AP had a significant advantage over MP in 
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plan time-consumption, thus suggesting that the use of AP in simple plans could save the time of 
designers to allow designers to devote more time to more complex plans. Ouyang et al[110] evaluated 
whether the Pinnacle AP module could design clinically acceptable pulmonary SBRT plans and assessed 
the effectiveness of the dose prediction model; they designed 20 AP plans based on 20 manual 
pulmonary SBRT plans and found that all manual and AP plans achieved clinically desired target 
volume dose coverage, that AP plans achieved equal or better OARs protection compared to the manual 
plans, most notably the AP plans had lower maximum doses to the spinal cord, ipsilateral brachial 
plexus, esophagus, and trachea. To study the robustness of the automatic planning software, Hito et al
[111] designed 32 scenarios to simulate the changes in the anatomical position of patients with 
pancreatic cancer, including displacement, expansion, rotation, and a combination of three, and used the 
Manhattan map to evaluate the indicators of the plans, including the coverage of the target volume and 
the dose of gastrointestinal and other OARs; the results showed that the automatic planning software of 
the pancreatic SBRT plan had good robustness. Visak et al[32], Visak et al[112] and Ziemer et al[113] 
developed a knowledge-based planning (KBP) program using the commercial RapidPlanTM model, 
trained the program using existing SRT-VMAT plans, and validated it with independent clinical plans. 
The results showed that the KBP program reduced the maximum dose of OARs compared to the 
existing SRT-VMAT plans, and each of the planning times was less than 30 min.

Auto planning is a promising approach in SRT planning by improving plan quality and reducing the 
dose of OARs while increasing plan design efficiency and maintaining plan quality robustness. With the 
development of computer and software technologies, as well as the training of big data and a large 
number of excellent clinical treatment plans, the result is even revolutionary. In the future, physicists 
may be left with the functions of device QA and plan signature, as well as assuming the responsibility of 
the medical activity subject.

CONCLUSION
Linac-based SRT is becoming increasingly widely used, its therapeutic value is increasingly recognized, 
planning issues are widely discussed, and systematic organization and generalization have become 
necessary. This paper discusses the advantages and disadvantages of four techniques based on linear 
accelerators for SRT, 3DCRT, DCAT, IMRT, and VMAT, specifically, tolerance and ability to overcome 
the interplay effects, energy, single or multiple treatment isocenters, number of fields, and 
coplanar/noncoplanar issue, TPS algorithms, MLC leaf width, FFF mode, auxiliary contours such as 
ring/shell, small field dosimetry and GS, and auto planning.

Among the four technologies, SRT based on VMAT technology is increasingly used. With the help of 
modern IGRT devices and respiratory motion management equipment, the drawbacks of VMAT 
technology with smaller tolerances and more significant interplay effects are effectively overcome. At 
the same time, its advantages of high planning quality, short treatment time, and wide range of adapted 
diseases are carried forward.

The use of 6 MV X-rays for SRT is appropriate, mixed energy photons have some dosimetric 
advantages, and 10 MV X-rays are likely to be the most promising energy level. In terms of the number 
of isocenters for multiple independent targets, a reasonable choice for SRS is single-isocenter treatment 
using VMAT technology, while multi-isocenter is a compromise if SRS is performed using 
3DCRT/DCAT technology. For SBRT, all four technologies require consideration of target spacing, and 
multi-isocenter is a compromise if the distance is greater than a certain value. Regarding the number of 
fields and coplanar/noncoplanar issues, 3DCRT/IMRT plans require 6-10 fields, and DCAT/VMAT 
require 1-3 full or partial arcs; 3DCRT/DCAT using noncoplanar fields is necessary in many cases, 
while IMRT/VMAT uses noncoplanar fields to improve plan quality. The algorithm is the soul of TPS; 
among the commonly used algorithms, AcurosXB and MC are superior to AAA and CCC, and the 
AcurosXB and MC algorithms are preferred in consideration of calculation time and plan accuracy. The 
SRT plans use 5 mm MLC to cope with most situations, especially when based on VMAT technology. In 
SRT planning based on the IMRT/VMAT technique, 3-6 rings/shells are more appropriate, and these 
rings/shells can be set inside and outside the target volume, which helps greatly improve the CI and GI 
and protect the OARs. For the specificity of small field dose calculation, a small field dose model needs 
to be established before SRT plans are carried out; for computational GS, considering the dose accuracy 
and calculation time, 1.5 mm GS is more reasonable to be applied to SRT. Auto planning is a new field 
in radiotherapy; it greatly improves the planning efficiency and ensures the stability of plan quality and 
may make revolutionary progress in the future.

The future of SRT is exciting, and we believe that there are three critical issues that need to be 
highlighted. First, linear accelerators used for SRT must be equipped with IGRT devices and respiratory 
management equipment, and dedicated positioning frames and treatment tables are also necessary. 
Second, VMAT technology has gained significant advantages in plan quality, treatment time, and 
accuracy of dose delivery; continuing to explore the potential applications of VMAT technology requires 
the continuous efforts of radiologists. Once again, auto planning is the future of plan design by 
providing significant savings in plan time while maintaining the stability of plan quality.
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