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Abstract
Pancreatic adenocarcinoma (PDAC) is a fatal disease with a 5-year survival rate of 
8% and a median survival of 6 mo. In PDAC, several mutations in the genes are 
involved, with Kirsten rat sarcoma oncogene (90%), cyclin-dependent kinase 
inhibitor 2A (90%), and tumor suppressor 53 (75%–90%) being the most common. 
Mothers against decapentaplegic homolog 4 represents 50%. In addition, the self-
preserving cancer stem cells, dense tumor microenvironment (fibrous accounting 
for 90% of the tumor volume), and suppressive and relatively depleted immune 
niche of PDAC are also constitutive and relevant elements of PDAC. Molecular 
targeted therapy is widely utilized and effective in several solid tumors. In PDAC, 
targeted therapy has been extensively evaluated; however, survival improvement 
of this aggressive disease using a targeted strategy has been minimal. There is 
currently only one United States Food and Drug Administration-approved 
targeted therapy for PDAC – erlotinib, but the absolute benefit of erlotinib in 
combination with gemcitabine is also minimal (2 wk). In this review, we 
summarize current targeted therapies and clinical trials targeting dysregulated 
signaling pathways and components of the PDAC oncogenic process, analyze 
possible reasons for the lack of positive results in clinical trials, and suggest ways 
to improve them. We also discuss emerging trends in targeted therapies for 
PDAC: combining targeted inhibitors of multiple pathways. The PubMed 
database and National Center for Biotechnology Information clinical trial website 
(www.clinicaltrials.gov) were queried to identify completed and published 
(PubMed) and ongoing (clinicaltrials.gov) clinical trials (from 2003-2022) using the 
keywords pancreatic cancer and targeted therapy. The PubMed database was also 
queried to search for information about the pathogenesis and molecular pathways 
of pancreatic cancer using the keywords pancreatic cancer and molecular 
pathways.

https://www.f6publishing.com
https://dx.doi.org/10.4251/wjgo.v15.i4.571
mailto:hsunyk@cicams.ac.cn
http://www.clinicaltrials.gov
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Core Tip: Pancreatic adenocarcinoma (PDAC) is a fatal and rare disease with a 5-year survival rate of 8% 
and a median survival of 6 mo. In PDAC, targeted therapy has been extensively evaluated; however, 
survival improvement of this aggressive disease using a targeted strategy has been minimal. This 
manuscript summarizes current targeted therapies and clinical trials targeting dysregulated signaling 
pathways and components of the PDAC oncogenic process, analyzes possible reasons for the lack of 
positive results in clinical trials, and suggests ways to improve them. We also discuss emerging trends in 
targeted therapies for PDAC: combining targeted inhibitors of multiple pathways.

Citation: Fang YT, Yang WW, Niu YR, Sun YK. Recent advances in targeted therapy for pancreatic 
adenocarcinoma. World J Gastrointest Oncol 2023; 15(4): 571-595
URL: https://www.wjgnet.com/1948-5204/full/v15/i4/571.htm
DOI: https://dx.doi.org/10.4251/wjgo.v15.i4.571

INTRODUCTION
Pancreatic adenocarcinoma (PDAC) is a fatal disease with a 5-year survival rate of 8% and a median 
survival of 6 mo[1]. It ranks fourth among cancer-related deaths in the United States, and will become 
the number two cause within a decade[2]. In PDAC, several mutations in the genes are involved, with 
Kirsten rat sarcoma oncogene (KRAS) (90%), cyclin-dependent kinase inhibitor 2A (CDKN2A) (90%), 
and tumor suppressor 53 (TP53) (75%–90%) being the most common. Mothers against decapentaplegic 
homolog 4 (SMAD4) represents 50% (Table 1). In addition, the self-preserving cancer stem cells (CSCs), 
dense tumor microenvironment (fibrous accounting for 90% of the tumor volume), and suppressive and 
relatively depleted immune niche of PDAC are also constitutive and relevant elements of PDAC. They 
are considered significant clinical barriers to successful therapy development, making PDAC one of the 
most challenging diseases to treat. At present, only surgical resection is a potentially curative treatment 
for this refractory disease, which shows improvement in survival rates[3,4].

Conventional cytotoxic treatments, such as chemotherapy and radiation therapy, have not been 
successful in improving the chances of survival in pancreatic cancer patients. Since 2011, two 
combination regimens for metastatic pancreatic cancer have become the gold standard: 5-fluorouracil/
leucovorin with irinotecan and oxaliplatin (FOLFIRINOX); and nab-paclitaxel with gemcitabine. With 
these approaches, response rates range from 23% to 31%, progression-free survival (PFS) rates are 
5.5–6.6 mo, and overall survival (OS) is between 8.5 and 11 mo. Single-agent gemcitabine, and its 
combinations, have failed to provide the expected results, only achieving moderate life expectancy 
prolongation. However, most patients are diagnosed at the unresectable stage. Therefore, the 
development of novel and effective therapeutic strategies is vital to improving treatments that are both 
targeted and personalized.

Imatinib ushered the era of targeted therapies for solid tumors in 2001. Since then, targeted therapies 
have been approved for renal, colorectal, gastroenteropancreatic neuroendocrine tumors, non-small cell 
lung cancer, and malignant melanoma[5-9]. There is only one United States Food and Drug Adminis-
tration (FDA)-approved targeted therapy for PDAC-erlotinib, an epidermal growth factor receptor 
(EGFR) inhibitor, combined with gemcitabine hydrochloride in patients with metastatic, locally 
advanced, or unresectable PDAC. However, the absolute benefit of gemcitabine plus erlotinib is also 
minimal (2 wk)[10].

In this review, we summarize current targeted therapies and clinical trials targeting dysregulated 
signaling pathways and components of the PDAC oncogenic process, analyze possible reasons for the 
lack of positive results in clinical trials, and suggest ways to improve them. We also discuss emerging 
trends in targeted therapies for PDAC: combining targeted inhibitors of multiple pathways. The 
PubMed database and National Center for Biotechnology Information clinical trial website (www.clinic-
altrials.gov) were queried to identify completed and published (PubMed) and ongoing 
(clinicaltrials.gov) clinical trials (from 2003-2022) using the keywords pancreatic cancer and targeted 
therapy. The PubMed database was also queried to search for information about the pathogenesis and 
molecular pathways of pancreatic cancer using the keywords pancreatic cancer and molecular 
pathways.

https://www.wjgnet.com/1948-5204/full/v15/i4/571.htm
https://dx.doi.org/10.4251/wjgo.v15.i4.571
http://www.clinicaltrials.gov
http://www.clinicaltrials.gov
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Table 1 Molecular targets for pancreatic cancer treatment

Target Frequency of mutation/expression, %
KRAS 95

VEGF 93

Sonic hedgehog 70

Notch3 69-74

TP53 70

NF-kB 70

IGF-1R 64

CDKN2A 60

EGFR 43-69

Akt/mTOR 40

SMAD 40

BRCA1/2 1-3

NRG1 fusion 0.5

NTRK fusion 0.3

Akt: Akt serine/threonine kinase; BRCA1/2: Breast cancer susceptibility gene 1/2; CDKN2A: Cyclin-dependent kinase inhibitor 2A; EGFR: Epidermal 
growth factor receptor; KRAS: Kirsten rat sarcoma oncogene; IGF-1R: Insulin-like growth factor receptor; mTOR: mammalian target of rapamycin NF-κB: 
Nuclear factor kappa B; Notch3: Notch receptor 3; NRG1: Neuregulin 1; NTRK: Neurotrophic receptor tyrosine kinase; SMAD: Mothers against 
decapentaplegic homolog; TP53: Tumor suppressor 53; VEGF: Vascular endothelial growth factor.

TARGETED THERAPY
Targeted therapy highlights the association between tumor characteristics and individualized treatment 
response. Biomarkers and genomic mutations may serve as potential targets or prognostic indicators 
based on the expression of biomarkers. Overall, targeted therapies are based on three main approaches: 
inhibition of aberrant activation of oncogenes, interference with inactivation of tumor suppressor genes, 
and exploitation of biological functional defects in specific genes.

Most pancreatic tumors (about 95%) carry RAS mutations, the most common of which are KRAS 
alterations (85%)[11]. Mutations of KRAS and other genes, such as inactivation of CDKN2A (in about 
90% of PDAC cases) and SMAD4/DPC4 (approximately 55%), breast cancer susceptibility gene 2 (
BRCA2), MutL homolog 1, or protease serine 1 alterations accumulate throughout the development of 
tumors. Approximately 50%-70% of PDAC cases carry mutations in the TP53 gene, which occurs in late 
pancreatic intraepithelial neoplasia and leads to the malignant progression of PDAC[12]. As a result of 
these mutations, multiple critical processes-related signaling pathways are dysregulated, including 
apoptosis and cell proliferation. In addition, key molecules and pathways from the tumor and 
surrounding stroma, such as EGFR-mediated and pro-angiogenic pathways, influence the resistance of 
PDAC to therapy and are associated with a poor prognosis[13]. A total of 60 mutations in 12 different 
signaling pathways accompany the occurrence of aberrant ducts in PDAC[14], making targeted therapy 
a possible way to improve the efficacy of existing therapies (Table 2, Figure 1).

KRAS pathway and downstream signaling pathways
KRAS: KRAS oncogenic mutations can be observed in more than 90% of PDAC cases. Unfortunately, in 
mouse models, the resulting mitogen-activated protein kinase (MAPK) inhibition after KRAS inhibition 
(or direct blockade of downstream MEK) may further lead to the activation of protein kinase B alpha 
(Akt), EGFR, human epidermal growth factor receptor 2 (HER2), platelet-derived growth factor receptor 
α (PDGFRα), and AXL, resulting in the ineffectiveness of such drugs[15]. Therefore, the development of 
clinically effective KRAS inhibitors has been challenging. Initially, the strategy to target KRAS was to 
inhibit farnesyltransferase, as farnesylation is critical for RAS activation. A phase II trial (SWOG 9924) 
evaluated the efficacy of an oral farnesyltransferase inhibitor R115777 as first-line therapy for metastatic 
PDAC patients, but there was no clinical benefit[16]. A novel alternative strategy for targeting KRAS 
involves the use of exosomes, or small extracellular vesicles loaded with small interfering RNAs 
targeting KRASG12D, the most common KRAS mutation in PDAC[17], and was studied in a recent 
phase I trial (NCT03608631) that included patients with metastatic PDAC (mPDAC).
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Table 2 Clinical trials evaluating the impact of chemotherapeutic agents against specific targets

Target Study treatment Phase Population No. of 
patients mPFS mOS Ref.

GEM + Erlotinib 285 3.75 6.24EGFR

GEM + Placebo

III Locally advanced or 
metastatic PDAC

284 3.55 5.91

Moore et al[10], 
2007

GEM + Nimotuzumab 96 5.1 8.6EGFR

GEM + Placebo

IIb Locally advanced or 
metastatic PC

96 3.4 6

Schultheis et al[50], 
2017

GEM + Nimotuzumab 46 4.2 10.9EGFR

GEM + Placebo

III K-Ras wild-type, locally 
advanced or metastatic 
PC 46 3.6 8.5

Qin et al[51], 2022)

GEM + Afatinib 79 3.9 7.3ERB2

GEM + Placebo

II Metastatic PC

40 3.9 7.4

Haas et al[57], 2021

GEM + axitinib 69 4.2 6.9VEGF

GEM 

II Advanced PC

34 3.7 5.6

Spano et al[67], 2008

GEM + axitinib 314 4.4 8.5VEGF

GEM + Placebo

III Advanced PDAC

316 4.4 8.3

Kindler et al[68], 
2011

GEM + aflibercept 271 3.7 6.5VEGF

GEM + Placebo

III Metastatic PC

275 5.1 7.8

Rougier et al[69], 
2013

PARP Veliparib II BRCA-mutated PDAC 16 3.1 1.7 Lowery et al[101], 
2018

Olaparib 92 7.4 18.9PARP

Placebo

III gBRCA1 or BRCA2 
mutation and metastatic 
PC 62 3.8 18.1

Golan et al[103], 
2019

Cisplatin and GEM + 
Veliparib 

27 10.1 15.5PARP

Cisplatin and GEM 

II Untreated gBRCA
/PALB2+ PDAC with 
measurable stage III to IV 
PDAC 23 9.7 16.4

Sohal et al[40], 2020

GEM + Vandetanib 72 8.83RET

GEM + Placebo

II Locally advanced or 
metastatic PC

70

NA

8.95

Middleton et al
[107], 2017

GEM + Vismodegib 53 4 6.9Hedgehog

GEM + Placebo

II Metastatic PC

53 2.5 6.1

Catenacci et al[160], 
2015

mFOLFIRINOX + PEGPH20 55 4.3 7.7Hyaluronic acid

mFOLFIRINOX 

II Metastatic PDAC

59 6.2 14.4

Ramanathan et al
[169], 2019

GEM + Marimastat 120 5.51MMP

GEM + Placebo

NA Advanced PC

119

NA

5.47

Bramhall et al[172], 
2002

Tanomastat 138 1.68 3.74MMPs

GEM

III Advanced or Metastatic 
PDAC

139 3.5 6.59

Moore et al[173], 
2003

NOTCH RO4929097 II Previously treated 
metastatic PDAC

18 1.5 4.1 De Jesus-Acosta et 
al[190], 2014

GEM + Tarextumab 89 3.7 6.4NOTCH

GEM + Placebo

II Untreated metastatic PC

88 5.5 7.9

Hu et al[193], 2019

Wnt GEM and nab-paclitaxel + 
Ipafricept

Ib Untreated stage IV PC 26 5.9 9.7 Dotan et al[196], 
2020

GEM and nab-paclitaxel + 
Hydroxychloroquine

55 5.7 11.1Autophagy

GEM and nab-paclitaxel 

II Advanced PC

57 6.4 12.1

Karasic et al[209], 
2019

EGFR: Epidermal growth factor receptor; ERBB2: Erb-B2 receptor tyrosine kinase 2; GEM: Gemcitabine; mFOLFIRINOX: Modified fluorouracil plus 
leucovorin, oxaliplatin and irinotecan; MMPs: Matrix metalloproteinases; mOS: Median overall survival; mPFS: Median progression-free survival; 
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NOTCH: Notch receptor; PARP: Poly (ADP-ribose) polymerase; PC: Pancreatic cancer; PDAC: Pancreatic adenocarcinoma; RET: Ret proto-oncogene; 
VEGF: Vascular endothelial growth factor.

Figure 1 Overview of targeted therapy strategies for pancreatic adenocarcinoma. The figure summarizes the systemic therapeutic targets and 
corresponding drugs for pancreatic cancer, including treatment strategies for many aspects such as signaling pathways and gene mutations in tumor cells, and 
molecules in the extracellular environment, and extracellular matrix. “—|” indicates “targeting”; Akt: Akt serine/threonine kinase; BTK: Bruton’s tyrosine kinase; 
CDK4/6: Cyclin-dependent kinase 4/6; CSC: Cancer stem cell; CTGF: Connective tissue growth factor; DC: Dendritic cell; EGFR: Epidermal growth factor receptor; 
ERK: Extracellular-regulated protein kinase; HGF: Hepatocyte growth factor; IGF-1R: Insulin-like growth factor receptor; JAK: Activation of the Janus kinase; KRAS: 
Kirsten rat sarcoma oncogene; MEK: Mitogen-activated protein kinase; MMP: Matrix metalloproteinase; mTOR: Mammalian target of rapamycin; Notch: Notch 
receptor; PARP: Poly (ADP-ribose) polymerase; NRG1: Neuregulin 1; NTRK: Neurotrophic receptor tyrosine kinase; PEGPH20: Pegylated recombinant human 
hyaluronidase PH20; PI3K: Phosphatidylinositol 3-kinase; PSC: Pancreatic stellate cell; RAF: Rapid accelerated fibrosarcoma; SMAD4: Mothers against 
decapentaplegic homolog 4; SHH: Sonic hedgehog pathway; SMO: Smoothened; STAT: Signal transducer and transcription; TGF-β: Transforming growth factor-β; 
VEGFR: Vascular endothelial growth factor receptor.

In addition, the KRASG12C mutation was identified in 2% of PDACs[18], and its molecular inhibitors 
ARS-1620 and sotorasib have shown preliminary antitumor efficacy in preclinical models[19] and 
patients with advanced solid tumors[20]. To date, only a small subset of patients carrying the 
KRASG12C mutation can be treated with FDA-approved sotorasib or adagrasib. The CRYSTAL-1 phase 
II clinical trial applied adagrasib to patients with KRASG12C-mutated pretreated solid tumors, and 1 
PDAC patient achieved a partial response. Phase I/II trials (NCT03785249 and NCT04330664) 
evaluating the effectiveness of adagrasib are ongoing.

Given the difficulty of directly targeting KRAS, therapies targeting its major downstream effector 
pathways are in development, including the RAS/rapid accelerated fibrosarcoma (RAF)/MEK/
extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3 kinase (PI3K)/phosphoinositide-
dependent kinase-1/Akt signaling pathways[21].

RAF/MEK/ERK MAPK pathway: Mitogen-activated extracellular kinases are a component of the RAS/
RAF/MEK/ERK pathway and play a key role in proliferation, apoptosis, differentiation, and 
angiogenesis[22]. ERK1/2 MAPK is phosphorylated and activated after RAF serine/threonine kinase 
phosphorylates and activates MEK1 and MEK2. Activated ERK subsequently modulates the activity of 
approximately 160 substrates including transcription factors, protein kinases, phosphatases, and 
regulators of apoptosis[23]. However, several phase II studies of MEK inhibitors did not show efficacy 
as monotherapy for PDAC including CI-1040[24], selumetinib[25], pimasertib[26], and trametinib[27]. 
Most likely, the unsatisfactory results were caused by feedback activation and crosstalk between 
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pathways, resulting in the activation of PI3K/mammalian target of rapamycin (mTOR)/Akt[28].
Mirzoeva et al[29] demonstrated the utility of the combinatorial effect of EGFR plus MEK inhibitors in 

the epithelial molecular subtype of PDAC. In addition, Brauswetter et al[30] identified specific molecular 
isoforms with KRAS G12C mutants that responded better to MEK inhibition than the more common 
G12D variant. Therefore, outcomes can be improved by identifying molecular subtypes and appropriate 
combination therapy to select the right targeted therapy for the right patient.

However, even considering the abovementioned issues, the MEK inhibitors’ therapeutic effect is still 
unsatisfactory. It was shown in a phase I trial that afatinib combined with selumetinib, an inhibitor of 
MEK, had limited anticancer activity in patients with KRAS-mutated solid tumors including pancreatic 
cancers[31]. Similarly, the results of a phase II trial of selumetinib and MK-2206 (Akt inhibitor) in 
combination with modified FOLFIRINOX showed that the combination was less effective than 
FOLFIRONIX in PDAC patients, but had more significant toxicity[32]. The THREAD trial evaluated the 
efficacy of trametinib and hydroxychloroquine in PDAC patients at different stages of PDAC 
(NCT03825289).

Currently, approximately 10 clinical trials of MEK1/2 inhibitors targeting PDAC (selumetinib, 
cobimetinib, and trametinib) are underway, and it is crucial to evaluate the results before considering 
them for the clinical treatment of PDAC patients.

Furthermore, cobimetinib (MEK inhibitor) or GDC-0994 (ERK1/2 inhibitor) alone only transiently 
suppresses the MAPK pathway in KRAS mutant cancer cell lines[33,34]. Alternatively, co-targeting 
MEK and ERK with these drugs demonstrates significant antitumor activity in cancer cells and tumor 
models with dysregulated MAPK pathways. However, in the clinical setting, combining cobimetinib 
and GDC-0994 in clinical settings is no longer recommended due to overlapping adverse events (AEs)
[35]. Overall, developing inhibitors targeting this pathway is promising, but further research is needed 
to find more appropriate combinations while reducing AEs.

KRAS wild-type PDAC: As mentioned above, most patients with PDAC have KRAS mutations. In the 
small subset of patients with KRAS wild-type (WT) PDAC, other mutations, such as neurotrophic 
receptor tyrosine kinase (NTRK) and neuregulin 1 (NRG1), can initiate PDAC tumorigenesis and be 
targeted. The incidence of NTRK fusions is 0.3%[36]. Chromosomal rearrangements in the NTRK gene 
family promote the expression of chimeric rearranged promyosin receptor kinases[37]. It is possible that 
these chimeric proteins signal through the same MAPK and PI3K/Akt pathways as normal TRK 
proteins and are involved in tyrosine kinase crosstalk[38]. Therefore, a promising approach for targeted 
therapy is to address fusions of tropomyosin receptor kinase genes 1, 2, or 3 (NTRK1, 2, 3).

In solid tumors with NTRK gene fusions, regardless of tumor type, larotrectinib, and other TRK 
inhibitors have shown significant and durable antitumor activity (overall response rate 75%, 95% 
confidence interval [CI]: 61%-85%)[39]. The latest American Society of Clinical Oncology-Gastro-
intestinal data reconfirmed that larotrectinib is recommended for a variety of gastrointestinal tumors 
(including pancreatic cancer) carrying NTRK fusion mutations[40]. A pooled analysis of clinical trials 
(NCT02122913, NCT02637687, NCT02576431, NCT02097810, NCT02568267, EudraCT, and 2012-000148-
88) revealed that the selective TRK inhibitors larotrectinib and entrectinib were effective against solid 
tumors (including PDAC) harboring NTRK gene fusions (79% response rate for larotrectinib; 57% for 
entrectinib). Larotrectinib and entrectinib have received FDA’s breakthrough designation targeting 
NTRK fusion-positive solid tumors[41,42]. Next-generation TRK inhibitors, such as selitrectinib and 
repotrectinib, are being developed to address on-target resistance[43]. Among them, second-generation 
TRK inhibitor LOXO195 achieved efficacy in 2 patients with NTRK fusion-positive solid tumors, who 
had disease progression after larotrectinib therapy[44].

NRG1 fusions are rare oncogenic drivers, found in approximately 0.2% of all solid tumors[36]. These 
fusions trigger hyperactivation of ERBB3/HER3, which drives tumor growth and cancer cell survival. 
Seribantumab is a fully humanized anti-HER3 immunoglobulin G2 (IgG2) monoclonal antibody (mAb) 
that inhibits tumor growth in NRG1 fusion-driven preclinical models. CRESTONE is a phase II trial of 
seribantumab in patients with locally advanced or metastatic solid tumors with NRG1 fusions. 
Preliminary data suggest that seribantumab induces durable responses with a favorable safety profile. 
These data support the continued evaluation of seribantumab in the CRESTONE study (NCT04383210).

Tyrosine kinase receptor pathway
EGFR: EGFR is highly expressed in 30%-50% of PDACs[45-47]. Interestingly, EGFR signaling input is 
required for pancreatic carcinogenesis even in the presence of an oncogenic KRAS mutation[48,49]. The 
small molecule erlotinib, a selective inhibitor of EGFR tyrosine kinases, is the first approved targeted 
therapy in PDAC. In a phase III trial of metastatic PDAC, the combination of gemcitabine and erlotinib 
improved median OS (mOS) significantly by 0.33 mo (about 10 d) in the entire study population[10].

Nimotuzumab, an anti-EGFR mAb, showed significantly prolonged OS in combination with 
gemcitabine vs gemcitabine monotherapy in a phase II trial (median PFS 3.2 mo vs 5.5 mo, hazard ratio 
[HR] 0.55, P = 0.0096; median OS 5.2 mo vs 8.6 mo, HR 0.66, P = 0.034)[50]. A phase III trial 
(NCT02395016) showed that nimotuzumab in combination with gemcitabine improved OS and PFS in 
patients harboring KRAS WT with locally advanced or metastatic pancreatic cancer, with significantly 
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longer median OS in the nitrozumab-gemcitabine group (10.9 mo vs 8.5 mo, HR = 0.50, 95%CI: 0.06-0.94; 
P = 0.025). In addition, median PFS was 4.2 mo in the trial group compared with 3.6 mo in the control 
group (HR = 0.56, 95%CI: 0.12-0.99; P = 0.013)[51].

Positive trends have been reported for the EGFR inhibitors matuzumab (phase I)[52] and 
panitumumab in combination with gemcitabine and erlotinib (phase II)[53]. By contrast, the 
combination of cetuximab and gemcitabine failed to improve OS, with an mOS of 6.3 mo and PFS of 3.4 
mo in the combination arm, compared with 5.9 and 3 mo, respectively, in the gemcitabine monotherapy 
arm[54].

Trastuzumab, a humanized Ab against HER2, has not yet improved the prognosis of pancreatic 
cancer in clinical trials. The 12-wk PFS rate for trastuzumab in combination with capecitabine was 
23.5%, with a median OS of 7.0 mo[55]. Another recombinant humanized mAb against HER2, 
pertuzumab, has been used to treat solid tumors including pancreatic cancer. Two pancreatic cancer 
patients showed partial responses with stable disease for 15.3 mo in 1 patient[56]. Afatinib, a second-
generation irreversible inhibitor of ERBB receptors (both EGFR and HER2/neu), is approved as 
monotherapy for the first-line treatment of non-small cell lung cancer (NSCLC) with EGFR mutations 
and treatment of lung squamous cell carcinoma after failure of platinum-based chemotherapy. A phase 
II trial conducted by the “Arbeitsgemeinschaft Internistische Onkologie” was designed to evaluate 
whether the gemcitabine/afatinib combination was more effective than gemcitabine alone in metastatic 
PDAC. However, adding afatinib to gemcitabine did not improve therapeutic efficacy and was more 
toxic. Median OS in the combination group was 7.3 and 7.4 mo in the gemcitabine group. The median 
PFS was identical in both groups (3.9 mo vs 3.9 mo). In addition, AEs were more frequent in the 
combination group, especially diarrhea (71% vs 13%) and rash (65% vs 5%)[57].

Vascular endothelial growth factor: Overexpression of vascular endothelial growth factor (VEGF) in 
PDAC is associated with tumor progression and poorer prognosis[58,59]. However, angiogenesis-
targeted therapy is clinically ineffective in pancreatic cancer patients. The reason may be that dense 
stromal tissue with reduced vascular density impedes the delivery of effective drugs. Moreover, the 
withdrawal of antiangiogenic agents after therapy may be associated with increased tumor aggress-
iveness and invasion, offsetting the potential therapeutic benefits offered by antiangiogenic agents[60].

Multiple clinical trials of antiangiogenic agents have been conducted to treat PDAC, yet the results 
have been overwhelmingly disappointing. For PDAC patients, it has shown improvement in PFS in a 
few clinical trials[61], but no significant prolongation in OS has been observed. Humanized monoclonal 
antibodies such as bevacizumab have an affinity for circulating VEGF-A, but phase II and III studies 
have shown no survival advantage for bevacizumab in combination with gemcitabine and erlotinib[61-
64]. A meta-analysis concluded that bevacizumab plus gemcitabine treatment elicited only a moderate 
response rate without survival modifications[65]. Other VEGF inhibitors, such as axitinib and 
aflibercept, provide no survival advantage[66-69]. Likewise, sorafenib (an inhibitor of VEGFR and RAS/
RAF/MAPK signaling) had no additional value for patient survival over gemcitabine[70].

The promising drug in the field is currently anlotinib. Anlotinib is a novel oral tyrosine kinase 
inhibitor that targets VEGFR, fibroblast growth factor receptor, PDGFR, and c-kit. Compared to the 
placebo, it improved PFS and OS in a phase III trial in patients with advanced NSCLC[71]. A phase II 
trial of anlotinib, toripalimab, and nab-paclitaxel in patients with locally advanced/metastatic 
pancreatic cancer is underway (NCT04718701). A first-in-human phase I study of AK109, an anti-
VEGFR2 Ab, in patients with advanced or metastatic solid tumors, including 2 patients with pancreatic 
cancer (2/40), showed a controlled safety profile and promising antitumor activity (NCT04547205). Two 
phase II studies of AK109 in combination with AK104 (anti-PD-1/cytotoxic T-lymphocyte-associated 
protein 4 [CTLA-4] bispecific Ab) are being evaluated in patients with multiple solid tumors 
(NCT05142423, NCT04982276).

Insulin-like growth factor receptor 1: Insulin-like growth factor receptor 1 (IGF-1R), a transmembrane 
receptor tyrosine kinase, is overexpressed in pancreatic cancer. Activation of IGF-1R is associated with 
decreased apoptosis, cancer cell proliferation, and angiogenesis[72,73]. Yet the use of gemcitabine and a 
single IGF-1R inhibitor alone has not achieved satisfactory clinical results. A phase III clinical trial of the 
IGF-1R mAb ganitumab showed no improvement in patient survival[74].

A previous study showed that the simultaneous blockade of IGF1R and EGFR/HER2 synergistically 
inhibited pancreatic tumor growth and eliminated the activation of IRS-1, Akt, and MAPK 
phosphorylation. Based on this, combining these two inhibitors may prevent drug-resistance reactions 
caused by monotherapy[75]. A phase I/II study of gemcitabine and erlotinib in combination or not with 
MK-0646, an IGF1R inhibitor, in advanced pancreatic cancer showed that the combination of MK-0646 
with gemcitabine plus erlotinib was tolerable and improved OS but not PFS compared with gemcitabine 
plus erlotinib[76]. Istiratumab (MM-141), a quadrivalent bispecific Ab recognizing IGF-1R and ERBB3, 
provided promising results in preclinical studies[77], but its phase II clinical trial was negative[78].

PI3K/Akt/mTOR pathway
The overexpression of Akt is found in more than 40% of PDAC cases[79,80]. PI3K/Akt/mTOR, as a 
critical pathway in many aspects of cell growth, survival, and apoptosis, plays an essential role in the 
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occurrence and development of various tumors including PDAC[81]. Dysregulation of this pathway 
may lead to tumor resistance to chemotherapy[82,83]. It has been documented that activation of Akt is 
associated with a poor prognosis[84,85]. Inhibition of Akt signaling induces apoptosis and limits tumor 
growth[86].

Alkyl phospholipid perifosine acts as an inhibitor of Akt and PI3K phosphorylation[87]. Combining 
perifosine with gemcitabine exhibits synergistic effects on pancreatic cancer cells expressing high levels 
of phosphorylated Akt, primarily inhibiting tumor migration/invasion and inducing tumor cell 
apoptosis[88].

Clinical activity of everolimus (mTOR inhibitor) in patients with gemcitabine-refractory pancreatic 
cancer was limited, with a median PFS of 1.8 mo and median OS of 4.5 mo[89]. Combining everolimus 
with capecitabine achieved appropriate efficacy, with a mean OS of 8.9 mo (95%CI: 4.6-13.1) and median 
PFS of 3.6 mo (95%CI: 1.9-5.3)[90]. Temsirolimus is another mTOR inhibitor tested in locally developed 
or metamorphosic conditions[91,92]. A phase I/II trial evaluating sirolimus, a selective inhibitor of 
mTOR, enrolls patients with advanced pancreatic cancer (NCT03662412). In addition, other drugs 
targeting this pathway have been developed such as PI3K inhibitors, BKM120 and BYL179 
(NCT02155088); RX-0201 (Akt antisense oligonucleotide inhibitor); and BEZ235 (combined inhibitor of 
PI3K and mTOR)[93,94].

Poly (ADP-ribose) polymerase pathway
Germline BRCA mutation is an autosomal dominant mutation associated with an increased risk of 
breast, gynecologic, colorectal, and pancreatic cancers. In families with germline BRCA2 mutations, the 
relative risk of pancreatic cancer is 3.5% (95%CI: 1.9–6.6)[95]. Mounting evidence has demonstrated that 
BRCA1/2 mutant breast and ovarian cancers are susceptible to DNA damage-related therapies, 
including poly (ADP-ribose) polymerase inhibitors (PARPis) and platinum-based drugs[96].

Clinically, PARPis have shown significant efficacy against other refractory BRCA-mutated solid 
tumors[97-100]. Olaparib is a PARPi that was effective in a single-arm phase II trial[98]. Veliparib, 
another PARPi, has modest activity in patients with previously platinum-treated germline BRCA1/2 
mutation-positive pancreatic cancer[101]. The RUCAPANC study, which evaluated the PARPi 
rucaparib, was discontinued during the interim analysis due to a lack of patient response[102].

A phase II trial of niraparib, a highly specific PARP-1 and PARP-2 inhibitor, is currently being 
conducted in metastatic PDAC patients with somatic or germline defects in multiple DDR genes 
(NCT05442749). A randomized phase II trial (PARPVAX) of niraparib (nira) vs an immune checkpoint 
inhibitor, nivolumab (nivo, PD-1 mAb) or ipilimumab (ipi, CTLA-4 mAb), has been evaluated in a non-
genomic selected, advanced PDAC patient population that has received at least 16 wk of platinum-
based therapy without progression (NCT03553004). Another similar trial showed that compared to 
nira/nivo, nira/ipi prolonged median PFS as maintenance therapy for advanced PDAC patients with no 
progressive disease after first-line platinum-based chemotherapy, with an mPFS of 1.9 mo (95%CI: 1.8-
1.9) for nira/nivo and 7.6 mo (95%CI: 4.0-11.1) for nira/ipi (NCT03404960).

A prospective phase III trial (POLO, NCT02184195) evaluated olaparib in metastatic PDAC patients 
with BRCA mutations[103]. The results indicated that metastatic PDAC patients with germline BRCA1 
or BRCA2 mutations were significantly less likely to progress after taking olaparib. The trial included 
154 patients with germline BRCA mutations whose tumors had not progressed after 16 wk of platinum-
based induction chemotherapy. They were randomly assigned: 92 to receive olaparib and 62 to placebo. 
PFS was significantly longer in the olaparib group compared with the placebo group (median PFS: 7.4 
mo vs 3.8 mo, HR = 0.53; P = 0.004). There was no difference in OS between the placebo and olaparib 
groups, despite the fact that some patients in the placebo group received PARPis as follow-up therapy. 
The risk of disease progression was reduced by 47% in the olaparib group, and patients treated with 
olaparib were at least twice as likely to be disease progression-free at 6, 12, 18, and 24 mo as those 
receiving a placebo. Based on this, National Comprehensive Cancer Network guidelines included 
olaparib as recommended maintenance therapy for PDAC patients with germline BRCA1/2 mutations, 
good performance status, metastatic disease, and no disease progression after 4-6 mo of first-line 
chemotherapy. In addition, the safety of olaparib was also validated in the POLO trial, where patients’ 
health-related quality of life was assessed and found to remain unchanged with no clinically meaningful 
deterioration. Grade ≥ 3 or higher AEs occurred in 39.6% of the olaparib group and 23.3% of the placebo 
group; 5.5% and 1.7% of patients discontinued treatment due to AEs, respectively[99,104].

Multidrug combination therapy is also a promising strategy. Antiangiogenic agents act synergistically 
with PARP inhibitors, resulting in increased levels of hypoxia and downregulation of homology-driven 
repair genes[105]. This combination will be further investigated in a phase II trial, including patients 
with mPDAC (NCT02498613). In addition, an ongoing phase II trial is evaluating the efficacy of olaparib 
in combination with pembrolizumab (an immunotherapy cancer drug) in patients with BRCA-mutated 
pancreatic cancer (NCT04548752). A phase II trial evaluating talazoparib in patients with advanced 
cancer and DNA repair variants is ongoing (NCT04550494).

RET pathway
Genetic abnormalities in the RET proto-oncogene have been reported in PDAC. In phase I trials for 
pancreatic and biliary tract cancer, vandetanib (a multitargeted tyrosine kinase inhibitor of EGF, 
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VEGFR, and RET) was evaluated in combination with gemcitabine and capecitabine. A 78% disease 
control rate (> 2 mo), 3 partial responses, and 15 patients with stable disease were observed in this trial
[106]. A subsequent phase II trial of vandetanib in combination with gemcitabine vs gemcitabine 
monotherapy has shown that the combination did not improve OS in advanced PDAC (8.83 mo vs 8.95 
mo, HR = 1.21, 80.8%CI: 0.95-1.53; P = 0.303)[107]. In addition, LOXO-292, a selective RET inhibitor, is 
being investigated in a phase I study (NCT03157128).

Tumor suppressor pathway
TP53 tumor suppressor pathway: Contrary to the role of proto-oncogenes, the role of a tumor 
suppressor is to suppress tumorigenesis. TP53 is the most frequently inactivated suppressor in PDAC, 
and TP53 gene alterations are found in approximately 70% of PDAC patients[108,109]. p53 is a 
transcription factor that regulates the expression of multiple genes. Its biological functions include 
inhibiting cell proliferation by inducing p21 expression, promoting tumor cell apoptosis, maintaining 
gene stability, and inhibiting tumor vascularization by stimulating B-cell lymphoma 2-associated X 
protein expression[110,111]. TP53 reactivators include Zn2+ chelators such as COTI-2, cys-targeting 
agents such as APR-246 and CP-31398, and other proteins that assist in p53 resilience, inhibit abnormal 
p53 aggregation, or stabilize p53[112].

A clinical trial of COTI-2 is ongoing in patients with TP53 mutant PDAC (NCT02433626). In addition 
to reactivation, inhibition of Mouse double minute 2 homolog (MDM2) is another emerging strategy for 
targeting TP53-mutated tumors. The p62-NRF2-MDM2 axis is involved in tumor progression and 
programming[113], and MDM2 antagonizes p53 through direct interaction or ubiquitin-dependent 
degradation[114]. Therefore, inhibition of MDM2 may increase p53 activity and suppress p53-mutant 
cancers[115]. Recent studies have confirmed the efficacy of MDM2 inhibitors, such as Nutlin, MA242, 
SP141, and MI-319, in vitro and in vivo[116-119]. MANTRA-2 is a phase II trial evaluating the clinical 
benefit of Milademetan, a selective MDM2 inhibitor, in MDM2 amplified (copy ≥ 12) TP53-WT solid 
tumors and is currently recruiting (NCT05012397).

Transforming growth factor/β SMAD4 pathway: Another tumor suppressor gene associated with the 
pathogenesis of pancreatic cancer is the SMAD4 gene, and approximately 40% of PDAC patients carry 
SMAD4 mutations[109]. In normal cells, the product of this gene (a 64-kDa protein) plays a role in 
transforming growth factor beta (TGF-β)-mediated signal transduction, gene transcription, and growth 
arrest. The TGF-β/SMAD4 signaling pathway mediates tumor-stromal interactions and the epithelial-
stromal transition. Evidence suggests that TGF-β inhibitors, including trabedersen and galunisertib, 
reduce tumor metastasis and invasion in animal models[120,121]. A randomized phase II trial showed 
that galunisertib in combination with gemcitabine improved OS compared with gemcitabine alone
[122]. The combination of galunisertib and durvalumab (programmed death-ligand 1 mAb) has also 
been studied in metastatic PDAC patients[123]. The sponsor has since terminated further studies of 
galunisertib due to limited clinical activity. Instead, a new generation of TGF-β pathway inhibitors, such 
as TGF-βR inhibitors and TGF-β-checkpoint traps, are under development[124,125]. NIS793, a human 
IgG2 mAb TGF-β antagonist, is in a phase III trial to evaluate the efficacy of NIS793 in treatment-naïve 
patients with mPDAC (NCT04935359). Furthermore, TGF-β levels are reduced in fibroblasts due to 
blockade of the angiotensin type III receptor[126,127]. Thus the angiotensin receptor blocker losartan 
was tested in a preclinical model of pancreatic cancer and subsequently tested in combination with 
FOLFIRINOX in a phase II trial[128], which enabled R0 resection in 69% (30/49) of patients with locally 
advanced disease[129]. A randomized phase II trial evaluating losartan in combination with 
FOLFIRINOX and stereotactic body radiotherapy in neoadjuvant setting is ongoing (NCT03563248).

Dysfunctional CDKN2A and CDK4/6 inhibitors: CDKN2A is a multifunctional gene that creates p16 
and p19, arrests the cell cycle at the G1/S checkpoint through a CKD4/6-regulated mechanism[130], 
and the proteins bind to MDM2 to block the reduction in p53 levels[131]. Approximately 60% of PDAC 
patients carry CDKN2A mutations, with an odds ratio of 12.33, indicating that germline mutations in 
CDKN2A are associated with a high risk of developing PDAC[108,109]. CDK4/6 is a potential target for 
CDKN2A-deficient tumors[132,133]. The CDK4/6 inhibitors ribociclib and palbociclib have shown 
safety and efficacy in metastatic breast cancer and liposarcoma[134,135]. Additionally, CDK4 inhibitors 
are efficacious in preclinical models of PDAC[136-139], and a related clinical trial (NCT02501902) is 
ongoing. Researchers have concluded that CDK4/6 inhibitors alone exert limited antitumor effects and 
can show greater promise when used in combination with other targeted agents[140]. Mechanistically, 
CDK4/6 inhibitors block DNA repair mechanisms and increase the sensitivity of PDAC cells to PARPis
[141]. PDAC cells are more sensitive to immune checkpoint blockers when CDK4/6 and MEK are 
inhibited jointly[142]. A phase I clinical trial of palbociclib in combination with the PI3K/mTOR 
inhibitor gedatolisib in advanced PDAC patients is ongoing (NCT03065062).

Nuclear factor kappa B pathway
Nuclear factor kappa B (NF-κB) is a protein complex involved in cell proliferation, cell adhesion, 
apoptosis, and inflammatory responses[143]. Overexpression of the NF-κB pathway is reported in 
approximately 70% of pancreatic cancers[144,145]. Curcumin is a potent inhibitor of this pathway, and 



Fang YT et al. Targeted therapy for pancreatic adenocarcinoma

WJGO https://www.wjgnet.com 580 April 15, 2023 Volume 15 Issue 4

its effects have been demonstrated in several in vitro and in vivo pancreatic cancer models[146,147].
Nafamostat mesilate (NM) is a synthetic serine protease inhibitor that inhibits NF-kB activation[148]. 

NM infusion with gemcitabine for inoperable advanced pancreatic cancer was evaluated in a phase I/II 
study. The median OS and 1-year survival rates were 10 mo and 40%, respectively[149]. Subsequently, a 
phase II study of NM/gemcitabine adjuvant chemotherapy showed that gemcitabine combined with 
local arterial perfusion adjuvant chemotherapy with NM is safe and may be an option in the adjuvant 
setting after curative surgery for pancreatic cancer[150].

STROMA TARGETS
PDAC is characterized by dense fibrous stroma representing up to 90% of the tumor volume. 
Desmoplasia means excessive proliferation of fibrotic tissue with a modified extracellular matrix 
providing a protumorigenic environment[151,152]. Pancreatic stellate cells play a major role in stromal 
responses, and they are closely associated with pancreatic cancer cells[153,154], controlling matrix 
synthesis, cell growth, migration, and invasion through a diverse set of signaling cascades. In addition, 
hepatocyte growth factor (HGF) from stromal cells was associated with the growth, angiogenesis, and 
invasiveness of pancreatic cancer[155]. The pro-fibroproliferative response is accompanied by a 
relatively avascular tumor microenvironment, followed by hypoperfusion and hypoxia in the cancerous 
tissue, which leads to the generation of more aggressive tumor subclones[156], altered tumor 
metabolism, increased glycolysis[157], and decreased chemotherapeutic drug concentrations. Therefore, 
stroma-specific therapeutic strategies can be developed. One way is to directly target specific 
components of the extracellular matrix, such as matrix metalloproteinases (MMPs), and the other is to 
target specific signaling pathways that promote the development of the tumor stroma, such as the Sonic 
Hedgehog (SHH) pathway.

SHH pathway
Hedgehog signaling is an essential pathway for proliferation and survival in embryonic development. 
In response to hedgehog ligand binding to PATCHED 1 receptor protein in target cells, a signaling 
cascade is triggered, eliminating the inhibitory effect of Smoothened (SMO), which then enhance tumor 
progression, metastasis, and tumorigenesis[158].

Combined with gemcitabine, cyclopamine, an SMO antagonist, was shown to reduce metastatic 
potential in the GEMM (KPC) model of PDAC[159]. A phase II trial of vismodegib (a second-generation 
SMO inhibitor) combined with gemcitabine had a PFS benefit (4 mo vs 2.5 mo; P = 0.30) but did not 
improve OS (6.9 mo vs 6.1 mo; P = 0.84)[160]. These results are consistent with another clinical trial 
(NCT01088815)[161]. In addition, a phase I trial (NCT00878163) enrolled metastatic PDAC patients to 
evaluate the combination of vismodegib and erlotinib. Although the combination was well tolerated and 
20% of patients exhibited stable disease, there was no significant tumor shrinkage effect[162]. Overall, 
the clinical trials with vismodegib did not meet expectations. Thus, the clinical development of this drug 
has been discontinued. In another phase II trial, saridegib (an SMO inhibitor) plus gemcitabine had a 
survival disadvantage (NCT01130142). Nevertheless, when combined with FOLFIRINOX, there was 
clinical activity with an objective response rate of 67%[163]. The clinical development of this drug was 
also halted.

The reasons for the disappointing results of hedgehog inhibition could be arising SMO mutations 
under therapy and compensatory feedback loops leading to a (hyper) activation of the PI3K pathway or 
downstream targets of the hedgehog pathway (e.g., Gli2)[164,165]. This suggests that targeting both the 
Hedgehog pathway and PI3K pathway could be used for treating pancreatic cancer, as shown in 
medulloblastoma[166].

Hyaluronic acid
Hyaluronic acid (HA) is a glycosaminoglycan that is abundantly present in the extracellular matrix and 
contributes to the dense desmoplastic stroma surrounding the tumor. The degradation of HA by hyalur-
onidase may help disrupt the stroma and enhance drug delivery to the tumor[167]. Recombinant human 
hyaluronidase (PEGPH20) has been studied in mouse models of pancreatic cancer and was found to 
degrade HA, reduce interstitial fluid pressure, increase vascular permeability, and enhance doxorubicin 
delivery to tumors. In combination with gemcitabine, PEGPH20 inhibits tumor growth and prolongs 
survival[167].

The HALO 202 trial examined improvements in PFS in patients with untreated metastatic PDAC. In 
this phase II trial, 269 patients were randomized to treatment with PEGPH20 plus nab-paclitaxel/
gemcitabine (PAG) vs nab-paclitaxel/gemcitabine (AG). The mPFS was significantly improved in the 
PAG arm for 6 mo vs 5.3 mo in the AG arm (HR = 0.73; P = 0.045). In patients with > 50% of HA 
staining, the PAG group had a higher objective response rate (45% vs 31%) and a longer mOS (11.5 mo 
vs 8.5 mo, HR = 0.96, 95%CI: 0.57-1.61)[168]. The HALO109-301 phase III clinical trial evaluating PEGPH 
20 (NCT02715804) was terminated due to unsatisfactory results. In a phase II trial (SWOG S1313) of 
modified FOLFIRINOX (mFOLFIRINOX) plus PEGPH20 compared with mFOLFIRINOX monotherapy. 
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Ramanathan et al[169] reported an inferior OS when PEGPH20 added to mFOLFIRINOX (7.7 mo 
[95%CI: 4.6-9.3 mo] vs 14.4 mo [95%CI: 10.1-15.7 mo]). Several phase I/II trials of PEGPH20 combined 
with programmed cell death protein 1 mAbs and other drugs are currently recruiting patients 
(NCT03634332, NCT03193190). There may soon be new treatment paradigms for this disease based on 
the randomized phase III trials of PEGPH20.

MMPs
MMPs can disrupt the extracellular matrix and basement membrane, thus contributing to tumor 
invasion, angiogenesis, and metastasis[170]. Marimastat is an MMP inhibitor demonstrating single-
agent activity and safety in PDAC patients[171]. However, when combined with gemcitabine, 
marimastat did not show any clinical benefit or survival advantage, with mOS of 165.5 d in the 
combination group compared with 164 d in the gemcitabine monotherapy group and 1-year survival 
rates of 18% and 17%, respectively[172]. Similarly, tanomastat, an MMP inhibitor, did not show any 
clinical benefit in PDAC compared with gemcitabine[173]. The study ended after a second interim 
analysis (median OS of 3.74 mo for tanomastat vs 6.59 mo for gemcitabine). Andecaliximab, an mAb 
targeting MMP9, demonstrated favorable safety and clinical activity in a phase I trial in combination 
with gemcitabine and nab-paclitaxel in advanced PDAC patients, with an mPFS of 7.8 mo (90%CI: 6.9-
11.0), an objective response rate of 44.4% and a median duration of response of 7.6 mo[174].

Connective tissue growth factor
Connective tissue growth factor (CTGF) is overexpressed in PDAC and is a profibrotic mediator. In a 
preclinical study, FG-3019, an mAb against CTGF, increased the effectiveness of gemcitabine, resulting 
in a significant tumor response[175]. A phase II clinical trial for advanced PDAC showed that FG-3019 
in combination with gemcitabine and erlotinib was well tolerated, with median PFS and OS of 3.7 and 
7.4 mo, respectively[176]. Based on the results of a phase II trial, gemcitabine plus nab-paclitaxel, in 
combination with FG-3019 or placebo, showed significant improvement in median PFS in the group 
using FG-3109 (18.4 mo vs 10.4 mo) (NCT02210559). In early 2018, FDA granted a fast-track designation 
to FG-3019 (pamrevlumab) for treating patients with locally advanced, unresectable PDAC. An ongoing 
phase III, randomized, double-blind trial is enrolling patients with locally advanced, unresectable 
PDAC to evaluate the efficacy of receiving gemcitabine in combination with pamrevlumab 
(NCT03941093).

HGF/c-MET pathway
HGF and its receptor c-MET are vital to the onset and progression of pancreatic cancer. HGF, present on 
pancreatic stellate cells, increases stromal production and interacts with its ligand, c-MET, on pancreatic 
cancer cells. This process is vital to the proliferation and migration of pancreatic cancer cells[177].

Among c-MET-targeted therapies, the most advanced clinical development is tivantinib, a c-MET 
inhibitor in phase III development for various malignancies[178]. A randomized phase II study has been 
conducted to evaluate the efficacy of tivantinib in combination with gemcitabine in patients with 
unresectable locally advanced or metastatic untreated pancreatic cancer (NCT00558207). Recently, an 
HGF-neutralizing Ab, YYB101, has been developed with encouraging preclinical results and has been 
tested in clinical trials in patients with refractory solid tumors[179]. In addition, NK4, an intramolecular 
fragment of HGF that targets the HGF/c-MET axis, has demonstrated promising results in vitro and in 
vivo[180,181].

Cabozantinib, a small molecule inhibitor targeting c-MET and VEGFR-2, is evaluated in a 
randomized phase II study in several solid tumors, including metastatic pancreatic cancer 
(NCT01466036). In addition, anti-MET antibodies (emibetuzumab and onartuzumab) have been 
successfully used in preclinical models of pancreatic cancer[182,183].

CSCs
CSCs are a unique subset of cells with the potential for self-renewal and differentiation, which can lead 
to carcinogenesis, progression, metastasis, and drug resistance. Pancreatic CSCs were first described by 
Li et al[184]; they identified a subpopulation of pancreatic cancer cells expressing CD44, CD24, and 
epithelial surface antigen (ESA) (CD44+ CD24+ ESA+). CSCs with this phenotype form pancreatic 
tumors when injected into the tail of orthotopic immunocompromised mice[185]. Wnt/β-catenin, Notch, 
and activation of the Janus kinase/signal transducer and transcription (JAK/STAT) pathways play a 
central role in developing pancreatic CSCs[186].

Notch pathway
The Notch pathway is an evolutionarily conserved pathway important in mammalian pancreas organo-
genesis. Upregulation of Notch has been found in PDAC and increases tumorigenesis. Evidence 
suggests that crosstalk between phytochemicals, microRNAs, and Notch signaling regulates the self-
renewal division of CSCs[187]. The intracellular domain of Notch induces proliferative signaling and 
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differentiation by altering gene transcription. The Notch pathway interacts with the Hedgehog, KRAS, 
and NF-κB pathways[93,188,189].

Since Notch signaling is activated by γ-secretase, γ-secretase inhibitors have been developed as 
therapeutic agents for the treatment of PDAC. A single-arm phase II trial of the γ-secretase inhibitor 
RO4929097 was discontinued due to intolerable toxic effects. The 6-mo survival rate is 27.8%, the mOS is 
4.1 mo, and median PFS is 1.5 mo[190]. A phase I trial of MK-0725 (a γ-secretase inhibitor) and 
gemcitabine for PDAC patients, achieved 13 stable disease and one partial response of 19 evaluable 
patients[191]. Tarextumab is a fully human IgG2 Ab targeting Notch2 and Notch3 receptors[192]. The 
results of a randomized phase II study evaluating tarextumab in combination with gemcitabine and 
nab-paclitaxel in patients with untreated metastatic PDAC were suboptimal, without improvement in 
OS, PFS, or ORR[193].

WNT pathway
The WNT pathway is important in cell differentiation and proliferation. In preclinical mouse models, 
abnormal WNT signaling leads to pancreatic cancer[194].

Vantictumab is an mAb that blocks WNT signaling. Preclinical studies have shown that this Ab 
reduces cancer stem cell frequency and increases the activity of chemotherapy[195]. The safety and 
tolerability of vantictumab combined with nab-paclitaxel and gemcitabine are being investigated in a 
phase Ib dose-escalation study (NCT02005315).

Ipafricept inhibits WNT signaling by acting as a decoy receptor while binding and sequestering WNT 
ligands. The combination of ipafricept and gemcitabine and nab-paclitaxel was well tolerated in a phase 
Ib study for patients with untreated stage IV pancreatic cancer, with a median PFS of 5.9 mo and a 
median OS of 9.7 mo[196].

JAK/STAT pathway
JAK/STAT pathway has been found in pancreatic cancer[197,198]. Abnormalities in the JAK/STAT 
pathway directly leads to increased cell transformation, cell proliferation, apoptosis, and angiogenesis. 
Additionally, STAT3 inhibition results in increased sensitivity to chemotherapy (mainly gemcitabine) 
and delays tumor progression in PDAC patients[199]. PDAC cell death and proliferation increases when 
STAT3 inhibitors are administered with chemotherapeutic agents. A phase III trial of evaluating STAT3 
inhibitors on PDAC when co-administered with standard chemotherapy regimens has been completed 
(NCT02231723), but results have not yet been uploaded.

Itacitinib, a selective JAK1 inhibitor, combined with nab-paclitaxel and gemcitabine was evaluated in 
a phase Ib/II study in patients with advanced solid tumors including locally advanced/metastatic 
pancreatic cancer patients[200]. The combination therapy demonstrated acceptable safety and clinical 
activity[201]. However, after an interim analysis of the phase III JANUS 1 and 2 trials of ruxolitinib 
(JAK1/2 inhibitor) in combination with capecitabine showed no additional clinical benefit of ruxolitinib 
compared to capecitabine (NCT02117479, NCT02119663), the sponsor prematurely terminated this 
study on itacitinib on February 11, 2016.

Napabucasin is an investigational, oral agent hypothesized to inhibit multiple oncogenic pathways. 
Several clinical trials have been initiated to evaluate the safety and efficacy of the drug in various 
gastrointestinal malignancies[202]. Single-arm phase Ib/II study with napabucasin and nab-paclitaxel 
plus gemcitabine recruited 59 patients with mPDAC. According to published abstracts, the combination 
regimen was well tolerated. Among the 50 patients evaluated, the disease control rate was 92%, with 2 
complete remissions (4%) and 26 partial responses (52%)[203]. Of all 59 patients enrolled, the 1- and 2-
year OS rates were 46% and 13%, respectively. These results led to the further investigation of this 
treatment combination in the ongoing phase III CanStem111P trial (NCT02993731).

Momelotinib is a JAK1/2 inhibitor with additional activity against TANK-binding kinase 1[204]. 
Momelotinib was safe and well tolerated in a phase I dose-escalation trial of momelotinib combined 
with gemcitabine and nab-paclitaxel in patients with previously untreated metastatic PDAC 
(NCT02101021). However, there was no OS or PFS benefit vs gemcitabine plus nab-paclitaxel in the 
context of suboptimal engagement of the target. This study does not support momelotinib as a first-line 
treatment for pancreatic cancer[205].

CSC may be an important target for treatment, but there is still a question of whether targeting them 
is the best way to counteract their ability to progress, expand and resist treatment in the host 
environment[206]. Future studies should focus on clonal evolution, especially on monitoring CSC 
during cancer progression and after treatment.

AUTOPHAGY
An autophagy process primarily involves degrading damaged organelles or proteins[207] and enables 
cells to recycle cellular contents as an internal fuel source during cellular recycling. This process is 
necessary for pancreatic cancer cells to overcome nutritional deficiencies.
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Hydroxychloroquine (HCQ) was one of the first autophagy inhibitors to enter clinical trials. 
However, HCQ alone did not show significant antitumor effects[208]. According to a randomized phase 
II study, gemcitabine/nab-paclitaxel with or without HCQ did not improve OS (11.1 mo vs 12.1 mo; P = 
0.44) or PFS (5.7 mo vs 6.4 mo; P = 0.25)[209]. In a randomized phase II trial, there was a significant 
improvement in Evans Grade histopathology and carbohydrate antigen 19-9 response after adding HCQ 
in the preoperative setting. OS and DFS were not different between groups in this study, nor were AEs 
or R0 resections[210].

In a recent study, KRAS inhibition and ERK inhibition increased autophagic flux in PDAC[211]. Thus, 
autophagy inhibitors synergistically act with ERK inhibitors in inhibiting PDAC driven by KRAS 
mutations[211]. A synergistic antiproliferative effect was observed when autophagy inhibition was 
combined with MEK1/2 inhibition in PDAC cells as well as patient-derived xenograft models[212]. 
According to these studies, inhibiting autophagy genetically or pharmacologically may enhance the 
antitumor effects of other antitumor drugs such as ERK inhibitors and MEK inhibitors in PDAC. Several 
promising studies have evaluated the combination of autophagy inhibitors and MEK (NCT04132505, 
NCT03825289) or ERK inhibitors (NCT04386057) in patients with locally advanced or metastatic cancer
[213-215].

OTHER TARGETS
Adenosine has been identified as an essential regulator of tumor proliferation, survival, and migration. 
Inhibition of adenosine receptors has been shown to modulate immune responses within the tumor 
microenvironment, thereby enhancing antitumor effects[216]. Several clinical trials evaluate the safety 
and efficacy of adenosine A2 receptor antagonists in combination with immunotherapy or cytotoxic 
therapy in patients with advanced solid tumors including PDAC, Ciforadenant (NCT03454451), and 
NIR178 (NCT03207867).

Accumulating clinical evidence suggests that overexpression of urokinase-type plasminogen activator 
(uPA) or its cell surface receptor is closely associated with worse clinicopathological features and poor 
prognosis in PDAC patients[217]. RHB-107, the only known agent targeting the uPA pathway, was 
effective in a phase II clinical trial in patients with locally advanced unresectable pancreatic cancer 
(NCT00499265). RHB-107, combined with gemcitabine, significantly improved 1-year survival by 17% in 
patients with unresectable PC. In 2017, RHB-107 received an Orphan Drug Designation from the FDA 
for PDAC adjuvant therapy.

CONCLUSION
Despite the advances in the last 20 years, pancreatic cancer remains a devastating malignancy with 
limited options for effective treatment. As mentioned above, the self-preserving CSCs, dense tumor 
microenvironment, and suppressive and relatively depleted immune niche of PDAC are considered 
significant clinical barriers to successful therapy development, making it one of the most challenging 
diseases to target.

Targeting individual molecules is not a good approach. In the currently known studies on the 
mechanisms of ineffectiveness or resistance of targeted therapies, it is suggested that inhibition of one 
pathway may lead to activation or compensatory upregulation of others, e.g., inhibition of the PI3K/
Akt/mTOR pathway may lead to tumor escape via the MAPK pathway. This suggests to us that, in fact, 
most clinical trials have also demonstrated that monotherapy of targeted drugs is not feasible. 
Therefore, combining targeted inhibitors of multiple pathways may be the future targeted therapy 
research's primary direction. At the same time, in addition to considering drug efficacy, we must 
consider that a multidrug combination implies a superposition of AEs and toxicity.

Based on the characteristics of pancreatic cancer - dense fibrous stroma, accounting for 90% of the 
tumor volume, and excessive proliferation of fibrous histochemistry, drugs are not easy to reach the 
tumor interior. Investigating targeted or cytotoxic drugs that are more accessible to the tumor, or using 
more efficient delivery methods, such as local arterial delivery, may improve efficacy.

Most of the studies conducted to date have been designed based on gemcitabine activity. Given that 
gemcitabine is no longer the reference drug, future studies should focus on targeted therapy with either 
nab-paclitaxel or FOLFIRINOX as the control group, which may improve the results achieved. 
Furthermore, most studies showed promising results in preclinical evaluations, but the vast majority 
failed to proceed to more advanced clinical studies due to the lack of positive results. This suggests that 
better preclinical models should be developed to accurately reflect the tumor characteristics and 
environment in humans, thereby making clinical trials more relevant to preclinical studies.

PDAC is a very complex entity, joining different molecular particularities and in a dynamic manner, 
not in a static one. As some guidelines already stated and can be concluded from de data shown here, is 
very important to spread the genetic and transcriptomic profiling of every PDAC to capture the vulner-
abilities of the tumor as far as possible as the way to improve therapeutic results. In conclusion, 
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developing the targeted drug for pancreatic cancer has a long way to go. The complex interactions 
within targeted biological pathways, the pharmacokinetics of targeted drugs, predictive markers of the 
targeted drug benefit, and the combined application of targeted drugs still require extensive and in-
depth studies.
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