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Abstract
Alcoholic liver disease is a major health problem in the 
United States and worldwide. Chronic alcohol consump-
tion can cause steatosis, inflammation, fibrosis, cirrho-
sis and even liver cancer. Significant progress has been 
made to understand key events and molecular players 
for the onset and progression of alcoholic liver disease 
from both experimental and clinical alcohol studies. No 
successful treatments are currently available for treat-
ing alcoholic liver disease; therefore, development of 
novel pathophysiological-targeted therapies is urgently 
needed. This review summarizes the recent progress 
on animal models used to study alcoholic liver disease 
and the detrimental factors that contribute to alcoholic 
liver disease pathogenesis including miRNAs, S -ad-
enosylmethionine, Zinc deficiency, cytosolic lipin-1β, 
IRF3-mediated apoptosis, RIP3-mediated necrosis and 
hepcidin. In addition, we summarize emerging adaptive 
protective effects induced by alcohol to attenuate alco-

hol-induced liver pathogenesis including FoxO3, IL-22, 
autophagy and nuclear lipin-1α. 
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Core tip: Alcoholic liver disease is a major health prob-
lem worldwide. Significant progress has been made to 
understand key events and molecular players for the 
onset and progression of alcoholic liver disease. This 
review summarizes the recent progress on animal mod-
els used to study alcoholic liver disease and the detri-
mental factors that contribute to alcoholic liver disease 
pathogenesis including miRNAs, S -adenosylmethionine, 
zinc deficiency, cytosolic lipin-1β, IRF3-mediated apop-
tosis, RIP3-mediated necrosis and hepcidin. In addition, 
we summarize emerging adaptive protective effects 
induced by alcohol to attenuate alcohol-induced liver 
pathogenesis including FoxO3, IL-22, autophagy and 
nuclear lipin-1α. 

Williams JA, Manley S, Ding WX. New advances in molecular 
mechanisms and emerging therapeutic targets in alcoholic liver 
diseases. World J Gastroenterol 2014; 20(36): 12908-12933  
Available from: URL: http://www.wjgnet.com/1007-9327/full/
v20/i36/12908.htm  DOI: http://dx.doi.org/10.3748/wjg.v20.
i36.12908

INTRODUCTION
Alcohol consumption and abuse are major causes of  
chronic liver disease, which is a significant health prob-
lem in the United States and around the world. The 
pathogenesis of  alcoholic liver disease (ALD) in humans 
is characterized by steatosis (mild stage), which is an ac-

WJG 20th Anniversary Special Issues (10): Alcoholic liver disease

TOPIC HIGHLIGHT



cumulation of  fat in hepatocytes. In most heavy alcohol 
consumers, steatosis is caused by inhibiting fatty acid oxi-
dation while increasing uptake of  fat into the liver along 
with fatty acid and triglyceride synthesis. Approximately 
8%-20% of  heavy drinkers with steatosis can further 
develop steatohepatitis (moderate stage) and fibrosis and 
cirrhosis (advanced stage), and some (3%-10%) eventu-
ally develop hepatocellular carcinoma (HCC)[1,2]. Alco-
holic steatohepatitis is characterized by hepatic inflamma-
tion and injury in addition to steatosis and also includes 
fibrotic and cirrhotic disease states. Fibrosis is a typical 
wound-healing response induced by liver injury that is 
characterized by an accumulation of  extracellular matrix 
proteins, such as collagen, which are produced by acti-
vated hepatic stellate cells (HSCs). Continuous activation 
of  this wound healing response leads to cirrhosis of  the 
liver, which can eventually progress to HCC. 

Most heavy alcohol consumers do not progress be-
yond steatosis of  the liver, which suggests that other 
factors contribute to progression of  ALD in addition to 
heavy alcohol consumption. There have been several fac-
tors shown to contribute to progression and severity of  
ALD in humans including race, sex, and comorbidities 
like obesity or hepatitis C virus (HCV). Genetic poly-
morphisms and epigenetic modifications have also been 
shown to have roles in ALD progression. Two of  the 
most important factors in susceptibility to ALD progres-
sion are race and sex. African-Americans and Hispanics 
are more likely to progress to alcohol-induced cirrhosis 
than Caucasians[3,4]. In addition, women are more likely 
to progress to ALD with more severity than men[5-7]. 
Women were shown to have increased blood alcohol lev-
els compared to men after alcohol consumption, which 
was likely due to females having decreased gastric alcohol 
dehydrogenase, contributing to a decreased first-pass 
metabolism and greater bioavailability of  alcohol after 
consumption[7,8]. The greater likelihood of  women to 
have increased risk of  developing ALD may also be due 
to estrogen levels[9-12].

Comorbidity with other diseases, such as obesity or 
HCV, in addition to lifestyle factors have also been shown 
to play a role in ALD progression. Obesity and metabolic 
syndrome have been shown to have a synergistic effect 
on alcohol-induced liver injury[13,14], which may be due to 
nitrosative stress in the liver caused by type 1 macrophage 
activation, increased ER and mitochondrial stress, and ad-
iponectin resistance[15]. In addition, obesity has been asso-
ciated with an increased mortality rate in ALD patients[16]. 
HCV has also been associated with severity of  ALD[17,18]. 
A combination of  HCV and ALD has been shown to 
cause more liver injury than either disease alone[17-19], and 
the risk of  developing cirrhosis was greatly increased 
in HCV patients that were heavy alcohol consumers[20]. 
Smoking has also been shown to have a role in ALD se-
verity and progression to liver cirrhosis[21-23]. In contrast, 
drinking coffee has been shown to protect against ALD 
severity and development of  alcohol-induced liver cirrho-
sis[22,24,25].

Finally, genetic polymorphisms and epigenetics have 
been shown to contribute to ALD progression and sever-
ity. For example, several polymorphisms of  genes neces-
sary for alcohol metabolism have been found including 
polymorphisms in alcohol dehydrogenase (ADH2 and 
ADH3), aldehyde dehydrogenase (ALDH2) and in the 
cytochrome P450 2e1 (Cyp2e1) promoter[26,27]. Poly-
morphisms in glutathione S-transferase (GST) genes 
necessary to reduce oxidative stress may also have a role 
in ALD progression[28]. In addition, polymorphisms in 
genes involved in cytokine regulation and response have 
been associated with ALD progression, such as a poly-
morphism of  the TNF-α promoter[29,30] in addition to 
polymorphisms in IL-1β, TGF-β1, and IL-10, which all 
influence progression to hepatic fibrosis[31]. Recently, vari-
ations in the patatin-like phospholipase domain-contain-
ing protein 3 (PNPLA3) gene have been associated with 
ALD progression to cirrhosis[32-35] fibrosis and HCC[36]. In 
addition to genetic polymorphisms, epigenetics have also 
been shown to have a role in ALD progression. Alcohol 
has also been shown to influence epigenetics and histone 
modification in the GI tract and liver, which may increase 
progression and severity of  ALD. For example, alcohol 
has been shown to alter expression of  ADH due to his-
tone modification. More critically, epigenetic changes 
induced by alcohol consumption may be transmitted to 
offspring, which could affect their development[37]. 

ALD is a substantial problem worldwide that is 
caused by heavy alcohol consumption in addition to 
other environmental and genetic factors. Significant re-
search progress has been made in the past few years for 
understanding ALD pathogenesis, but a universal treat-
ment to cure ALD is still lacking. Several mediators that 
result in progression of  ALD that have already been 
thoroughly reviewed include hepatocyte apoptosis, activa-
tion of  innate and adaptive immunity, and inhibition of  
liver regeneration[38-40]. In this review, we discuss newly 
available mouse models for studying ALD, new players 
in alcohol-induced liver pathogenesis and novel adaptive 
mechanisms that the liver may utilize to protect against 
alcohol-induced liver injury.

A PREVIEW OF CURRENT RODENT 
MODELS OF ALD 
While many species have been used to study ALD in-
cluding baboons, pigs and rats, mice have been used pre-
dominantly in current ALD research. This is due to the 
availability of  numerous transgenic and knockout mice 
that can easily help scientists determine the role of  a par-
ticular molecule or signaling pathway in the pathogenesis 
of  ALD. In addition, mice have more than 85% genetic 
similarity to humans, and their physiology and genetics 
have been extensively studied. Moreover, mice can repro-
duce quickly and are relatively inexpensive compared to 
baboons and pigs. Although many different mouse mod-
els have been established to study the pathogenesis of  
ALD, they are only able to mimic some early pathogenic 
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changes of  ALD in humans. In fact, none of  the current 
mouse models have been able to reproduce the exact 
pathogenic process in human ALD. Nevertheless, since 
ALD is a chronic liver disease, the understanding of  these 
early pathogenic changes that can be seen in mouse ALD 
models, such as hepatic steatosis and inflammation, can 
still shed light on future development of  therapeutics for 
prevention of  ALD progression. Several mouse models 
have been used to study alcoholic liver injury that include 
acute oral gavage, ad libitum oral alcohol in drinking 
water, intragastric infusion (Tsukamoto-French model), 
chronic Lieber-DeCarli diet ethanol feeding and the most 
recent National Institute on Alcohol Abuse and Alco-
holism (NIAAA) chronic-binge ethanol model, which 
was developed by Bin Gao’s group (hereafter referred to 
as Gao-Binge model). Mice administered acute oral ga-
vage, ad libitum oral alcohol in drinking water or chronic 
Lieber-DeCarli diet ethanol feeding show mild elevation 
of  serum alanine aminotransferase (ALT), which only 
mimics early pathogenic changes in human ALD. Aimed 
to establish a mouse model to better recapitulate human 
ALD pathogenesis, Dr. Tsukamoto and Dr. French in-
vented the intragastric infusion model in which the mice/
rats are surgically implanted with an intragastric tube to 
allow continuous enteral alcohol feeding, which results in 
blood alcohol concentrations that are much higher than 
ad libitum alcohol feeding[41,42]. The intragastric alcohol 
fed mice show marked elevation in serum ALT levels, ste-
atosis and some mild liver fibrotic changes[43]. However, 
an increased mortality rate was found in long-term intra-
gastric fed mice, and thus these mice require extensive 
medical care during experiments. Moreover, this model 
requires a technically challenging surgery that is difficult 
to perform for most laboratories. 

Alcoholic hepatitis (AH) is a clinical syndrome among 
chronic alcohol drinkers who often also binge drink, 
resulting in hospitalization. Approximately 30%-40% of  
AH patients die within one month of  diagnosis, and cur-
rent treatment options, which are use of  corticosteroids 
or pentoxifylline, only provide about a 50% survival 
benefit[44]. Therefore, there is an urgent need for develop-
ment of  new targeted therapies for AH. As previously 
mentioned, most mouse models only mimic early ALD 
pathogenesis. However, Dr. Gao’s laboratory recently es-
tablished a novel mouse model to mimic AH conditions 
(Gao-binge model)[45]. In this model, mice are fed a con-
trol Lieber-DeCarli liquid diet for 5 d before switching 
them to a 10 d ethanol Lieber-DeCarli diet (1%-5%) fol-
lowed by a one-time ethanol binge by oral gavage (31.5% 
v/v) on the morning of  day 11 for 9 h. Control animals 
are fed a calorie-matched diet and receive a maltose-
dextran binge (45%) on day 11. Mice were found to have 
a blood alcohol level of  140 mmol/L 1-2 h after etha-
nol binge using this model[46]. Mice treated with chronic 
feeding together with an acute binge showed markedly 
elevated ALT, aspartate aminotransferase (AST), and ste-
atosis along with significant inflammation in mouse livers 
compared with either the chronic 10 d feeding or the 

acute binge alone-treated mice[45,47]. The advantages of  
this model are obvious because it is easy to perform and 
is more relevant to the human AH condition because it 
generates more liver injury and inflammation than other 
frequently used models. However, it should be noted that 
the phenotype in this model does not progress beyond 
liver steatosis, inflammation, and injury. Therefore, im-
proved animal models that more accurately reflect the 
human condition are still needed for studying ALD pro-
gression. 

NOVEL PLAYERS IN ALD PATHOGENESIS 
Chronic alcohol consumption is well known to induce 
liver steatosis, which can eventually progress to more se-
vere forms of  liver injury, such as AH, fibrosis, and HCC 
as previously discussed. Owing to the active research in 
the past decade, many mediators of  ALD pathogenesis 
have been identified and extensively reviewed recent-
ly[38-40], this section of  the review will thus focus on novel 
players in ALD pathogenesis including modulation of  
microRNA levels, changes in methionine metabolism and 
S-adenosylmethionine, induction of  osteopontin, hepci-
din and zinc depletion, and newly discovered mechanisms 
of  alcohol-induced cell death. 

MicroRNA
MicroRNAs (miRNAs) are small noncoding RNAs that 
post-transcriptionally regulate gene expression via RNA 
cleavage and degradation or inhibition of  RNA transla-
tion[48]. There have been several studies over the past 5 
years investigating the role of  miRNAs in ALD. A micro-
array analysis to determine the hepatic miRNA profile in 
mice fed the Lieber-DeCarli diet (4.5%) for 5 wk revealed 
that chronic ethanol feeding caused significant changes 
in miRNA levels. Specifically, chronic ethanol feeding 
caused down-regulation of  miR-27b, miR-214, miR-
199a-3p, miR-182, miR-183, miR-200a and miR-322, but 
caused up-regulation of  miR-705 and miR-1224[49]. While 
these results indicate that chronic alcohol consumption 
can alter hepatic miRNA levels, the exact contribution 
of  these miRNA changes in the pathogenesis of  ALD 
is still not clear. In a separate study conducted by the 
same group, it was found that RAW 264.7 macrophages 
exposed to either lipopolysaccharide (LPS) or ethanol in-
creased the induction of  miR-155, which was important 
for TNFα induction. Interestingly, combined treatment 
of  LPS with ethanol further synergistically increased the 
induction of  miR-155 in RAW 264.7 macrophages, which 
also correlated with ethanol-induced TNFα production. 
More importantly, they further found that mice that were 
fed the Lieber-DeCarli diet (5%) for 4 wk had signifi-
cantly increased miR-155 levels and TNFα production in 
isolated Kuppfer cells (KCs) when compared with pair-
fed controls. Mechanistically, miR-155 increased mRNA 
stability of  TNFα and, in turn, promoted alcohol-
induced elevation of  TNFα production[50]. The ethanol-
induced increase in miR-155 seemed to be more robust 

12910 September 28, 2014|Volume 20|Issue 36|WJG|www.wjgnet.com

Williams JA et al . New advances in ALD research



PHx, and that some miRNAs present in control rats were 
absent in ethanol-treated rats or vice versa. Importantly, 
ethanol-treated rats had decreased expression of  miR-
196a and miR-196c in the early liver regenerative phase. 
Chip analysis revealed that these miRNAs were regulated 
by nuclear factor-kappaB (NF-κB), and that binding of  
NF-κB to the miR-196c promoter was decreased after 
PHx[56]. These results suggest that decreased expression 
of  miR-196a and miR-196c is associated with impaired 
liver regeneration during ethanol-induced liver injury, but 
the exact role of  miR-196a and miR-196c in ethanol-
induced impairment of  liver regeneration needs to be 
further studied. In addition to miR-196a and 196c, it 
should also be noted that many other miRNAs were al-
tered during liver regeneration in chronic ethanol-fed rats. 
Therefore, it will be interesting to further investigate the 
role of  other miRNAs in liver recovery and regeneration 
after ethanol-induced liver injury.

Ethanol-induced oxidative stress has recently been 
shown to involve miR-214. Rats fed with ethanol for 4 
wk had increased expression of  miR-214, which binds 
specifically to the 3’-UTR of  glutathione reductase and 
cytochrome P450 oxidoreductase, two important antioxi-
dant genes[57]. Binding of  miR-214 to the promoters of  
these oxidative stress genes inhibits their expression and 
decreases their activity, which likely promotes alcohol-
induced oxidative stress. Indeed, inhibition of  miR-214 
in human hepatoma cells (Bel7402) and in rat liver cells 
(BRL) treated with ethanol rescued the ethanol-induced 
reduction in expression of  glutathione reductase and cy-
tochrome P450 oxidoreductase and suppressed ethanol-
induced oxidative stress[57]. These findings suggest that 
miR-214 may be a future therapeutic target for reducing 
ethanol-induced oxidative stress and liver injury. 

In summary, it seems that miRNAs play roles in 
alcohol-induced inflammation, steatosis, liver regenera-
tion/repair and oxidative stress. miRNAs might be novel 
therapeutic targets as well as diagnostic biomarkers for 
ALD. However, it should be noted that the miRNA pro-
files found in mice and rats treated with ethanol were 
quite different. For example, none of  the microRNA 
alterations found in Dolganic’s mouse liver microarray 
analysis[49] were found in the rat microarray analysis com-
pleted by Hoek’s group[56], which could be due to species 
differences between rats and mice. Moreover, the miRNA 
profile in mice treated with the Gao-binge model has not 
been determined. Future work to further characterize the 
role of  miRNAs in ALD is definitely needed. 

S-adenosylmethionine
Methionine is an essential amino acid important for syn-
thesis of  cysteine and phospholipids, such as phospha-
tidylcholine. Methionine must be ingested through the 
diet because it cannot be newly synthesized by humans. 
Methionine metabolism occurs predominantly in the liver 
and results in production of  the methyl donor S-ade-
nosylmethionine (SAM), which is necessary to perform 
most methylation reactions. The first reaction in methio-

in KCs because it was only slightly increased in hepa-
tocytes in chronic ethanol fed mice, which is consistent 
with the role of  miR-155 in regulating inflammation. In 
contrast to miR-155, miR-122 is abundant in hepatocytes. 
Interestingly, it was found that chronic ethanol feed-
ing decreased hepatic miR-122 levels but significantly 
increased blood circulating levels of  both miR-122 and 
miR-155. Further studies revealed that serum/plasma 
levels of  miR-122 correlated with ALT levels whereas 
serum/plasma miR-155 levels correlated with inflamma-
tion induced by alcohol[51]. These results suggest that cir-
culating miRNAs may serve as additional biomarkers for 
alcohol-induced liver injury and inflammation in addition 
to serum ALT levels. 

Yin et al[52] recently demonstrated that miR-217 plays 
a critical role in ethanol-induced liver steatosis via down-
regulation of  sirtuin 1 (SIRT1). SIRT1 is a deacetylase 
that regulates lipid metabolism via deacetylation of  genes 
involved in lipid synthesis and break down, such as ste-
rol regulatory element-binding protein 1 (SREBP-1) 
and Peroxisome-proliferator-activated receptor gamma 
(PPARγ) co-activator-1α (PGC-1α). Ethanol treatment 
increased miR-217 levels in both ethanol-treated AML-12 
cells and in mice fed a modified Lieber-DeCarli diet for 
4 wk. In addition, both ethanol and miR-217 overexpres-
sion increased triglycerides (TG) in AML-12 cells, and 
co-treatment of  AML-12 cells with both ethanol and 
miR-217 further increased TG levels compared to etha-
nol or miR-217 overexpression alone. Mechanistically, it 
was found that both miR-217 overexpression and alcohol 
treatment inhibited SIRT1 mRNA and protein expres-
sion as well as its deacetylase activity. Co-treatment of  
miR-217 with ethanol further exacerbated the inhibitory 
effects on SIRT1. Moreover, miR-217 overexpression 
and ethanol treatment both inhibited AMP-activated 
protein kinase (AMPK) activity, which has critical roles in 
ethanol-induced liver fat accumulation[53,54]. In line with 
these results, miR-217 overexpression increased mRNA 
expression of  several genes involved in lipid synthesis 
with a corresponding decrease in genes involved in fatty 
acid oxidation. Furthermore, miR-217 and ethanol treat-
ment both induced lipin-1, a protein that has phospha-
tidate phosphatase activity important for regulating lipid 
homeostasis (also see below discussion), to be localized 
in the cytoplasm, which is associated with induction of  
lipid synthesis and reduction of  fatty acid oxidation in the 
liver[52]. In addition to miR-217, miR-34a was also found 
to down-regulate SIRT1 expression after ethanol treat-
ment in human hepatocytes, but the effect of  miR-34a 
on ethanol-induced steatosis was not investigated[55]. 

In addition to having a role in ethanol-induced in-
flammation and steatosis, miRNAs may also have an 
impact on ethanol-induced liver regeneration. Dippold 
et al[56] studied miRNA profiles in livers from rats fed 
ethanol for 5 wk compared with pair-fed controls after 
both groups were further subjected to partial hepatec-
tomy (PHx). They found that expression of  particular 
miRNAs differed between ethanol and control rats after 

12911 September 28, 2014|Volume 20|Issue 36|WJG|www.wjgnet.com

Williams JA et al . New advances in ALD research



nine metabolism occurs via the transmethylation cycle, 
which results in production of  SAM from methionine by 
methionine adenosyltransferase (MAT). After donating 
its methyl group, SAM is converted to S-adenosylho-
mocysteine (SAH), which is then further converted to 
adenosine and homocysteine by S-adenosylhomocysteine 
hydrolase (SAHH). Homocysteine is then used to regen-
erate methionine or to produce glutathione (GSH), which 
is a well-known anti-oxidant important for prevention 
of  liver injury. The vitamin B6 dependent transsulfura-
tion pathway is utilized to produce GSH via reduction of  
homocysteine to cystathionine using cystathionine beta 
synthase (CβS), which can then be further metabolized 
to cysteine and subsequently, GSH. Regeneration of  
methionine from homocysteine occurs by two pathways. 
The folate-dependent pathway regenerates methionine 
from homocysteine via transfer of  a methyl group from 
N5-methyltetrahydrofolate (MTHF) to vitamin B12, which 
is then subsequently transferred to homocysteine by 
methionine synthase (MS) to form methionine. The sec-
ond pathway is folate independent and uses betaine as a 
substrate for methionine synthesis from homocysteine via 
betaine homocysteine methyltransferase (BHMT)[58-61]. 

It is well known that ethanol induces alterations in 
multiple steps of  methionine metabolism, which is as-
sociated with progression of  ALD (Figure 1)[58-63]. Studies 

in the 1960s showed that alcoholic patients had hemato-
suppressive effects due to alcohol’s effect on folate me-
tabolism. In addition, ethanol-treated rat hepatocytes had 
increased MTHF. These studies were the earliest evidence 
indicating that ethanol may affect methionine metabo-
lism[64,65]. Then, pioneer work from Lieber et al[66] showed 
that baboons fed chronic ethanol for 18 to 36 mo had 
decreased hepatic SAM levels, and SAM supplementation 
in these baboons significantly attenuated ethanol-induced 
mitochondrial damage in the liver. Studies from Dr. 
Tuma’s group also showed that rats that received betaine 
in their diets had increased hepatic SAM levels and mark-
edly reduced liver steatosis after chronic ethanol feed-
ing[67]. Mechanistically, it was found that chronic ethanol 
consumption inhibits the activity of  methionine synthase, 
resulting in a compensatory increase of  BHMT activity. 
However, this compensatory BHMT-mediated pathway 
cannot be maintained under chronic ethanol exposure 
conditions, which consequently results in decreased levels 
of  SAM and increased levels of  SAH and homocyste-
ine[58,62]. A decreased SAM-to-SAH ratio and increased 
homocysteine leads to progression of  liver injury, steato-
sis and ALD, which may be involved in multiple mecha-
nisms including inflammation, oxidative stress, endo-
plasmic reticulum (ER) stress, accumulation of  damaged 
protein, altered gene expression, chromatin structure 
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Figure 1  S-adenosylmethionine is produced from methionine by methionine adenosyltransferase. After donating its methyl group, S-adenosylmethionine (SAM) 
is converted to S-adenosylhomocysteine (SAH), which is then converted to adenosine and homocysteine by S-adenosylhomocysteine hydrolase (SAHH). Homocysteine 
is used to regenerate methionine or to produce glutathione (GSH). The vitamin B6 dependent transsulfuration pathway produces GSH via reduction of homocysteine to 
cystathionine using cystathionine beta synthase (CβS), which can then be further metabolized to cysteine and GSH. Regeneration of methionine from homocysteine oc-
curs by two pathways. The folate-dependent pathway regenerates methionine from homocysteine via transfer of a methyl group from N5-methyltetrahydrofolate (MTHF) 
to vitamin B12, which is then transferred to homocysteine by methionine synthase (MS) to form methionine. The second pathway is folate independent and uses betaine 
as a substrate for methionine synthesis from homocysteine via betaine homocysteine methyltransferase (BHMT). Alcohol may affect methionine metabolism via three 
mechanisms: alcohol inhibits MS, alcohol increases BHMT as a compensatory effect and alcohol may inhibit MAT activity, but this is still controversial. 
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modification, GSH depletion and apoptosis[60,61,63,68-71].
Therapeutically, SAM treatment reduced ethanol-

induced inflammation, which was possibly through 
inhibition of  TNFα production from KCs after LPS 
treatment[69] and repression of  ethanol-induced increases 
in mRNA expression of  toll-like receptors 2 and 4 likely 
via histone methylation[72]. SAM has also been shown to 
be important in preserving mitochondrial function and 
reducing oxidative stress during ethanol consumption. It 
was recently shown that betaine treatment increases the 
SAM-to-SAH ratio along with increasing GSH and its 
component cysteine, which allowed for protection against 
oxidative stress. Betaine treatment improved liver antioxi-
dant capacity and reduced inducible nitric oxide synthase 
(iNOS) expression and nitric oxide production in the liver 
during chronic ethanol treatment[70,71]. Furthermore, beta-
ine treatment also inhibited ethanol-induced reduction of  
cytochrome c oxidase and NADH dehydrogenase, two 
components of  the electron transport chain necessary 
for mitochondrial respiration[70]. It is known that chronic 
alcohol consumption induces hyperhomocysteinemia 
in rats and humans, which is associated with ER stress. 
Interestingly, betaine treatment significantly reduced 
chronic ethanol-induced ER stress and ER stress-initiated 
hepatocyte apoptosis in intragastric alcohol-fed mice[68]. 
Finally, betaine and SAM supplements significantly re-
duced blood alcohol levels by increasing epinephrine-
mediated metabolic rate and alcohol dehydrogenase-
mediated alcohol oxidation[73]. 

Although SAM and betaine treatments have shown 
beneficial effects in reducing ethanol-induced liver injury 
and steatosis in animal models, it was also found that 
methionine metabolism may differ among the various 
alcohol models (acute vs chronic) and in different spe-
cies (mouse vs rat). Chronic ethanol feeding increased 
plasma homocysteine in mice, but not in rats. Addition-
ally, BHMT protein levels were increased in rat livers after 
ethanol feeding, but were unchanged in mice fed ethanol 
compared to controls. Furthermore, BHMT promoter 
activity was different in rat and mouse primary hepato-
cytes. Homocysteine treatment inhibited BHMT pro-
moter activity in mouse hepatocytes, which was rescued 
by betaine treatment, but homocysteine treatment did 
not affect BHMT promoter activity in rat hepatocytes[74]. 
Therefore, more studies are definitely needed to further 
dissect these differences. These various changes in me-
thionine metabolism in different animal models may also 
help to explain why therapeutic use of  SAM in humans 
has not proven useful. Several studies in ALD patients 
have been recently performed to investigate the thera-
peutic potential of  SAM treatment. In a clinical study 
where 13 ALD patients were given either SAM or pla-
cebo, no differences in ALT, AST, or bilirubin levels were 
found. In addition, there was no difference between the 
groups for histopathology[75,76]. In another patient study, 
French and colleagues found no differences in liver bi-
opsy characteristics between alcoholic patients treated or 
not treated with SAM while abstaining from alcohol use 

for 24 d[75]. However, it should be noted that the sample 
size used in these studies was relatively small. In addition, 
many patients had some fibrosis at baseline, which may 
render injured hepatocytes non-responsive to SAM treat-
ment. Moreover, chronic ethanol use has been associ-
ated with decreased vitamin B6

[60], which is an important 
cofactor for production of  GSH from homocysteine, as 
previously discussed. Therefore, it is possible that new 
trials using co-administration of  SAM and vitamin B6 
may provide more promising results in human patients. 
Moreover, increased patient numbers are also needed in 
future clinical trials. 

Osteopontin
Osteopontin (OPN), also known as secreted phospho-
protein 1 (SPP1), is a pro-inflammatory protein found 
in extracellular matrix that binds to CD44 to initiate its 
transcription and to integrins on target cells to promote 
cell adherence and migration[77]. OPN undergoes multiple 
posttranslational modifications including phosphory-
lation, O-glycosylation and proteolytic processing[78]. 
Thrombin or matrix metalloproteinase (MMP) 7 cleaves 
OPN to yield a more active form of  OPN[79]. Accumulat-
ing evidence suggests that OPN plays a role in various 
liver diseases including hepatic steatosis, inflammation, 
fibrosis and the pathogenesis of  ALD[80-85]. OPN mRNA 
and protein levels were first found to be elevated in 
mice and rats after feeding them the Lieber-DeCarli diet 
for 6 wk[82,86,87], and OPN induction occurred mainly in 
biliary epithelium[86]. It is known that alcohol consump-
tion inhibits hepatic peroxisome proliferator-activated 
receptor-α (PPAR-α) activity resulting in hepatic ste-
atosis and inflammation. Interestingly, it was found that 
alcohol-induced down-regulation of  PPAR-α was mark-
edly suppressed in OPN knockout (KO) mice, which 
suggests that OPN might positively regulate PPAR-α in 
alcohol-treated mice. Conversely, treatment of  mice with 
a PPAR-α agonist increased PPAR-α expression and 
reduced OPN expression in mice that were treated with 
alcohol and carbon tetrachloride (CCl4), suggesting that 
PPARα might also regulate OPN expression[88]. 

OPN has been suggested to increase alcohol-induced 
inflammation by acting as a chemokine for neutrophil 
infiltration in the liver[82,86,89], and OPN levels have been 
shown to correlate with liver neutrophil numbers in 
human patients[90]. Neutrophil infiltration was reduced 
when rats were treated with an OPN neutralizing anti-
body before treatment with LPS using a Lieber DeCarli 
ethanol diet + LPS ALD model[89]. These early results 
suggest that OPN may contribute to the pathogenesis of  
ALD. Indeed, OPN KO mice had reduced serum ALT 
levels after ethanol treatment using the Gao-Binge model 
compared to WT mice[83]. In addition, WT mice, but not 
OPN KO mice, had increased hepatic inflammatory gene 
expression and neutrophil infiltration after ethanol treat-
ment with the Gao-Binge model[83]. Moreover, studies 
using anti-osteopontin antibodies to both osteopontin 
and its β3 integrin receptor have been shown to protect 
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against non-alcoholic hepatocyte toxicity and concava-
lin-A induced liver injury, respectively[91,92]. In addition 
to playing a role in ALD, OPN has also been shown to 
promote liver fibrosis in mice that were treated with CCl4 
and thioacetamide (TAA). It was shown that OPN pro-
moted hepatic stellate cell activation through the phos-
phoinositide 3-kinase (PI3K)-Akt pathway and integrin 
αvβ3 engagement. More importantly, OPN KO mice 
showed less liver injury and fibrosis in response to CCl4 
and TAA[93]. In line with the results obtained from these 
animal studies, ALD patients also have increased serum 
OPN levels when they progress beyond hepatic steatosis 
to hepatic inflammation, AH, and fibrosis[83,90]. Taken to-
gether, the above evidence suggests that OPN may con-
tribute to the pathogenesis of  ALD, and inhibiting OPN 
may be a potential therapeutic target for treating patients 
with alcohol hepatitis.

While most evidence supports a detrimental role of  
OPN in ALD, Nieto and colleagues recently found that 
OPN could improve the pathogenesis of  ALD by target-
ing the gut-liver axis. Supplementation of  the breast milk 
form of  OPN protected against ethanol-induced liver in-
flammation, steatosis, and injury by maintaining gut per-
meability after mice were treated with the Lieber-DeCarli 
diet for 3 wk[85]. Moreover, the same group also reported 
that steatosis and liver injury were increased in OPN KO 
mice but were significantly decreased in OPN transgenic 
mice overexpressing OPN in hepatocytes compared with 
wild type mice. Mechanistically, it was proposed that 
OPN may block gut derived LPS and TNFα, and thus 
alleviate LPS/TNFα-mediated liver injury in chronic 
alcohol-fed mice[84]. These contradictory results could 
be due to multiple factors. First, it is known that OPN is 
post-translationally regulated and OPN in breast milk has 
a greater number of  phosphorylated serine residues than 
endogenous forms of  OPN in adults[77,94]. OPN can also 
be glycosylated, sulfated, and cleaved by proteases[95]. Sec-
ond, it is also possible that OPN may play different roles 
in different parts of  ALD pathogenesis because Morales-
Ibanez et al[83] used the Gao-Binge model whereas Ge 
et al[84] fed mice with the Lieber-DeCarli diet for 7 wk. 
Therefore, future work is needed to further investigate 
the role of  OPN in ALD. In particular, the role of  vari-
ous post-translational modifications of  OPN in different 
animal ALD models should be investigated.

Hepcidin
Hepcidin is a peptide synthesized in the liver and secreted 
into the bloodstream to help regulate iron homeostasis[96]. 
Hepcidin is synthesized as an 83 amino acid protein 
known as prohepcidin, which is then cleaved into its 
25 amino acid mature form. When searching for iron-
regulated liver-expressed genes, Tomas Ganz coined the 
name hepcidin[97]. In addition, Ganz and others found 
that the hepcidin gene is highly expressed in the liver and 
has antimicrobial properties[97,98]. Hepcidin suppresses 
iron absorption from the small intestine and iron re-
lease from macrophages resulting in reduced serum iron 

stores[96]. Mechanistically, hepcidin regulates iron metabo-
lism by binding to the iron exporter ferroportin (FPN1), 
which is expressed on macrophages and on enterocytes 
in the small intestine, resulting in its internalization and 
subsequent degradation by the lysosome. By inducing 
degradation of  FPN1, hepcidin prevents iron overload 
by inducing sequestration of  iron in macrophages and 
enterocytes, which prevents secretion of  iron into the cir-
culation[99]. Hepcidin overexpression has been shown to 
cause severe anemia and a lack of  hepcidin gene expres-
sion causes iron overload in tissues, demonstrating that 
regulation of  hepcidin expression is extremely important 
for maintaining iron homeostasis[100,101]. Hepcidin expres-
sion is regulated by several factors including iron levels, 
inflammation, and erythropoiesis. Hepcidin expression 
is increased during iron overload to induce degradation 
of  FPN1 to decrease intestinal absorption and export of  
stored iron, and hepcidin expression is decreased during 
iron deficiency to increase iron absorption and export 
into the circulation. Additionally, hepcidin expression is 
up-regulated by the inflammatory cytokines IL-6, IL-22, 
IL-1α, and IL-1β. Hepcidin expression is also regulated 
by erythropoietic activity because hepcidin levels decrease 
with increased red blood cell production in order to sup-
ply iron needed for erythropoiesis[102]. 

Accumulating evidence suggests that iron homeosta-
sis and hepcidin play a role in the pathogenesis of  ALD. 
It is well known that ALD patients have excess iron accu-
mulation in their livers[103]. While iron is required for sev-
eral important processes in the body, such as red blood 
cell synthesis and cellular respiration, excess free iron can 
be toxic. Excess alcohol use is well known to cause pro-
duction of  reactive oxygen species (ROS) such as H2O2 
and superoxide radical[104]. Free iron reacts with H2O2 via 
the Fenton reaction to produce hydroxyl radical (OH-), 
which is a potent form of  ROS that causes cell damage 
and eventual toxicity via lipid peroxidation, DNA muta-
tion, and breakdown of  cell membranes that contribute 
to ALD[104]. Iron overload is thought to be a second hit 
in the progression of  ALD because hepatic iron con-
tent in alcoholic cirrhosis patients correlated with their 
mortality[105]. Excess iron storage in liver KCs has been 
shown to increase NF-κB and TNFα expression, which 
can aggravate alcohol-induced liver inflammation and 
injury[106,107]. Iron chelation was shown to inhibit TNFα 
expression[108,109], alcohol-induced liver lipid peroxidation 
and steatosis in intragastric ethanol fed rats[110]. Converse-
ly, co-treatment with alcohol and iron has been shown 
to exacerbate alcohol-induced liver injury in intragastric 
alcohol fed rats[111]. This evidence supports that iron 
overload can cause progression of  alcohol-induced liver 
injury. 

Accumulation of  hepatic iron in ALD patients was 
thought to be due to increased hepatocellular uptake of  
iron via transferrin receptor 1 (TfR1) and increased in-
testinal absorption of  iron, and it was later realized that 
accumulation of  iron in human ALD patients was also 
likely due to down-regulation of  hepcidin expression[112]. 
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Indeed, accumulating evidence indicates that alcohol 
down-regulates hepcidin mRNA expression in both 
rodents and humans, which results in up-regulation of  
FPN1 and subsequent hepatic iron overload[113-118]. Sup-
pression of  hepcidin expression has also been shown to 
correlate with disease severity in ALD patients[118]. Several 
mechanisms have been proposed to contribute to alco-
hol-induced decrease of  hepcidin expression. Alcohol-in-
duced oxidative stress is thought to play a role in reducing 
hepcidin expression because mice treated with the anti-
oxidants N-acetylcysteine (NAC) or vitamin E during al-
cohol exposure maintained hepcidin expression levels[113]. 
In addition, the metabolism of  ethanol to acetaldehyde 
was shown to be required for down-regulation of  hepci-
din expression because co-treatment with 4-Methylpyr-
azole, which is an inhibitor of  alcohol dehydrogenase and 
Cyp2e1, inhibited the alcohol-induced decrease in hepci-
din expression[113]. Furthermore, alcohol reduced DNA 
binding activity and protein levels of  CCAAT/enhancer 
binding protein alpha (C/EBPα), which is a transcription 
factor required for hepcidin synthesis[113,116,117,119]. Recent 
research has demonstrated a role for hypoxia-inducible 
transcription factor-1 alpha (HIF-1α) in alcohol-induced 
suppression of  hepcidin via down-regulation of  C/EBPα 
expression. HIF-1α, which is a transcription factor that 
is up-regulated in hypoxic conditions, has been shown to 
down-regulate hepcidin expression[119,120]. It was shown 
that HIF-1α mRNA and nuclear protein expression was 
increased in mice treated with ethanol using the Lieber 
DeCarli diet (4%) for 8 wk[117]. Interestingly, the repres-
sion of  hepcidin expression by alcohol was blocked with 
hepatocyte loss of  Arnt, which is the heterodimer bind-
ing partner needed for HIF-1α transcriptional activity. 
Furthermore, HIF-1α mediated suppression of  hepcidin 
expression was mediated by a decrease in C/EBPα ex-
pression via its proteasomal degradation. Mice lacking 
Arnt did not have decreased C/EBPα expression after 
ethanol treatment, whereas overexpression of  C/EBPα 
before ethanol treatment prevented suppression of  
hepcidin[119]. These findings support a role for the HIF-
1α-C/EBPα axis in the regulation of  hepcidin in ALD.

It should be noted that several therapeutic experimen-
tal studies have been conducted that suggest a beneficial 
role for targeting iron overload in ALD. For example, 
administration of  epigallocatechin-3-gallate (EGCG) to 
mice treated with alcohol for 12 wk by intragastric feed-
ing was shown to decrease serum ALT, AST, and steato-
sis by decreasing serum and hepatic iron in addition to in-
creasing hepcidin mRNA levels in the liver[121]. Vitamin C 
has also been implicated as a therapeutic option for ALD 
patients to reduce iron overload. Mice given 50 mg/kg 
of  vitamin C in addition to treatment with ethanol (20% 
in their drinking water) had decreased serum ALT and 
serum and hepatic iron levels compared to mice treated 
with ethanol alone. In addition, mice given vitamin C 
also had increased hepcidin expression compared to 
mice treated with ethanol alone[122]. In addition to dietary 
therapeutic options, others have proposed pharmacologic 

options for reducing iron overload in ALD. For example, 
minihepcidin, which is a small peptide similar to hepci-
din, has been shown to reduce iron overload in mice[123]. 
However, use of  this peptide has not been evaluated in 
ALD models and should be investigated further. Nev-
ertheless, targeting hepcidin and iron overload may be a 
promising approach for treating ALD. 

Alcohol-induced cell death 
Alcohol metabolism is well known to produce ROS 
which then induce lipid peroxidation and GSH depletion, 
leading to hepatocyte injury and death via apoptosis, ne-
crosis, or necroptosis. Apoptotic cell death is character-
ized by nuclear fragmentation, chromatin condensation, 
and cellular shrinkage and is dependent on activation of  
caspases. When the cell dies by apoptosis, it breaks apart 
into apoptotic bodies, which are membrane-enclosed par-
ticles containing intact organelles that are later degraded 
by phagocytosis without inducing an inflammatory re-
sponse. Ethanol can induce apoptosis via the intrinsic 
(mitochondrial) or extrinsic (death receptor regulated) 
pathway[124-126]. Early studies showed that ethanol selec-
tively depletes mitochondrial GSH and sensitizes cultured 
hepatocytes to TNFα-induced apoptosis[127]. Chronic 
ethanol treatment also increases the expression of  CD95 
and induces the onset of  mitochondrial permeability 
transition to promote apoptosis in rat hepatocytes[128]. 
Szabo and colleagues recently discovered that ethanol-
induced apoptosis requires activation of  interferon 
regulator factor 3 (IRF3), which is a transcription factor 
involved in regulating innate immunity. They found that 
ethanol-induced ER stress caused IRF3 association with 
the ER adaptor stimulator of  interferon genes (STING), 
which then activated IRF3 by phosphorylation. Interest-
ingly, they found that IRF3 activation was required for 
initiation of  ethanol-induced hepatocyte apoptosis in 
mice fed ethanol for 4 wk and that its role in apoptosis 
induction was independent of  its role in innate immunity 
regulation and inflammation[129]. 

In addition to apoptosis, ethanol can also induce 
hepatocyte cell death via the necrosis pathway. Necrosis, 
which was initially thought of  as a non-programmed cell 
death response, is characterized by cell swelling, mem-
brane rupture, and release of  cell contents that leads to 
a subsequent inflammatory response[124,130]. However, 
recent evidence suggests that necrosis can also be highly 
regulated, which involves the receptor-interacting protein 
kinase 1 (RIP1) and RIP3, a process also referred to as 
necroptosis or programmed necrosis[131-134]. Necroptosis 
is similar in nature to necrosis, but is a caspase-indepen-
dent programmed form of  cell death that requires initia-
tion by death receptors, similar to the extrinsic apoptotic 
pathway. Upon TNFα binding to its receptor TNFR1, 
it recruits downstream factors such as TNFR-associated 
death domain (TRADD), RIP1, TNFR-associated fac-
tor 2 (TRAF2), and cellular inhibitor of  apoptosis pro-
teins 1 and 2 (cIAP1/2) to form the pro-survival TNFR 
complex I[135,136]. In addition to the E3 ligases cIAP1/2, 
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the linear ubiquitin assembly complex (LUBAC) is also 
recruited to this complex, which triggers the ubiquitina-
tion of  RIP1. Ubiquitinated RIP1 then serves as a scaf-
fold protein to recruit the IκB kinase (IKK) complex 
to activate the NF-κB pathway[135,136]. Depending on the 
cellular conditions, RIP1 can also be de-ubiquitinated by 
the enzyme cylindromatosis (CLYD), which then recruits 
TRADD, the Fas-associated protein with a death domain 
(FADD) and caspase-8 to form the pro-death complex 
Ⅱ. Activated caspase-8 then further cleaves Bid to trig-
ger the mitochondrial-apoptotic pathway (Type Ⅱ cells) 
or directly cleaves and activates downstream caspase-3 
(Type I cells) to induce apoptosis[137,138]. RIP3 can also be 
recruited to complex Ⅱ to form complex Ⅱb (also called 
the necrosome), which includes RIP1, RIP3, FADD and 
caspase-8. Activated caspase-8 cleaves RIP3 to inacti-
vate RIP3, suggesting that induction of  apoptosis can 
suppress necroptosis[139]. However, in the absence of  
caspase-8 activation, RIP1-RIP3 then activates necrop-
tosis. RIP1 and RIP3 are serine/threonine kinases, and 
their kinase activities are necessary for the formation of  
the necrosome[134,139]. Xiaodong Wang’s group recently 
discovered that mixed lineage kinase domain-like protein 
(MLKL) is a downstream target of  RIP1-RIP3, which is 
critical for TNFα-induced necroptosis[140]. They further 
identified that RIP3 also interacts with phosphoglycer-
ate mutase family member 5 (PGAM5), a mitochondrial 
phosphoglycerate mutase, which can dephosphorylate 
dynamin-related protein 1 (Drp1), a critical mitochondrial 
fission molecule. Dephosphorylated Drp1 translocates to 
mitochondria to induce mitochondrial fragmentation and 
subsequent necroptosis[141]. 

Induction of  RIP1-RIP3-mediated necroptosis seems 
to also be pathologically and physiologically relevant. 
For example, RIP1-RIP3-mediated necroptosis has 
been shown to be involved in ischemic brain injury[142], 
ischemic-reperfusion-induced myocardial injury[143], kid-
ney injury[144], pancreatitis[134], skin inflammation[145] and 
immune response against certain viral infections[134,146]. In 
addition, we and others also recently reported that RIP3 
and MLKL are important in acetaminophen-induced ne-
crosis in mouse liver[147,148].

 RIP3-mediated necroptosis has recently been shown 
to play a role in ALD[149]. Nagy and colleagues showed 
that RIP3 was induced by ethanol feeding in mouse livers. 
ALD patients had increased hepatic expression of  RIP3 
compared to control patients. Furthermore, ethanol-
induced liver injury, steatosis, and inflammation were 
decreased in RIP3 KO mice compared to control mice, 
verifying the importance of  RIP3 in mediating ethanol-
induced liver injury and progression of  ALD[149]. Since 
ethanol also induces apoptosis in hepatocytes and apop-
tosis has been found in human ALD, it is not clear how 
these two events occur during the pathogenesis of  ALD 
because apoptosis would normally suppress necrosis by 
caspase-mediated cleavage of  RIP3. It is possible that 
different cell death modes could occur in different stages 
of  ALD pathogenesis. Perhaps apoptosis occurs in early 

ALD, such as in steatosis, and necrosis occurs in later 
stages of  ALD, such as in AH. Future work is needed to 
further elucidate these possibilities. Moreover, it is also 
unclear whether RIP1 or downstream MLKL or PGAM5 
also play a role in ALD. The possible switch between 
apoptosis and necrosis may also raise some concerns 
on the current ongoing clinical trial using a pan-caspase 
inhibitor for ALD[44]. It will be interesting to see the out-
comes of  this clinical trial and how the results correlate 
with experimental animal studies. 

Zinc 
As one of  the most prevalent trace elements in the body, 
zinc plays a critical role in regulating enzyme activity, 
metabolism, signal transduction, and gene expression, 
making it an important element for maintenance of  hu-
man health[150,151]. As early as the 1950s, it was observed 
that zinc deficiency is associated with liver disease, par-
ticularly in human ALD[152]. Decreases in serum zinc 
concentrations correlate with liver damage and ALD pro-
gression[153-155], and supplementation with zinc decreases 
ethanol-induced liver injury in rodent models[156,157]. In 
addition, zinc supplementation in human ALD-induced 
cirrhosis patients improved liver function, emphasiz-
ing the importance of  maintaining proper zinc levels 
in ethanol-induced liver disease[158]. Another important 
piece of  experimental evidence supporting the role of  
zinc in ALD is that metallothionein (MT) transgenic 
mice with hepatic overexpression of  MT, a major pro-
tein regulating cellular zinc homeostasis, had elevated 
zinc levels and were resistant to ethanol-induced liver in-
jury. In contrast, MT knockout mice, which had reduced 
hepatic zinc levels, were more susceptible to alcohol 
toxicity[159,160]. Mechanistically, supplementation of  zinc 
can improve zinc-deficiency-induced gut permeability 
and improve alcoholic endotoxemia[161]. In addition, zinc 
deficiency allowed for a greater increase in liver neu-
trophil infiltration, gut permeability and up-regulation 
of  some pro-inflammatory genes after ethanol feeding 
compared to ethanol feeding alone, suggesting that zinc 
deficiency may worsen the ethanol-induced inflamma-
tory response[162]. Dietary Zinc deficiency exacerbated 
ethanol-induced liver injury and steatosis by increasing 
ethanol-induced inflammation, oxidative stress, and 
plasma leptin levels[162]. In contrast, Zinc supplementa-
tion reduced chronic ethanol-feeding induced oxidative 
stress via suppressing ethanol-induced Cyp2e1 activity 
while increasing the activity of  alcohol dehydrogenase 
in the liver[163]. Moreover, zinc supplementation reduced 
ethanol-induced apoptosis possibly through inhibiting 
ethanol-induced serum and hepatic TNFα levels and 
TNF-R1 and Fas proteins in the liver[164]. Furthermore, 
zinc supplementation enhanced liver regeneration after 
ethanol treatment likely by preserving the function of  
nuclear factor-4α (HNF-4α), a liver-enriched, zinc-finger 
transcription factor[157]. However, HNF-4α is known 
to inhibit hepatocyte proliferation and loss of  HNF-
4α promotes HCC[165]. Therefore, increased HNF-4α 
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expression during zinc-enhanced liver regeneration in 
chronic ethanol fed mice could reflect a compensatory 
effect rather than a contributory factor for liver regen-
eration. Zinc supplementation also attenuated alcohol-
induced increases in plasma triglycerides and partially 
reversed decreases in gonadal adipose depot mass, which 
was likely due to the restoration of  PPAR-α activity[156]. 
Moreover, zinc deficiency suppressed expression of  
hepatocyte growth factor (HGF), insulin-like growth 
factor Ⅰ (IGF-Ⅰ), insulin-like growth factor binding 
protein 1 (IGFBP1), MT, and cyclin D1 in cultured 
HepG2 cells[157]. It will be interesting to see whether zinc 
supplementation also affects these factors in ethanol fed 
mouse livers. Finally, Liuzzi et al[166] recently showed that 
zinc is necessary for autophagy induction after ethanol 
treatment, which has been shown to be a protective 
mechanism against ethanol-induced liver injury and ste-
atosis (see a later section for further discussion). Taken 
together, there is no doubt that zinc deficiency contrib-
utes to both experimental and human ALD pathogen-
esis, but more clinical evidence is still needed to confirm 
the beneficial effects of  zinc supplementation in attenu-
ating ALD. 

PROTECTIVE PATHWAYS IN ALD 
As discussed above, owing to the progress of  decades of  
research on ALD, the pathogenesis of  ALD and mecha-
nisms for alcohol-induced liver injury have been well 
studied[38-40]. However, cells, animals and humans may 
activate some adaptive responses against the detrimental 
effects caused by alcohol exposure. Indeed, in addition to 
the detrimental effects caused by alcohol exposure dur-
ing the pathogenesis of  ALD, emerging evidence now 
supports that alcohol exposure can also activate cellular 
protective pathways to alleviate these detrimental effects, 
including some beneficial cytokines, lipin-1, autophagy, 
and the FoxO3 transcription factor. Modulating these 
protective pathways may also offer a novel avenue for 
treating ALD.

Cytokines
In addition to inducing detrimental inflammatory cyto-
kines such as TNFα and IL-1, alcohol consumption also 
induces IL-6, IL-10 and IL-22, which may have some 
beneficial effects against ALD. IL-6 is both a pro and 
anti-inflammatory cytokine, but it has a hepatoprotective 
role in ALD by inducing signal transducer and activator 
of  transcription 3 (STAT3) activation. IL-6 induces acti-
vation of  STAT3 in ALD via binding to its IL-6 receptor 
and gp130 subunit in hepatocytes, which leads to activa-
tion of  the Janus-Kinase (JAK)-STAT3 pathway result-
ing in up-regulation of  anti-apoptosis and anti-oxidative 
stress genes along with down-regulation of  fatty acid syn-
thesis genes[39,167,168]. IL-10 is an anti-inflammatory cyto-
kine that also activates the STAT3 pathway as a protective 
mechanism by binding to its IL-101 and IL-102 recep-
tors, which results in inhibition of  pro-inflammatory cy-

tokine production and innate immunity activation[39,168-170]. 
The roles of  IL-10, IL-6, and the JAK/STAT3 pathway 
in ALD have been extensively reviewed elsewhere[39,167-170]. 
Therefore, this section will focus on the recent findings 
regarding the role of  IL-22 in protection against alcohol-
induced liver injury and steatosis. 

IL-22, previously known as IL-10-related T cell induc-
ible factor (IL-TIF)[171], is secreted by T cells (TH1, TH17, 
TH22, γδ, natural killer, and cytotoxic)[172,173] and shares 
22% amino acid sequence identity with IL-10[171]. IL-22 
initiates its signaling pathway by binding to IL-10R2 and 
IL-22R1 receptors as a heterodimer[174]. After binding IL-
22R1, the IL-22/IL-22R1 complex binds to the IL-10R2 
receptor[175-177] to initiate activation of  STAT3 via tyrosine 
phosphorylation[178]. IL-22 has also been shown to acti-
vate STAT1, STAT5, extracellular signal-related kinase 1 
and 2 (ERK1/2), c-JUN N-terminal kinase (JNK), and 
p38 to a lesser extent in some cell lines[178]. The IL-10R2 
receptor is ubiquitously expressed on many cell types, but 
the IL-22R1 receptor is mainly expressed on epithelial 
cells in skin, kidney, pancreas, small intestine, and colon. 
In addition, liver hepatocytes have been shown to express 
IL-22R1[172]. IL-22 has been shown to promote pathogen-
esis of  certain diseases such as rheumatoid arthritis[179,180] 
and psoriasis[181], but IL-22 has also been shown to be 
protective in various disease models such as T-cell medi-
ated hepatitis[182], ischemia-reperfusion[183], and ALD[46,184]. 
It was recently shown that treatment with recombinant 
IL-22 protein or injection of  IL-22 adenovirus reduced 
chronic-binge ethanol-induced liver injury and steatosis 
in mice[46]. This protection was due to STAT3 activa-
tion because IL-22 recombinant protein and adenovirus 
overexpression of  IL-22 did not protect against chronic-
binge ethanol-induced liver injury or steatosis in STAT3 
hepatocyte-specific knockout mice. Moreover, IL-22 may 
protect against steatosis by decreasing the expression of  
fatty acid transport protein (FATP)[46]. IL-22 treatment 
was also protective in an acute ethanol model where mice 
were gavaged each day for 7 d and treated with IL-22 
one hour after gavage. IL-22 treatment reduced hepato-
cyte apoptosis and steatosis after ethanol binge[184]. IL-22 
treatment in this model resulted in decreased lipid peroxi-
dation and glutathione depletion after ethanol binge. In 
addition, TNFα expression in the liver was reduced with 
IL-22 treatment, indicating that IL-22 may protect against 
ethanol-induced inflammation and injury[184]. 

IL-22 treatment was also shown to be protective 
against hepatic fibrosis. In addition to hepatocytes, Kong 
et al[185] recently showed that quiescent and activated HSCs 
express IL-10R2 and IL-22R1, and HSC IL-22R1 mRNA 
and protein expression levels increased after IL-22 treat-
ment. Similar to hepatocytes, IL-22 also induced STAT3 
activation in HSCs[185]. Deletion of  IL-22 increased fi-
brosis in a CCl4 mouse model of  fibrosis[186], and IL-22 
protected against CCl4-induced liver fibrosis by promot-
ing HSC senescence[185]. IL-22-induced HSC senescence 
required STAT3 and suppressor of  cytokine signaling 3 
(SOCS3) through p53- and p21-dependent pathways[185]. 
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Unfortunately, there is not an available model for induc-
ing significant fibrosis via alcohol treatment alone to test 
the anti-fibrogenic effects of  IL-22. Furthermore, the 
role of  IL-22 in protection against later stages of  ALD, 
such as in ALD-induced liver fibrosis and cirrhosis, is un-
known and still needs to be further investigated. 

Lipin-1 
The lipin family proteins are evolutionarily conserved 
proteins that play a critical role in regulating lipid metabo-
lism and related diseases. There are three lipin proteins 
(lipin-1, lipin-2 and lipin-3) in mammals and orthologous 
of  these lipin genes are also found in plants, inverte-
brates, and single cell eukaryotes[187,188]. The lipin1 gene 
(LPIN1) was originally discovered from the mouse strains 
BALB/cByl-fld and C3H/HeJ-fld that carry mutations in 
fatty liver dystrophy[189]. The fld mouse is deficient for lip-
in1 due to a null mutation in the LPIN1 gene, and these 
mutant mice lack normal adipose tissue depots through-
out the body and develop peripheral neuropathy[189]. 
These phenotypes suggest that lipin1-deficiency impairs 
lipid metabolism in liver, adipose tissue and peripheral 
nerves. Autosomal recessive LPIN1 mutations have also 
been identified in humans, and these people develop se-
vere rhabdomyolysis and recurrent acute myoglobinuria 
in early childhood[190,191]. The three mammalian lipins 
have very distinctive but overlapping tissue expression 
patterns. Lipin-1 is mainly expressed in adipose tissue, 
skeletal muscle, and testis and has lower expression levels 
in liver, kidney, lung, brain and heart. Lipin-2 is highly 
expressed in liver and brain, whereas lipin-3 exhibits high 
expression levels in intestine and other regions of  the 
gastrointestinal tract[188]. All three lipin proteins exhibit 
Mg2+-dependent phosphatidate phosphatase (PAP) activ-
ity that catalyzes triacylglycerol synthesis by converting 
phosphatidic acid to diacylglycerol (DAG). However, it 
appears that lipin-1 has higher PAP activity than lipin-2 
and lipin-3. In addition to regulating triglyceride synthesis, 
the mammalian lipin proteins also have a LXXIL motif  
that allows them to act as a transcriptional co-activator, 
but this transcriptional co-activator activity has only been 
convincingly demonstrated for mouse lipin-1[192]. 

Lipin-1 is a key regulator of  lipid metabolism that 
also exists in three isoforms as a consequence of  alterna-
tive splicing: lipin-1α, lipin-1β, and lipin-1γ. Lipin-1α 
is a mostly nuclear protein that is important for adipo-
genesis. Lipin-1β is mainly localized to the cytosol and 
is involved in lipogenesis. It is also the major isoform 
expressed in the liver. Lipin-1γ is mostly localized to lipid 
droplets and expressed in brain tissues[193,194]. Lipin-1 
regulates lipid metabolism via two pathways involving 
nuclear and cytosolic isoforms of  lipin-1. As discussed 
above, cytosolic lipin-1β has PAP activity and regulates 
triacylglycerol synthesis. Nuclear lipin-1α has transcrip-
tional co-activator activity and regulates genes involved 
in β-oxidation and lipid synthesis[187]. Specifically, nuclear 
lipin-1α co-activates peroxisome PPARα and PGC-1α 
and inhibits expression of  SREBP-1, which are genes 

important for lipid break down by β-oxidation and for 
lipid synthesis, respectively[192,195]. Interestingly, posttrans-
lational modification of  lipin1 seems to play a critical 
role in regulating the cellular localization of  lipin-1. In-
sulin increased the phosphorylation of  multiple sites on 
lipin-1, which was likely via downstream PI3K. Lipin-1 
was dephosphorylated in response to epinephrine or 
oleic acid. The phosphorylation status of  lipin-1 did not 
change the PAP activity of  lipin-1, but rather regulated 
the cellular location of  lipin-1, in which phosphorylated 
lipin-1 was found to translocate from cytosol to the 
microsomal fraction[196]. It is well known that the mam-
malian target of  rapamycin complex Ⅰ (mTORC1) is a 
key sensor for cellular nutrients that positively regulates 
the anabolic process including protein synthesis and lipo-
genesis. Interestingly, mTORC1 directly phosphorylates 
lipin-1, and inactivation of  mTORC1 leads to the reten-
tion of  nuclear lipin-1. Dephosphorylated nuclear lipin-1 
regulates the nuclear abundance and promoter activity of  
SREBP, which represses SREBP-dependent transcrip-
tion of  lipogenesis genes[195]. Mice deficient in mTORC1 
are resistant to hepatic steatosis induced by a high-fat 
and cholesterol diet in a lipin-1 dependent fashion[195]. In 
addition to phosphorylation, lipin-1 was found to be su-
moylated in neuronal cells, and sumoylation promotes the 
nuclear localization of  lipin-1, which appears to promote 
the transcriptional co-activator activity of  liplin-1[197].

Recent studies from Min You’s group suggest that 
lipin-1 also plays a protective role in ALD by prevent-
ing ethanol-induced steatosis and liver injury[198-200]. They 
found that ethanol significantly increased the cytosolic 
pro-lipogenic activity of  lipin-1β but decreased the 
nuclear entry of  lipin-1α by chronic ethanol exposure 
in cultured hepatocytes and in mouse liver resulting in 
excessive liver fat accumulation[200]. Interestingly, while 
ethanol consumption increased PAP activity in wild type 
mouse livers, liver-specific lipin-1-deficient mice showed 
markedly greater steatosis and liver injury as well as 
increased hepatic pro-inflammatory cytokine produc-
tion compared to pair-fed control wild type mice with a 
modified Lieber-DeCarli ethanol diet for 4 wk[200]. These 
surprising results suggest that induction of  lipin-1 by 
ethanol in wild type mice may actually serve as a protec-
tive mechanism against alcohol-induced steatosis. Alter-
natively, it would suggest that other functions of  lipin-1, 
excluding cytosolic lipin-1β form-mediated triglyceride 
synthesis, play more important roles in alcohol-induced 
steatosis. Indeed, they found that hepatic lipin-1 deficient 
mice showed impaired PGC1-α activation resulting in 
impaired hepatic fatty acid oxidation[200]. Thus, these data 
suggest that modulating the nuclear lipin-1α form might 
be a promising target to attenuate alcohol-induced steato-
sis by promoting PGC1-α activation. 

Ethanol exposure robustly induced activity of  a 
mouse lipin-1 promoter, promoted cytoplasmic localiza-
tion of  lipin-1, and caused excess lipid accumulation, 
both in cultured hepatic cells and in mouse livers[199]. 
Mechanistic studies showed that ethanol feeding reduced 
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the sumoylation levels of  lipin-1 while increasing its 
acetylation, resulting in reduced nuclear retention and 
increased cytosolic levels of  lipin-1. Ethanol-induced 
lipin-1 gene expression was inhibited by a known activa-
tor of  AMPK or overexpression of  a constitutively active 
form of  AMPK. Activation of  AMPK by 5-aminoimid-
azole-4-carboxamide ribonucleoside (AICAR) suppressed 
ethanol-mediated induction of  lipin-1 gene-expression, 
which was abolished by the overexpression of  the pro-
cessed nuclear form of  SREBP-1c. Furthermore, etha-
nol exposure significantly increased the association of  
acetylated histone H3 with the SRE-containing region 
in the promoter of  the lipin-1 gene[199]. As discussed, 
ethanol metabolism increased cellular NADH/NAD+ 
ratio resulting in the inhibition of  Sirt1 activity. Using the 
ethanol Gao-Binge model, Yin et al[198] showed that liver-
specific Sirt1 knockout mice had greater hepatic lipid 
accumulation, inflammatory cytokine production and 
liver injury than wild type mice. Ethanol-treated liver-
specific Sirt1 KO mice also had increased levels of  ER 
stress and nuclear factor of  activated T cells c4 (NFATc4) 
expression, which is an important inflammatory factor. 
Ethanol-treated liver-specific SIRT1 KO mice had de-
creased mRNA and protein levels of  SFRS10, which is 
a SR-LIKE protein family of  splicing factors that favors 
the lipin-1β isoform and is sufficient to increase expres-
sion of  lipogenic genes and induces hepatic steatosis in 
mice[198]. This decrease in SFRS10 was associated with 
an increased lipin-1β/lipin-1α ratio. Ethanol treatment 
significantly increased the lipin-1β/lipin-1α ratio in 
AML-12 cells compared to control treatment, which was 
blocked by overexpressing either Sirt1 or SFRS10. More 
importantly, AH patients were found to have decreased 
expression of  lipin-1α and had a higher lipin-1β/lipin-1α 
ratio[198]. These results indicate that targeting hepatic Sirt1 
may be a promising approach to attenuate ALD by alter-
ing the lipin-1 signaling pathway. 

Autophagy
Macroautophagy, hereafter referred to as autophagy, is an 
evolutionarily conserved process that results in degrada-
tion of  cellular proteins and organelles due to a cell’s “self-
eating” in response to starvation and other cellular stress 
conditions. Autophagy involves the formation of  double-
membrane autophagosomes, which is tightly regulated 
by the autophagy-related (Atg) genes. Two ubiquitin-like 
conjugation systems regulate autophagy induction. The 
first of  these systems includes Atg7 (E1) and Atg10 (E2), 
which promote Atg5 conjugation with Atg12. The sec-
ond involves Atg7 (E1) and Atg3 (E2), which promote 
microtubule-associated protein 1 light chain 3 (LC3) 
conjugation with phosphatidylethanolamine (PE), which 
is critical for the elongation of  pre-autophagosome struc-
tures and formation of  autophagosomes. Before its con-
jugation with PE, LC3 is a cytosolic protein (referred to 
as LC3-Ⅰ), and the LC3-PE conjugated form (referred to 
as LC3-Ⅱ) targets autophagosome membranes. The level 
of  LC3-Ⅱ has been widely used as an autophagy marker 

to monitor autophagy activation[201,202]. Autophagosomes 
then engulf  individual organelles, protein aggregates, or 
portions of  cytoplasm before fusing with lysosomes to 
form autolysosomes where the engulfed contents are de-
graded[203]. Autophagy is a protective process that can be 
either selective or non-selective. Non-selective autophagy 
occurs during starvation to break down the cell’s compo-
nents in order to provide a source of  energy and nutri-
ents. Selective autophagy occurs in either nutrient-rich or 
poor conditions as a protective mechanism by ridding the 
cell of  protein aggregates and damaged or excess organ-
elles[204,205]. 

Autophagy was originally discovered in the liver, and 
accumulating evidence has demonstrated that autophagy 
plays a critical role in regulating liver physiology and 
pathogenesis of  various liver diseases[206-208]. Our lab and 
others have recently demonstrated that alcohol con-
sumption may activate autophagy to selectively remove 
excess lipid droplets and damaged mitochondria and in 
turn attenuate alcohol-induced steatosis and liver injury 
in mice[209-213]. However, there has also been evidence 
to suggest that alcohol consumption may also suppress 
autophagy, particularly in chronic alcohol consumption 
conditions[214,215]. Several possibilities could explain these 
discrepancies, including animal models used to assess 
ALD, assays used to determine autophagy and the limi-
tation of  steady-state assessment of  autophagy using 
one single time point in vivo. For example, it is now well 
known that use of  LC3-Ⅱ levels to monitor autophagy is 
troublesome because LC3-Ⅱ itself  is degraded in the au-
tolysosomes during autophagy. For this reason, autopha-
gic flux assays (assessing LC3-Ⅱ levels with and without 
a lysosomal inhibitor) are now mandatory for assessing 
autophagy[201], and autophagy flux was not always evalu-
ated when determining the effect of  ethanol on autopha-
gy. Autophagy is also a dynamic process, and autophagic 
activity can fluctuate during experimental conditions over 
time[216]. Moreover, autophagy activity can be influenced 
by circadian rhythm[217]. Therefore, special attention 
should be paid to experimental conditions when evaluat-
ing the effect of  alcohol on autophagy. 

Using an acute ethanol gavage model (33% v/v, 4.5 
g/kg), we first demonstrated that ethanol treatment in-
creased autophagosome numbers by electron microscopy, 
assessment of  GFP-LC3 positive autophagosomes by 
confocal microscopy and detection of  LC3-Ⅱ protein 
levels by Western blot analysis in vivo and in vitro[211]. In-
triguingly, we further demonstrated that acute ethanol-
induced autophagy seemed to selectively remove dam-
aged mitochondria and excess lipid droplets, but not 
long-lived proteins[213]. The induction of  autophagy was 
mediated by ethanol-induced production of  ROS and in-
hibition of  mTOR, and induction of  autophagy required 
ethanol metabolism. In addition to liver, acute ethanol 
treatment also increased autophagy in mouse myocardial 
cells and in the developing brain through inhibition of  
mTOR[218,219]. While autophagy was found to serve as 
a protective role against ethanol-induced neurotoxicity 
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similar to the liver, it might contribute to ethanol-induced 
myocardial dysfunction[218,219]. 

In line with our findings, some recent studies also 
found that chronic ethanol treatment increased autopha-
gosome content and autophagic flux in mouse livers 
and cultured hepatocytes[212,215]. Otsuki’s group recently 
showed that autophagy was protective in chronic ethanol 
treated rats fed the Lieber-DeCarli ethanol diet for 10 
wk. This group noticed an induction of  autophagosomes 
engulfing damaged mitochondria or lipids in addition 
to several lysosomes containing degraded organelles in 
ethanol-treated rats compared to control rats by electron 
microscopy. Interestingly, they found several autophago-
somes that contained both mitochondria and lipid drop-
lets, which suggest that these degradative pathways may 
be linked. They also saw an induction of  LC3-Ⅱ puncta 
and an increase in autophagosome-lysosome fusion after 
ethanol treatment compared to controls[220]. However, this 
study lacked an autophagy flux assay, so whether the ac-
cumulation of  autophagosomes was due to the induction 
of  autophagy by ethanol treatment was not known. Lin et 
al[212] also showed that chronic ethanol consumption ac-
tivated autophagy using mice fed the Lieber-DeCarli diet 
for 4 wk. They showed that autophagy was activated in 
the chronic feeding model using an autophagy flux assay, 
where co-treatment with CQ and ethanol diet increased 
GFP-LC3 puncta and protein levels more than ethanol-
treatment alone. However, they only treated mice with 
the ethanol diet for 4 wk, so the role of  ethanol feeding 
for a longer period of  time on autophagy should be more 
critically evaluated. 

In contrast to the evidence supporting acute and 
chronic ethanol induction of  autophagy, some other 
studies suggest that ethanol may suppress autophagy in 
liver and pancreas[214,221,222]. It is well known that chronic 
alcohol consumption can cause hepatomegaly and pro-
tein accumulation[214,223], which would suggest impaired 
autophagy in this chronic alcohol exposure scenario. 
However, it should be noted that alcohol consumption 
has been shown to inhibit hepatic proteasome activity, 
another important cellular catabolic pathway in addi-
tion to autophagy[210,224,225]. Moreover, there is crosstalk 
between the proteasome and autophagy, and proteasome 
inhibition can increase autophagy as a compensatory 
mechanism[226-228]. Therefore, chronic alcohol consump-
tion-induced accumulation of  hepatic proteins and hepa-
tomegaly could be due to multiple factors and might not 
be due simply to impaired autophagy. While Cederbaum’
s group recently reported that acute ethanol inhibited au-
tophagy, their observations were only based on the obser-
vations that ethanol treatment decreased LC3-Ⅱ protein 
and LC3 positive puncta levels, and an autophagy flux as-
say was not implemented[221,229]. In addition, the previously 
discussed effects of  circadian rhythm and dynamic nature 
of  autophagy will make it technically challenging to deter-
mine autophagic flux in a chronic ethanol consumption 
scenario. Despite the controversy on the autophagy status 
of  acute versus chronic alcohol exposure conditions, all 

studies unanimously demonstrated a beneficial role for 
autophagy in protecting against alcohol-induced steatosis 
and hepatotoxicity. Therefore pharmacological induction 
of  autophagy may be a promising approach for treating 
ALD. 

In addition to hepatocytes, there are many other 
cell types such as HSCs and macrophages in the liver 
that may also play a role in the pathogenesis of  ALD. 
Emerging evidence indicates that autophagy in other cell 
types in the liver may also be critical in liver physiology 
and pathogenesis. HSCs are one of  the key factors in 
regulating hepatic fibrosis, and recent evidence suggests 
that autophagy in HSCs promotes liver fibrosis likely by 
providing free fatty acids as an energy source for HSCs 
activation through lipophagy[230]. Cre-induced specific 
deletion of  Atg7 in HSCs attenuated CCl4-induced fi-
brosis in vivo[230]. The decreased fibrogenic capacity of  
HSCs by inhibiting autophagy was also confirmed in vitro 
using primary cultured HSCs and immortalized HSC cell 
lines[230,231]. Interestingly, a study from Friedman’s group 
also recently showed that autophagy was activated in 
HSCs in an 8-wk chronic ethanol feeding model in rats. 
They showed that ER stress was induced in HSCs iso-
lated from ethanol-fed rats, and that this ER stress fur-
ther induced autophagy activation and subsequent HSC 
activation[232]. These results imply that chronic ethanol-
induced autophagy in HSCs may promote fibrosis during 
the pathogenesis of  ALD. In contrast to HSCs, specific 
deletion of  autophagy in macrophages was also reported 
to exacerbate CCl4-induced fibrosis in mouse livers by 
promoting HSC activation through enhanced secre-
tion of  inflammatory cytokines from macrophages[233]. 
Moreover, we also found that hepatocyte-specific Atg5 
knockout mice had severe liver injury, and these mice 
develop fibrosis (Ni et al unpublished observations). 
While it will be technically difficult to pharmacologically 
target autophagy in a specific cell type in the liver, rapa-
mycin, an autophagy inducer, showed beneficial effects 
against CCl4- or bile duct ligation-induced fibrosis in rat 
livers[234,235]. It will be interesting to determine the au-
tophagy status in different cell types after rapamycin and 
CCl4 treatment in mouse livers in the future. As discussed 
above, because of  a lack of  proper animal models to 
study fibrosis in ALD, it is not yet clear how modulating 
autophagy would affect fibrosis in ALD pathogenesis. 

FoxO3
FoxO3 is a member of  the Forkhead box-containing 
protein, class O (FoxO) family of  DAF-16 like transcrip-
tion factors, which is ubiquitously expressed and evolu-
tionarily conserved[236-238]. There are four FoxO proteins 
in mammals: FoxO1, FoxO3, FoxO4 and FoxO6[237]. 
FoxO1, FoxO3 and FoxO4 are ubiquitously expressed 
in most tissues whereas FoxO6 is mainly expressed in 
neurons[237,238]. The activities of  FoxO family proteins are 
mainly regulated by multiple post-translational modifica-
tions, including phosphorylation, acetylation, methylation 
and ubiquitination[236,238]. FoxO3 has recently been shown 
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to play an important role in protection against alcohol-
induced steatosis and liver injury via induction of  autoph-
agy and antioxidant gene expression, which is further 
discussed below. 

Accumulating evidence now supports that FoxO fam-
ily proteins can regulate autophagy by at least three dis-
tinctive mechanisms: direct transcriptional up-regulation 
of  autophagy-related genes[239,240], modulation of  intracel-
lular glutamine levels[241] and direct interaction with Atg7 
independent of  transcription activity[242]. It was first re-
ported that FoxO3 controls the transcription of  autoph-
agy-related genes, including LC3, Atg12, Beclin 1, ULK2 
and Bnip3, to promote autophagy in skeletal muscle in 
mice and cultured C2C12 myotubes[239,240]. Subsequently, 
it was found that FoxO1 and FoxO3 are also required 
to regulate the expression of  autophagy-related genes as 
well as antioxidant genes in protection against ischemia/
reperfusion-induced cardiomyocyte injury in mice[243]. In 
the liver, FoxO1 was found to directly regulate expression 
of  Atg14 and in turn regulate hepatic autophagy to con-
trol hepatic lipid homeostasis likely via promoting lipo-
phagy[244]. In addition to directly regulating expression of  

autophagy-related genes, activation of  FoxO also up-reg-
ulates the expression of  glutamine synthetase resulting in 
increased production of  glutamine. Increased glutamine 
inhibits mTOR activity, likely via suppressing transloca-
tion of  mTOR to the lysosomal membrane, to trigger 
autophagy for cell survival[241]. In response to oxidative 
stress or serum starvation, FoxO1 was acetylated by dis-
sociation from SIRT2, a cytosolic deacetylase. Acetylated 
FoxO1 then bound to Atg7 to promote autophagy in 
several cancer cell lines, although it was not clear how the 
interaction of  FoxO1 and Atg7 promoted autophagy[242].

Recent studies from our lab and others suggest that 
FoxO3 plays a role against alcohol-induced steatosis 
and hepatotoxicity[245-247]. Using an acute ethanol binge 
model, we recently demonstrated that ethanol treatment 
increased the expression of  autophagy-related genes in 
mouse liver and in primary cultured mouse and human 
hepatocytes. More importantly, hepatic nuclear accumu-
lation of  FoxO3 was increased in ethanol-treated mouse 
livers and primary cultured mouse hepatocytes, which 
was due to decreased Akt-mediated FoxO3 phosphory-
lation at Ser253. Activating SIRT1 by resveratrol caused 
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deacetylation of  FoxO3, which increased ethanol-in-
duced expression of  autophagy-related genes compared 
to cells only treated with ethanol. More importantly, 
FoxO3 knockout mice had decreased expression of  
autophagy-related genes and had increased steatosis and 
liver injury compared to wild type mice after acute etha-
nol treatment. These results support a protective role 
of  FoxO3-mediated autophagy against alcohol hepa-
totoxicity[245]. In contrast, it was reported that ethanol 
inhibited expression of  several autophagy-related genes 
by promoting cytosolic FoxO3 translocation, which was 
reversed by globular adiponectin[248]. However, HepG2, 
a human hepatoma cell line, was used in this study. The 
cancerous origin and the lack of  alcohol metabolism 
enzymes in HepG2 cells may explain the contradictory 
observations. Recent studies from Dr. Weinman’s group 
also support a protective role of  FoxO3 in HCV and 
alcohol-induced liver injury model. Consistent with find-
ings from the acute alcohol model, FoxO3 knockout 
mice fed the Lieber-DeCarli alcohol diet for 3 wk devel-
oped more severe steatosis, inflammation and liver injury 
compared to wild type mice. Intriguingly, in cultured 
Huh7 cells, a human hepatoma cell line that expresses al-
cohol dehydrogenase, combined treatment with ethanol 
and HCV decreased FoxO3 nuclear retention and tran-
scriptional activity, but either ethanol or HCV infection 
alone increased FoxO3 transcriptional activity in HuH7 
cells[246,247]. Using a capillary isoelectric focusing (IEF) 
approach, they were able to identify several patterns of  
FoxO3 posttranslational modifications to dissect the dif-

ferential roles of  ethanol, HCV and their combination 
on FoxO3 activity. A novel JNK phosphorylation site at 
Ser574 on FoxO3 was induced by HCV, which promoted 
FoxO3 nuclear retention and transcriptional activity. In 
contrast, ethanol treatment inhibited arginine-methyla-
tion of  FOXO3, which increased FoxO3 nuclear export 
and degradation of  the JNK phosphorylated form. 
Consequently, HCV and ethanol co-treatment decreased 
FoxO3-mediated expression of  superoxide dismutase 
2, which may subsequently exacerbate HCV-alcohol-
induced liver injury[246,247]. While more studies are defi-
nitely needed to determine whether other FoxO family 
proteins are also involved in alcohol-induced liver injury, 
these results support a protective role of  FoxO3 against 
alcohol-induced hepatotoxicity in the normal liver by 
promoting the expression of  autophagy-related genes 
and antioxidant genes. The possible role of  FoxO3 and 
its regulation in ALD is summarized in Figure 2. 

CONCLUSION
ALD is a major health problem in the United States and 
worldwide, which claims millions of  lives each year. Dur-
ing the past decades, significant progress has been made 
to understand the key events and molecular players for 
the onset and progression of  ALD as discussed previ-
ously. Unfortunately there are no successful treatments 
available for treating ALD; therefore, development of  
novel pathophysiological-targeted therapies is urgently 
needed. Recent evidence showed that alcohol consump-
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tion induces various detrimental effects including changes 
in miRNA expression, a decrease in SAM/SAH ratio, an 
increase in cytosolic lipin-1β expression, induction of  
IRF3-mediated apoptosis and RIP3-mediated necrosis, 
and decreases in hepcidin and zinc levels. Meanwhile, it 
was also shown that alcohol can activate several adaptive 
protective responses to attenuate alcohol-induced liver 
pathogenesis including FoxO3, IL-22, autophagy and 
nuclear lipin-1α. The role of  osteopontin in ALD is still 
controversial, but it seems that milk osteopontin protects 
against ALD (Figure 3). Several clinical trials funded 
by the NIAAA are ongoing to target these detrimental 
effects induced by alcohol consumption including use 
of  the antibiotics rifaximin and norfloxacin to decrease 
plasma endotoxin, IL-1 receptor antagonist anakinra to 
inhibit hepatic recruitment of  inflammatory cells, pan-
caspase inhibitor emricasan to block caspase-mediated 
apoptosis and sterile inflammation as well as farnesoid 
X receptor agonist obeticholic acid to improve bile acid 
metabolism in AH[44]. Development of  new approaches 
to target the discussed protective mechanisms induced by 
alcohol consumption, such as FoxO3 and IL-22, is much 
anticipated. Indeed, the use of  IL-22 for treating AH 
has recently been proposed and might be in clinical trials 
shortly[44]. In addition, development of  new animal mod-
els that accurately represent human ALD pathogenesis 
is needed because current animal models of  alcoholic-
liver disease do not result in progression beyond mild 
liver injury and steatosis, which makes studying ALD 
pathogenesis and development of  novel therapeutics 
challenging. In summary, it is clear that the knowledge we 
have gained from experimental alcohol animal models 
concerning detrimental and protective effects in the liver 
induced by alcohol consumption will lead to advances in 
treatment of  ALD, but better animal models are needed 
for expanding our understanding of  ALD pathogenesis 
and for development of  novel therapeutics.
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