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Abstract
Ferroptosis is an emerging novel form of non-apoptotic, regulated cell death that 
is heavily dependent on iron and characterized by rupture in plasma membrane. 
Ferroptosis is distinct from other regulated cell death modalities at the bioche-
mical, morphological, and molecular levels. The ferroptotic signature includes 
high membrane density, cytoplasmic swelling, condensed mitochondrial 
membrane, and outer mitochondrial rupture with associated features of accumu-
lation of reactive oxygen species and lipid peroxidation. The selenoenzyme 
glutathione peroxidase 4, a key regulator of ferroptosis, greatly reduces the lipid 
overload and protects the cell membrane against oxidative damage. Ferroptosis 
exerts a momentous role in regulating cancer signaling pathways and serves as a 
therapeutic target in cancers. Dysregulated ferroptosis orchestrates gastro-
intestinal (GI) cancer signaling pathways leading to GI tumors such as colonic 
cancer, pancreatic cancer, and hepatocellular carcinoma. Crosstalk exists between 
ferroptosis and other cell death modalities. While apoptosis and autophagy play a 
detrimental role in tumor progression, depending upon the factors associated 
with tumor microenvironment, ferroptosis plays a decisive role in either 
promoting tumor growth or suppressing it. Several transcription factors, such as 
TP53, activating transcription factors 3 and 4, are involved in influencing 
ferroptosis. Importantly, several molecular mediators of ferroptosis, such as p53, 
nuclear factor erythroid 2–related factor 2/heme oxygenase-1, hypoxia inducible 
factor 1, and sirtuins, coordinate with ferroptosis in GI cancers. In this review, we 
elaborated on key molecular mechanisms of ferroptosis and the signaling 
pathways that connect ferroptosis to GI tumors.

Key Words: Ferroptosis; Gastrointestinal cancers; Nuclear factor erythroid 2–related factor 
2; Apoptosis; Autophagy
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Core Tip: Gastrointestinal tumors contribute to the majority of cancer-related deaths. Ferroptosis is a novel 
form of non-apoptotic cell death that plays a vital role in reducing the invasiveness and metastasis of 
gastrointestinal tumors. Herein, we discussed the regulatory mechanisms involved in ferroptosis through 
the hallmark pathways of glutathione peroxidase 4, iron metabolism, lipid peroxidation, and redox 
signaling that provide a novel therapeutic approach for gastrointestinal cancers.

Citation: Rabitha R, Shivani S, Showket Y, Sudhandiran G. Ferroptosis regulates key signaling pathways in 
gastrointestinal tumors: Underlying mechanisms and therapeutic strategies. World J Gastroenterol 2023; 29(16): 
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URL: https://www.wjgnet.com/1007-9327/full/v29/i16/2433.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i16.2433

INTRODUCTION
Cancer is a notorious disease that causes numerous disorders and deaths worldwide, particularly 
gastrointestinal (GI) cancers comprising esophageal cancer, gastric cancer (GC), liver cancer, pancreatic 
cancer, and colorectal cancer[1]. A recent report stated that there are approximately 4 million new cases 
each year, which is far greater than breast and lung cancers combined; thus, there is a need to improve 
the therapeutics of GI cancers[2]. Although there has been an improvement in the prognosis of GI 
cancers in the last decade due to development of intensive therapies, such as incorporating cytotoxic 
drugs and targeted therapies, GI cancers are one of the leading causes of cancer deaths in developed 
and developing countries[3-5]. With varying risk factors, incidence, prevalence and prognosis, early 
diagnosis with increased screening may facilitate therapies to fight against GI cancers.

Biomarkers, including epigenetic markers, also play an effective role in decreasing the progression of 
GI cancers by early diagnosis and decreasing risk assessment by predicting the tumor response from 
specific therapies in patients[6]. Apart from internal stimulation, external exposures, such as dietary 
intake, tobacco use, alcohol consumption, obesity, and pathogens, are considered to increase the risk of 
GI tumors[7]. Various improvements in the therapeutic aspects to decrease the burden of GI cancer, 
including the chemoprevention of these cancers by using antioxidants, have drawn much attention[8]. 
Murphy et al[9] estimated that by 2025, the pervasiveness of obesity will be increased in men and 
women by 18% and 21%, respectively, which could escalate the encumbrance of GI cancers worldwide
[9].

The induction of cell death by ferroptosis has increased in the recent past. Cell death is an 
endogenous mechanism that regulates homeostasis, and it is perceived as a requisite bodily process. As 
an imperative system, it exterminates useless or unwanted cells and bolsters the defense system of the 
body. Many forms of cell death have been observed in the recent past, particularly accidental cell death 
and regulated cell death (RCD)[10,11]. Accidental cell death occurs suddenly in response to stress, heat 
shock, or mechanical nature, while RCD is orchestrated by exhibiting a precise signaling cascade 
provided by a defined group of effector molecules. Many forms of RCD have been observed, such as 
apoptotic, autophagic, pyroptotic, necrotic, entotic, and ferroptotic cell death[12].

Investigating RCD introduces a new path for developing cancer therapeutics. Among the various 
forms of RCD, ferroptosis, an iron dependent, non-apoptotic RCD, is fascinating because of its ability to 
manage cancer cells that develop resistance to apoptosis and drugs. Although a link between iron and 
lipid peroxidation has been found in cancer research, this form of RCD has a peculiar combination of 
morphological, biochemical, and genetic characteristics distinct from necrosis, apoptosis, and autophagy
[13]. Dixon et al[14] proposed the term ferroptosis in 2012, and its emerging role in several other disease 
settings was observed[14]. Ferroptotic cell death is characterized by the occurrence of oxidative stress 
and membrane lipid peroxidation, thereby causing mitochondrial atrophy, increased density of the 
mitochondrial membrane, and membrane damage[15]. Therefore, this review summarizes the role of 
ferroptosis in regulating key cancer signaling and cell death pathways in GI tumors for better prognosis.

GASTROINTESTINAL CANCERS: INCIDENCE AND MORTALITY
GI cancers contribute to significant morbidity and mortality rates worldwide[16] (Table 1), accounting 
for 26% of all cancer-related incidence and 35% of all cancer-related fatalities. It was noted that there is a 
two-fold increase in men compared to women. It has been reported that by 2040, there will be an 
increase in new cases and deaths from GI cancers by 58% and 73% to 7.5 million and 5.6 million, 
respectively[17]. Incidence and mortality rates of GI cancers worldwide is presented in Table 1[18-22].

https://www.wjgnet.com/1007-9327/full/v29/i16/2433.htm
https://dx.doi.org/10.3748/wjg.v29.i16.2433
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Table 1 Incidence and mortality rates of gastrointestinal cancers worldwide

No Gastrointestinal cancers Incidence Mortality Ref.

1 Esophageal cancer 604100 544100 [18]

2 Gastric cancer 1100000 770000 [19]

3 Liver cancer 905700 830200 [20]

4 Pancreatic cancer 495773 466003 [21]

5 Colorectal cancer 1930000 900000 [22]

While cell death modalities play a decisive role in eradication of tumor cells and maintenance of 
homeostasis, the role of RCD pathways, particularly ferroptosis, in tumor progression and metastasis of 
cancers has been the subject of interest for the last decade.

DISTINCTIVE FEATURES OF FERROPTOSIS
The various features of ferroptosis include the morphological, biochemical, and epigenetic alterations 
that describe this novel form of cell death.

Morphological distortion of ferroptosis
Ferroptosis is a non-apoptotic form of cell death because it lacks the classical features of apoptosis, such 
as mitochondrial cytochrome-C release, caspase activation, and chromatin fragmentation[23]. In 
contrast, ferroptosis induces mitochondrial membrane disintegration, which results in cell enlargement, 
plasma membrane rupture, volume reduction, increased density, and disappearance of cristae observed 
under the electron microscope. These changes are potentially caused by permeability loss due to 
increased lipid peroxidation[24].

Biochemical changes involved in ferroptosis
The main biochemical features of ferroptosis are iron accumulation, reactive oxygen species (ROS) 
production, and induction of lipid peroxidation. Iron is the most abundant metal and is essential to all 
life on earth. As an iron-dependent form of cell death, increased circulating iron leads to the Fenton 
reaction through activated iron-containing enzymes that act as biochemical markers of ferroptosis[25]. 
Intracellular iron and iron-containing enzymes are indispensable for the execution of ferroptosis. 
Molecular regulators associated with iron homeostasis, such as transferrin, lactotransferrin, transferrin 
receptor, nuclear receptor coactivator 4-dependent degradation of ferritin, iron regulatory protein, and 
iron responsive element regulatory network, facilitate ferroptotic cell death[26,27].

ROS are the major culprits in many disease settings. ROS can damage essential biomolecules such as 
DNA, protein, carbohydrates, and lipids, thereby causing denaturation, peptide s-s bond breaking, 
crosslinking, enzyme inhibition, and permeability changes in tissues and cells. Therefore, increased ROS 
promote several perturbances leading to altered cell death pathways as well as induction of ferroptosis
[28].

Lipid peroxidation is a seminal process in which the generated free radicals (H2O2, super peroxides, 
peroxy radicals) target long-chain fatty acids[29]. Extensive lipid peroxidation affects the permeability, 
fluidity, and curvature of the membrane, thereby stimulating cell death by forming micelles and pores 
in the biological membrane. A close connection between lipid peroxidation and ferroptosis exists in 
cancers. Importantly, to overcome drug resistance in chemotherapy, ferroptosis plays a crucial role in 
tumor microenvironment, thereby controlling cell proliferation through redox signaling pathways[30].

Epigenetic alterations
Epigenetics is a genetic mechanism that can influence gene expression by DNA methylation, histone 
modifications, and the effects of noncoding RNA without altering the DNA sequence[31,32]. DNA 
methylation is an epigenetic modification process that uses DNA methyltransferases to covalently 
transfer the methyl group to the C-5 position in the cytosine ring of DNA[33]. It has been reported that 
hypermethylation of the CDH1 gene promoter could increase ferroptosis susceptibility in head and neck 
cancer cells[34]. Recently, epigenetic regulation through H2B monoubiquitination and p53 has been 
determined[35].

Histone acetylation is controlled by histone acetyltransferases, bromodomains (BRDs), and histone 
deacetylases (HDACs) to regulate ferroptosis. In the histone acetylation process, histone acetyltrans-
ferases play the writer role, BRDs the reader role, and HDACs the eraser role[36,37]. The tumor 
suppressive role of Tp53 is well known. For p53-induced ferroptosis, acetylation plays a crucial role by 
regulating solute carrier family 7 member 11 (SLC7A11) expression[38]. Acetylated and mutant p533KR 
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suppresses SLC7A11 expression and inhibits cysteine uptake, which alleviates ferroptosis and lipid 
peroxidation by decreasing glutathione (GSH) synthesis[38,39]. BRD4 induces the expression of anti-
ferroptotic genes, and it has been observed that the BRD4 inhibitor JQ1 induces ferroptosis by downreg-
ulating the expression of ferroptosis-related genes such as glutathione peroxidase 4 (GPX4), SLC7A11, 
and solute carrier family 3 member 2 in breast and lung cancer cells[40]. HDACs were initially identified 
as an eraser for removing acetyl groups from histones, but it was later discovered to be involved in 
many important biological functions. Recently, HDAC inhibitors have been endorsed as potential 
therapeutics for various cancers[41].

As a multifarious group of noncoding transcripts, noncoding RNAs, microRNAs (miRNAs), long 
noncoding RNAs (lncRNAs), and circular RNAs were first considered nonfunctional junk, but they 
participate in a broad domain of gene-regulatory pathways[42]. Beyond this, it has been suggested that 
circular RNAs play a role in ferroptosis by regulating multiple signaling pathways either directly or 
indirectly by acting on the key regulating factors and upstream targets of ferroptosis[43]. miRNAs tend 
to act as stimulants in ferroptosis by targeting ferroptosis-associated factors by downregulating the 
expression of activating transcription factor 4 (ATF4), which is a stress signal that tends to inhibit 
ferroptosis by miR-214-3p in hepatocellular carcinoma (HCC) by inducing SLC7A11 and several other 
miRNAs, including miR-101-3p, at high expression levels. They profoundly enhance the activity of 
nuclear factor kappa B, which regulates ferroptosis via GPX4 and prostaglandin endoperoxide synthase 
2 in lung cancer, and miR-324-3p at high expression levels induces ferroptosis in lung adenocarcinoma 
by targeting GPX4[44]. Furthermore, miRNAs have also been found to have inhibitory effects on 
ferroptosis; therefore, they play diverse roles in ferroptosis. The alterations they cause to ferroptosis-
associated factors make them a potential target in cancer therapeutics.

FERROPTOSIS INDUCERS
Over the past few years, several small molecules and plant-based compounds that target transporters or 
enzymes involved in ferroptosis have been described.

In principle, GSH synthesis and GPX4, a selenoenzyme, are the major regulators of ferroptosis. GSH 
is an important substrate for GPX4. Therefore, any depletion in GSH leads to substantial lipid 
peroxidation, leading to ferroptosis. By inhibiting GPX4, accumulation of lipid peroxidation takes place
[45]. To produce GSH, system Xcˉ regulated cysteine activity is needed. Certain compounds, such as 
sorafenib, glutamate, and erastin, induce ferroptosis through inhibition of system Xcˉ. Ras-selective 
lethal 3 (RSL3), a known GPX4 inhibitor and other compounds containing electrophilic chloroacet-
amides, covalently binds and restricts selenocysteine activity inside the active site of GPX4 to initiate 
ferroptosis[46]. Other nitrile oxide electrophiles include ML210, JKE-1674, and JKE-1716, which attach to 
selenocysteine and cause ferroptosis[46,47]. By directly oxidizing lipids and indirectly impairing GPX4 
action, FINO2 causes ferroptosis, and FIN56 drives the destruction of GPX4 to induce ferroptosis[48]. To 
induce ferroptosis, FINO2 harnesses either a direct or indirect iron oxide to induce suppression of GPX4 
activity. Organic peroxides are compounds with multiple O2 bonds that are cleaved, resulting in the 
production of RO anions. These organic peroxides are often used as models to induce ROS. A 
commonly held view is that the lipid peroxide analogue tert-butyl hydroperoxide stimulates lipid 
peroxidation-dependent ferroptosis[49].

Excessive iron accumulation is a precursor of ferroptosis in a plethora of cell types. In vitro, 
hemoglobin causes ferroptosis, and in vivo, it causes intracerebral hemorrhage in other disease states[50-
52]. Furthermore, the rise in cellular iron levels and consequent ferroptosis caused by pharmacological 
stimulation of selective autophagy through degradation of ferritin is known as ferritinophagy[53,54]. 
Apart from these, there are many other ferroptotic inducers; for example, in human pancreatic cancer 
cells, zalcitabine causes autophagy-dependent ferroptosis, pointing to a link between DNA sensor 
pathways, autophagy activation, and mitochondrial malfunction[55].

FERROPTOSIS INHIBITORS
The inhibition of ferroptosis by small molecular compounds takes place through the following 
mediators.

Iron chelators: The important role of iron is to promote lipid peroxidation by either activating iron-
containing lipid oxygenases (LOX) or nonenzymatic iron-mediated Fenton action[56-58]. Iron chelators 
like deferoxamine inhibit ferroptotic cell death. Iron chelators reduce H2O2-induced necrosis but not 
ferrostatin-1, suggesting that iron may be potentially involved in multiple cell death modalities[59,60].

Enzyme inhibitors: The enzyme inhibitor acyl-CoA synthetase long chain family member 4 (ACSL4) 
mediates addition of CoA to long-chain fatty acids, particularly arachidonic acid, and appears to be a 
crucial precursor to further arachidonate lipoxygenase-dependent lipid peroxidation[57]. ACSL4 and 
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arachidonate lipoxygenase inhibitors are known to inhibit the ferroptotic cell death process by 
preventing LOX accumulation[57,61]. In addition, NAD phosphate oxidase inhibitors comprising of 
diphenylene iodonium and GKT137831 prevent erastin-induced ferroptosis[62].

Protein degradation inhibitors: GPX4 may be degraded by a variety of ferroptosis activators, which 
results in lipid peroxidation. However, FIN56 and erastin-induced GPX4 breakdown is inhibited by the 
molecular chaperone heat shock protein 90, 5-(tetradecyloxy)-2-furoic acid, and dopamine[63-65].

Other inhibitors: The mitogen-activated protein kinase kinase inhibitor, U0162 is commonly used to 
reduce ferroptosis owing to its broad antioxidant activity[66]. The strong inhibitory effects of exogenous 
monounsaturated fatty acids (MUFAs) or deuterated polyunsaturated fatty acids (PUFAs) on 
ferroptosis may be attributed to their displacement of PUFAs from phospholipids, which lowers the 
accumulation of lipid peroxidation[67].

REGULATION OF FERROPTOSIS
A deeper knowledge of how ferroptosis is regulated by metabolic pathways, including iron, GSH, and 
lipid metabolism, has been the focus of research in proposing therapeutic drugs. In this context, several 
metabolic and cancer signaling pathways that connect ferroptosis have been described.

GPX4
Ferroptosis is primarily caused by the inactivation of the cellular antioxidant system, particularly the 
system that is dependent on the antioxidant defense Xcˉ GSH-GPX4 that leads to toxic lipid ROS 
accumulation[68]. GSH peroxidases are pivotal enzymes that enable the reduction of peroxides via GSH. 
The system Xcˉ family mediates transport of cysteine and glutamate, where glutamate is exported 
outside the cell and cysteine is imported inside the cell, which initiates the production of GSH, hence 
inhibiting ferroptosis in cancer cells[69] (Figure 1). The GPX protein comprises different types, among 
which GPX4, a selenoprotein, is an elemental antioxidant mediator known for its capability of reducing 
large peroxides such as PUFAs[68]. It is primarily involved in the maintenance of lipid metabolism and 
defense against the accumulation of toxic lipid ROS. Since GPX4 activity is directly impacted by 
conditions that reduce intracellular cysteine and subsequently GSH levels and because GSH is the 
dominant antioxidant in mammalian cells, these conditions trigger ferroptosis[70]. Small molecules such 
as erastin can block GSH or GPX4 expression to activate ferroptosis. In many cells, the rate at which 
GSH is synthesized is limited by the internal reduction of cystine to cysteine[71].

Lipid metabolism
The process in which free radicals and non-free radicals cleave the C-C double bonds in lipids such as 
PUFAs, phospholipids, glycolipids, and cholesterol is known as lipid peroxidation.

According to lipidomic research, arachidonic acid and adrenic acid are key driving factors in 
inducing ferroptosis. Elongation of very long-chain fatty acid protein 5 and fatty acid desaturase 1 are 
associated with the synthesis of fatty acids, where both enzymes are upregulated in mesenchymal GC 
cells, resulting in ferroptosis sensitivity, according to studies on the disease[72]. The process by which 
these PUFAs become coenzyme-A derivatives that are integrated into phospholipids triggers 
ferroptosis. Both autophagy and deubiquitylation can result in the reduction of intracellular GPX4[73]. 
Specialized sequences in GPX4 are distinctly recognized by heat shock protein 90 and facilitate the 
breakdown of GPX4 by chaperone-mediated autophagy[63]. On the other hand, the inhibition of 
chaperone-mediated autophagy by the mTOR pathway is relieved by its suppression, which may have 
caused GPX4 to degrade and cause ferroptosis[74].

Numerous investigations have revealed ACSL4 as a crucial sensitizer in ferroptosis machinery. 
ACSL4 mediates the esterification of PUFAs into phospholipids by adding CoA to the polyunsaturated 
bond of arachidonic acid[75] (Figure 1). Lysophosphatidylcholine acyltransferase 3, which is activated 
by ACSL4, contributes to ferroptotic lipid signaling by adding acyl groups to lysophospholipids, partic-
ularly to the phospholipids phosphatidylcholine and phosphatidylethanolamine[75]. Apart from 
PUFAs, MUFAs can promote ferroptosis resistance by initiating mutations in the PI3K-AKT-mTOR 
pathways, sterol regulatory element-binding protein 1 can mediate the production of MUFAs, which 
aids cancer cells in resisting ferroptosis[76]. MUFAs can modulate the hydroxycarboxylic acid receptor 
1-sterol regulatory element-binding protein 1-stearyl-coenzyme A desaturase 1 pathway and lactate in 
the tumor microenvironment, which might increase the production of MUFAs and lower the expression 
of ACSL4 to avoid ferroptosis[77]. As functional lipids in ferroptosis, polyunsaturated ether 
phospholipids have a significant regulatory effect in changing cancer cells from a ferroptosis-sensitive 
state to a ferroptosis-resistant state[78]. Thus, lipid metabolism has a notable effect on the capability of 
cancer cells to induce ferroptosis.
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Figure 1 Mechanistic insights of ferroptosis regulated pathways are represented. Glutathione peroxidase 4 (GPX4) is central in ferroptosis and works 
through the initiation of system Xcˉ, which mediates the export of glutamate and import of cystine. Cystine is required for the synthesis of glutathione (GSH). p53 
induces the expression of p21 following oxidative stress and further induces GSH leading to GPX4 expression. Alternatively, p53 increases the expression of 
spermidine/spermine N1-acetyltransferase 1 (SAT1), which serves as the transcriptional target of p53. SAT1 joins ferroptotic pathway through induction of 
arachidonate lipoxygenase (ALOX) 15 leading to lipid peroxidation. In addition, p62 phosphorylation targets Kelch-like ECH-associated protein 1 (Keap1) leading to 
accumulation of nuclear factor erythroid 2–related factor 2 (Nrf2) in the nucleus to subscribe antioxidant enzymes during oxidative stress. Acyl-CoA synthetase long 
chain family member 4 (ACSL4) is an isozyme catalyzes polyunsaturated fatty acids (PUFAs) contributes to ferroptosis through induction of lipoxygenases. 
Ferritinophagy induction via ferritin contributes to the Fenton reaction leading to accumulation of reactive oxygen species (ROS) and lipid peroxidation. DMT1: 
Divalent metal transporter 1; GSSG: Glutathione disulfide; HO-1: Heme oxygenase-1; LOX: Lipid oxygenase; LPCAT3: Lysophosphatidylcholine acyltransferase 3; 
PUFA-PE: Polyunsaturated fatty acid-phosphatidylethanolamine; SLC3A2: Solute carrier family 3 member 2; SLC7A11: Solute carrier family 7 member 11; STEAP3: 
Six-transmembrane epithelial antigen of the prostate 3; TFR1: Transferrin receptor 1.

Iron metabolism
To carry out ferroptosis and allow lipid peroxides to build up, iron is particularly necessary. The 
capacity of iron to catalyze numerous metabolic events and flip between the various ionic states 
depends largely on how it can absorb and give electrons[79]. In the Fenton reaction, Fe2+ is converted to 
Fe3+ in the presence of H2O2, and HO· is produced as a result of electron transfer to H2O2[80]. In contrast, 
the Haber-Weiss process could convert Fe3+ back to Fe2+ by reacting with O2, causing O2 to lose one 
electron and become O2-[81].

The transfer of iron takes place in the following ways. Transferrin synthesized by the liver as a 
chelator of Fe3+ ions. In contrast to apo-transferrin, which is sans iron transferrin that is not recognized 
by transferrin receptor 1 (TfR1) and not internalized, transferrin recognizes and binds to TfR1 when it 
reaches the cell membrane, which is then internalized by clathrin-mediated endocytosis[82]. Accumu-
lating evidence suggests the role of iron metabolism in ferroptosis[83,84]. Fe3+ is liberated from the 
transferrin TfR1 complex due to the acidic pH of endocytic vesicles and is converted to Fe2+ by the six-
transmembrane epithelial antigen of the prostate (STEAP) family. STEAP1 and STEAP2 are implicated 
in multiple human malignancies, including Ewing sarcoma bladder, ovary, colon, breast, prostate, 
pancreatic, and cervical cancer[85-87]. Malignant gliomas have high levels of STEAP3, which triggers 
the cancer epithelial-mesenchymal transition[88]. Under hypoxic circumstances, STEAP4 is activated, 
resulting in an imbalance of mitochondrial iron and increased ROS generation[89].

The intracellular labile iron pool is subsequently created by divalent metal transporter 1, which 
mediates the release of Fe2+ into the cytoplasm[90]. Apo-transferrin is released back to the plasma 
membrane post recycling, while TfR1 and apo-transferrin remain linked[91]. Fe2+ is then directly 
transported into cells by divalent metal transporter 1 during the conversion of Fe3+ to Fe2+ (Figure 1). 
Another mechanism includes the absorption of porphyrin-bound Fe2+ that contains hemoglobin, partic-
ularly in macrophages, and involvement of cell membrane receptors of iron-storing protein ferritin, such 
as scavenger receptor class A member 5, as observed in kidney and embryonic development, which 
absorbs iron to regulate the ferroptosis mechanism[92,93].

Role of ferritin in Fe transport
Ferritin, an iron-sequestering protein with 4500 iron atoms, plays a crucial role in iron transport, cellular 
multiplication, angiogenesis, and immune suppression[94]. By using NCOA4, ferritin can also be split 
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up to liberate free iron, through “ferritinophagy”[95]. Ferroportin (FPN), recognized as the sole iron 
release pump that works with ceruloplasmin to export iron, is primarily in charge of moving Fe2+ out of 
cells[96]. Ceruloplasmin controls HepG2 and Hep3B cell iron regulation to prevent ferroptosis, and its 
loss causes a buildup of intracellular Fe2+ and lipid ROS and enhances ferroptotic death caused by 
erastin and RSL3[97]. Prominin-2 promotes the growth of multivesicular structures that comprise 
ferritin and exosomes that transfer iron from cells, enabling ferroptosis resistance in breast cancer[98]. 
FPN is severely reduced in many cancer types, suggesting that cancer cells may contain large amounts 
of iron[99]. Decreased FPN levels promote proliferation and epithelial-mesenchymal transition in triple-
negative breast cancer cells[100]. Hepcidin, produced by tumors of the liver, promotes the breakdown of 
FPN and aids in the spread and development of cancer[101].

TRANSCRIPTION FACTORS
Activating transcription factor 3 and activating transcription factor 4
The unfolded protein response is activated in mammalian cells due to endoplasmic stress and has a two-
dimensional functional role in cell survival and death[102]. Activating transcription factor 3 (ATF3) is a 
member of the ATF/cAMP-responsive element-binding protein family of transcription factors. It binds 
to the ATF/cAMP-responsive element-binding protein cis-regulatory element and coordinates gene 
expression. ATF3 has tumor suppressive roles and inhibits cancer malignancy in GI cancers[103]. The 
context-dependent role that ATF3 plays in cancer is likely due to complex protein-protein interaction 
networks in which ATF3 is involved.

Indeed, in addition to transcriptional regulation, ATF3 has been found to interact with many critical 
cellular proteins and regulate their functions. One of the well-characterized ATF3-binding proteins is 
wild-type p53, and ROS signals are necessary for this aberrant production of endoplasmic reticulum 
stress markers; however, the antioxidant N-acetyl L-cysteine prevents overexpression and consequent 
ferroptotic cellular death. Although the ATF3-TP53 complex helps to initiate DNA damage, TP53 is not 
necessary for ATF3-regulated suppression of SLC7A11 transcription[104]. Nuclear factor erythroid 2-
related factor 2 (Nrf2) can, in contrast, regulate the expression of ATF3 by creating complex feedback 
loops for the activation of a number of transcription factors in coordinating the ferroptotic response
[105].

ATF4 is a double-sided sword that plays a dual role in ferroptosis. In numerous cancer cells, 
including human glioblastoma as well as pancreatic cancer cell lines, the depletion of ATF4 increases 
erastin-induced or RSL3-induced ferroptosis, and the inhibition of ATF4 increases artesunate-induced 
ferroptosis in the DAUDI cell line[106,107]. The classes of genes targeted by ATF4, such as SLC7A11, 
heat shock protein 5 (HSPA5), and tribbles pseudokinase 3, may have an impact on this ATF4-
dependent mediation of ferroptosis in various cancer types. ATF4 is inhibited by the erastin-induced 
overexpression of HSPA5, which results in the sequential breakdown of GPX4 and lipid peroxidation
[108-112]. Thus, ATF3-dependent and/or ATF4-dependent pathway dysregulation might influence 
ferroptosis in a tumor-specific phenotype.

Nrf2
Binding to antioxidant response elements, Nrf2, a transcription factor from the Cap-N-Collar family, is 
essential in regulating antioxidant genes and maintaining redox homeostasis[113]. Nrf2 transcriptional 
activity is normally attached to Kelch-like ECH-associated protein 1 (Keap1), retaining it in the 
cytoplasm. Nrf2 separates from Keap1 during environmental conditions (such as oxidative stress) and 
subsequently translocates into the nucleus, where it stimulates the expression of ARE-dependent target 
genes[113]. Nrf2, however, depends on the expression of the target genes that are involved in the 
control of cell proliferation, migration, and death to have a double impact on carcinogenesis and tumor 
treatment[114].

Initially, researchers showed that ferroptosis resistance may be promoted by activating the Nrf2 
pathway using a model of HCC. In human HCC cell lines, ferroptosis activators like erastin and 
sorafenib boost Nrf2 stability by inhibiting the development of the Nrf2-Keap1 complex. The autophagy 
receptor SQSTM1/p62 elevates Nrf2 expression by inactivating Keap1, which is another regulator of 
this process[115]. By boosting GSH production and function, Nrf2-dependent genes such as glutathione 
synthetase, GPX4, and SLC7A11 contribute to ferroptosis inhibition[115]. Control of NADPH synthesis, 
a vital electron donor required for reduction of oxidized substrates[116], which is also a ferroptosis 
sensitivity biomarker[117], is another way that Nrf2 intermediate metabolism is connected to the 
regulation of ferroptosis. Overall, Nrf2 is an important transcription factor that regulates ferroptosis.

TP53
p53, a tumor suppressor encoded by the TP53 gene, is involved in the mediation of DNA damage, 
oncogene activation, and hypoxia. p53 promotes ferroptosis by transcriptional or posttranscriptional 
pathways in addition to its impacts on apoptosis, autophagy, and cell cycle. p53 can both induce and 
inhibit ferroptosis in a context dependent manner. To cause ferroptotic cell death, p53 increases the 
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production of spermidine/spermine N1-acetyltransferase 1, which sequentially causes increased 15-
LOX expression responsible for oxidation of PUFAs (Figure 1)[118]. Simultaneously, p53 decreases the 
expression of ELAV-like RNA-binding protein and its action with LINC00336, by limiting the capability 
of cells to fight ferroptosis by increasing the activity of cystathionine β synthase (CBS)[119]. 
Additionally, p53 interaction with ubiquitin-specific protease 7, a deubiquitinating enzyme, facilitates 
its nuclear translocation by altering histones, favorably controlling ferroptosis[120]. Human colon cancer 
cells, such as HCT116 and SW48, are inhibited against ferroptosis by p53 in a transcription-independent 
manner[121] The p53-p21 axis prevents ferroptosis, allowing cancer cells to withstand stressful 
metabolic situations. Thus, this dual role of p53 in ferroptosis can be explored for therapeutic treatment 
of cancers.

Heme oxygenase-1
Heme oxygenase-1 (HO-1) is a significant redox-mediating enzyme that is activated in reaction to 
oxidative stress, cellular stress, neurodegeneration, and other diseases. HO-1 has a dual personality. The 
use of HO-1 antagonist zinc protoporphyrin IX and HO-1 knockdown animals demonstrated that HO-1 
increases erastin-induced ferroptosis[121]. Conversely, because HO-1 expression is knocked down, 
erastin and sorafenib more effectively limit cell proliferation in HCC caused by these drugs[121]. In 
addition, HO-1 mediates iron and ROS levels where Nrf2-derived HO-1 provides a cytoprotective effect 
by scavenging ROS when HO-1 is moderately active[121]. In contrast, given that cancer cells produce 
more HO-1 than normal cells, a high level of HO-1 activation may increase fragile Fe2+, resulting in an 
excess of ROS and eventual oxidative cell death[121]. Hence, the employment of ferroptosis by HO-1 
activation can define the fate of cancer cells.

Sirtuins
Sirtuins are NAD+-dependent deacetylases that are involved in DNA repair, cellular metabolism, and 
cancer development. As a key oxidizing agent, sirtuins tend to play a crucial role in regulating redox 
signaling pathways[122]. Seven sirtuins have been identified in mammals so far, and each family has 
been found to regulate cellular homeostasis. SIRT1 activation increases the antioxidant activity 
mediated by oxidative stress-related transcription factors[122]. Studies have found that increased 
expression of SIRT1 induces Nrf2-mediated antioxidant activity, thereby increasing GPX4 and GSH 
levels in HCC. Conversely, their downregulation by protocadherin 20 mediates ferroptotic cell death by 
lowering the expression of GPX4 and GSH and increasing intracellular iron levels and ROS[123]. SIRT6 
promotes ferroptosis in pancreatic cells through upregulation of the ROS levels[124], and its downregu-
lation causes GC cells to resist sorafenib-induced ferroptosis[125].

Hypoxia inducible factor
Hypoxia is a prominent factor involved in the progression and metastasis of numerous cancers. Prolyl 
hydroxylase hydroxylates the hypoxia inducible factor (HIF)-a subunits HIF-1α and HIF-2α under 
normoxic circumstances; subsequently, they are subjected to ubiquitin-mediated proteolysis and 
destruction. HIF target genes are activated in hypoxia as a result of HIF-1α and HIF-2α failing to 
hydroxylate and translocate into the nucleus[126]. Our laboratory’s previous studies found that under 
hypoxic conditions, hypoxia-inducible factors such as HIF-1α and HIF-2α are activated and stimulate the 
activation of matrix metalloproteinases 2 and 9, thereby increasing tumorigenesis[127]. Singhal et al[128] 
demonstrated the mechanism by which activation of HIF-2α raises cellular iron to accelerate ferroptosis 
or irreversible cysteine oxidation that causes cell death.

FERROPTOSIS AS A NOVEL TARGET FOR GI CANCER RESEARCH
The leading cause of cancer deaths and incidence from GI tumors has become the most essential health 
concern, so improving the therapeutic aspects provides an important way to decrease the burden of GI 
cancers. Several studies have used ferroptotic cell death as a key modulator to inhibit the growth of GI 
cancers such as colorectal cancer, liver cancer, pancreatic cancer, GC, and esophageal cancer.

Ferroptosis in colorectal cancer
Recent studies by Wang et al[129] suggested that ferroptosis can have a potential modulatory role in the 
targeted killing of chemoresistant colon cancer cells, and ferroptosis-related genes could also be 
harnessed as biomarkers in colorectal cancer therapeutics. Genes involved in the colorectal cancer tumor 
microenvironment are intricately linked to ferroptosis, and some of them are involved in the lipid 
peroxidase and GPX/GSH enzyme system. Iron metabolism genes are also powerful prognostic 
markers in colorectal cancer; for example, elevated expression of thio-redoxin tumor suppressing 
protein is closely concomitant with iron accumulation in mitochondria[130]. The above findings clearly 
state that targeting ferroptosis-inducing genes could provide a novel avenue for treating colorectal 
cancer. p53 tumor-suppressing protein and heme oxygenase have been implicated as key factors in 
regulating ferroptosis in colorectal cancer.
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Ferroptosis in liver cancer
HCC is the most prevalent type of liver cancer, accounting for approximately 90% of cases[131]. 
Multiple studies have reported that ferroptosis plays a role in ameliorating the burden of HCC 
progression. Sorafenib, an anticancer agent that is used for the treatment of advanced HCC, has been 
found to induce ferroptosis by initiating the translation of rapamycin kinase signaling pathway, thereby 
initiating ferroptosis. Iron chelators such as deferoxamine inhibit sorafenib-induced ferroptosis by 
reducing the oxidative stress created by sorafenib in HCC cells[132].

The finding of a potent inhibitor of CBS, which is the main source of cystathionine gamma lyase by 
metabolizing homocysteine to cystathionine to increase intracellular L-cysteine, called CH004, 
selectively inhibits CBS but not human cystathionine gamma lyase in both in vivo and in vitro 
experiments, thereby increasing lipid ROS and decreasing the viability of HepG2 cells, indicating their 
role in ferroptosis[133].

Modulating the function of key regulators of ferroptosis also plays a significant role in the induction 
of ferroptotic cell death in HCC cells. Nrf2 is a key regulator of the antioxidant response. It plays a 
negative regulatory role in ferroptosis by actuating p62-Keap1-Nrf2 pathway, which upregulates the 
expression of quinone oxidoreductase 1, HO-1, and ferritin heavy chain 1. Therefore, inhibiting the p62-
Keap1-Nrf2 pathways by erastin and sorafenib significantly enhances the ferroptosis-mediated cell 
death of liver cancer cells[134].

The mitochondrial membrane protein CDGSH iron sulfur domain 1 serves as a target to treat diabetes 
using glitazone, but it acts as a negative regulator of ferroptosis by modulating mitochondrial iron 
uptake; therefore, the pharmacological or genetic inhibition of CDGSH iron sulfur domain 1 enhanced 
mitochondrial lipid peroxidation, increasing erastin-induced ferroptosis in liver cancer cells[135].

The highly reactive metabolite NAPQ1 from acetaminophen, an analgesic and antipyretic agent, is 
involved in the ferroptotic cell death of HepG2 cells by decreasing their viability through GSH depletion 
and GPX inhibition[136]. The expression of retinoblastoma protein (Rb) in HCC cells determines the 
susceptibility of cancer cells to sorafenib treatment and regulates ferroptosis. Louandre et al[137] 
showed that the decrease in the levels of Rb protein exhibits an increase in cell death when cells were 
treated with sorafenib compared with controls; thus, determining the Rb status of HCC patients treated 
with sorafenib will provide novel insight into the HCC treatment.

LncRNAs represent a vital class of molecules that have regulatory effects in both physiological and 
abnormal conditions, but lncRNA GABPB1-AS1 has a role in regulating oxidative stress, confirming its 
involvement in the ferroptosis-mediated cell death of HCC cells. The expression of this lncRNA was 
upregulated by erastin to inhibit the translation of GA binding protein transcription factor subunit beta 
1, resulting in the rapid accumulation of ROS in HepG2 cells by decreasing the expression of the PRDX5 
peroxidase gene[138].

Ferroptosis in pancreatic cancer
Several molecules were demonstrated to induce ferroptosis in pancreatic cancer cells in which the first-
line drug gemcitabine is used to treat advanced pancreatic cancer, but HSPA5 causes resistance to 
gemcitabine treatment by inhibiting ferroptosis. Therefore, genetically or pharmacologically inhibiting 
HSPA5 enhanced the sensitivity of gemcitabine to pancreatic ductal adenocarcinoma cells by inducing 
ferroptosis[139]. Inhibiting cytosolic aspartate aminotransferase, which is predominant for redox 
balance, represses the growth of pancreatic cancer cells by enhancing labile iron release, thereby 
inducing sensitivity to ferroptosis[140].

Several studies have shown that certain natural plant extracts possess potential anticancer effects by 
inducing ferroptosis in pancreatic cancer cells. A saponin called ruscogenin represses cell viability and 
induces ferroptotic cell death in a pancreatic cancer cell line by increasing the concentration of 
intracellular ferrous iron and ROS production; it also exerts anti-tumor effects in in vivo experiments 
with less toxicity[141].

The combinatorial regimen using plant derivatives also expresses effective anticancer effects in 
pancreatic cancer cells by inducing ferroptosis; cotylenin A (a plant growth regulator) in combination 
with phenethyl isothiocyanate, an anti-carcinogenic compound, stimulated ferroptotic cell death in 
PANC-1 cells (Figure 2)[142]. Artesunate, an antimalarial agent, induced ferroptosis in Kras-activated 
pancreatic ductal adenocarcinoma cell lines driven by ROS generation and lysosomal iron-dependent 
cell death without affecting normal pancreatic cell lines[143]. Piperlongumine alone, as well as in 
combination with cotylenin A and sulfasalazine, generates ferroptotic death of pancreatic cancer cells
[144].

Ferroptosis in GC
GC is a heterogeneous disease among GI cancers, with over 1 million new cases worldwide where 
surgery is the primary treatment to prevent progression[145]. The factors involved in PUFA biosyn-
thesis play an essential role in inducing ferroptosis sensitivity in GC[72]. Apatinib, an anti-tumor agent, 
decreases the expression of GPX4 and results in apatinib-mediated ferroptotic cell death in GC cells
[146]. GC cells resistant to sorafenib-induced ferroptosis treatment by silencing SIRT6, one of the sirtuin 
proteins that plays a vital role in the regulation of metabolism, DNA repair, and cancer development 
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Figure 2 Regulation of ferroptosis in gastrointestinal tumors is schematically illustrated. The factors cotylenin A, phenethyl isothiocyanate, 
artesunate, and piperlongumine induce lipid peroxidation and thereby ferroptosis. Small molecules such as erastin, sorafenib, and sulfasalazine inhibit system Xcˉ 
thereby inducing ferroptosis through glutathione peroxidase 4 (GPX4). Cisplatin, curcumin, and apatinib inhibit GPX4 thereby attenuating reactive oxygen species. 
Several inducers of ferroptosis such as RAS-selective lethal 3, FINO2, and FIN56 inhibit GPX4. Several synthetic and natural compounds regulate ferroptosis through 
hemoxygenase leading to iron overload. Transferrin receptor 1 mediates endocytosis of iron particles and facilitates ferroptosis. CDGSH iron sulfur domain 1, an iron 
chelator, blocks iron production and inhibits ferroptosis. Several compounds mediate ferritin degradation via ferritinophagy and modulate ferroptosis. CAPE: Caffeic 
acid phenethyl ester; CISD1: CDGSH iron sulfur domain 1; GSH: Glutathione; GSSG: Glutathione disulfide; HO-1: Heme oxygenase-1; PEITC: Phenethyl 
isothiocyanate; RSL3: Ras-selective lethal 3; ROS: Reactive oxygen species; SLC3A2: Solute carrier family 3 member 2; SLC7A11: Solute carrier family 7 member 
11; TFR1: Transferrin receptor 1.

and is primarily located in the cell nucleus. SIRT6 sensitizes GC cells to sorafenib-induced ferroptosis by 
the Keap1/Nrf2/GPX4 signaling pathway[125,147]. The ingredient from the Chinese medicine 
tanshinone IIA, isolated from the rhizome of Saliva miltiorrhiza Bunge, exhibits an anticancer effect on GC 
cells by inducing ferroptosis and downregulating p53-mediated SLC7A11[148].

Ferroptosis in esophageal cancer
Targeting ferroptosis will provide new avenues for esophageal cancer diagnostics and treatment 
strategies. Sulfasalazine, a ferroptotic inducer, inhibits the progression of esophageal cancer, and plant-
derived compounds such as oridonin, a diterpenoid, have also been reported to stimulate ferroptotic cell 
death in esophageal cancer cells[149].

FERROPTOSIS AND LINK TO OTHER RCD PATHWAYS
Ferroptosis is intricately intertwined with other forms of cell death through various iron and lipid 
peroxidation proteins and several transcription factors. However, molecular mechanisms underlying 
the role of other forms of RCD remain poorly understood. For example, TP53, a critical mediator of 
tumor suppressive response involved in apoptosis, ferroptosis, and antioxidant response machinery like 
Nrf2, has a significant role in ferroptosis as well as autophagy. The molecular mechanisms associated 
with other forms of RCD pathways and ferroptosis are discussed herein.

Apoptosis and ferroptosis: Molecular switch
Numerous studies have reported the interconnection between apoptosis and ferroptosis. Apoptosis, 
typically through p53, induces cell cycle arrest, thereby preventing tumorigenesis; likewise, TP53 is 
known to sensitize cells to ferroptosis, leading to a reduced tumor burden[150]. The widely known 
ferroptosis inducer erastin has the potential to induce the unfolded protein response and promote p53 
expression through apoptotic markers PUMA, CHOP, and TRAIL, and TRAIL-dependent apoptosis 
implies an augmented link between apoptosis and ferroptosis[151]. A similar study on a metal-
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encapsulated p53 plasmid construct by Zheng et al[152] was found to release ions of iron, instigating the 
Fenton reaction and leading to ROS oxyradical overload, thereby leading to ferroptosis-dependent 
apoptosis in the liver. This consequently reduced the tumor burden and prevented metastasis in mice. 
An imbalance in the ferroptotic process is implicated in severely hindering apoptosis induction; for 
example, cancer cells subjected to ferroptosis by cysteine starvation were found to have reduced GSH 
levels but failed to induce caspase activation, which is seminal in apoptosis[153].

Autophagy-dependent ferroptosis
Autophagy-dependent ferroptosis is putatively ferritinophagy; under an excessive Fe2+ milieu, ferritin 
degradation is mediated by Atg5, an autophagy regulator protein. Ferritin is a seminal protein complex 
with light and heavy chain polypeptides (ferritin light chain 1 and ferritin heavy chain 2) predominantly 
controlling iron metabolism. Atg5 and Atg7 knockdown is implicated in preventing erastin-induced 
ferroptosis, facilitating tumorigenesis[154]. Similarly, BECN1 or Atg6 is known to induce ferroptosis by 
regulating glutamine and cysteine and inhibiting system Xcˉ through the BECN1-SLC7A11 complex in 
cancer cells. Additionally, studies have reported BECN1 facilitates lipid peroxidation through malondi-
aldehyde (MDA) stress modulation[155]. Observations from our laboratory demonstrated that Eupatilin 
exhibits anticancer effects in part through regulation of autophagy-mediated ferroptosis (data not 
shown).

In summary, while apoptosis, ferroptosis, and autophagy are all different cellular pathways, they can 
be linked in the sense that autophagy can play dual roles by promoting apoptosis and protecting against 
ferroptosis. In contrast, both apoptosis and ferroptosis are forms of RCD mediated by different enzymes 
and signals that manifest different morphological outcomes.

THERAPEUTIC ASPECTS OF FERROPTOSIS
The listed drugs have potential therapeutic applications and have been reported to regulate ferroptosis 
(Table 2)[156-164].

Although conventional drugs are implicated in inducing or modulating ferroptosis, resistance to 
these drugs supersedes the benefits. Therefore, the identification of compounds with neutral toxicity 
profiles and natural origins has garnered tremendous attention in ferroptosis and iron metabolism. The 
section below briefly discussed the role of natural compounds in ferroptosis.

Formasanin C (FC) is known to induce ferroptosis in p53-null and p53 wildtype cellular phenotypes 
of HCC, and FC treatment increases the mitochondrial morphology and membrane potential in HepG2 
cells, as a hallmark of cells undergoing ferroptosis[165]. FC and cisplatin synergistic treatment is known 
to induce ferritinophagy and enhance therapeutic potential of cisplatin. Similarly, gallic acid (GA) is 
known to prompt lipid peroxidation and ferroptosis. Upon exposure to an Fe2+ chelator, GA activity is 
suppressed, which in part signifies its role in ferroptosis. GA exhibited anti-tumor effects in colorectal 
cancer by deterring GPX4 and elevating MDA expression[166]. Celastrol, a tri-terpenoid is reported to 
induce ROS production, thereby promoting ferroptosis in liver cancer cells. Structural protein activity 
revealed that celastrol directly binds to multiple orthologues of PDXs. PDX knockdown in turn elevates 
ROS production, ensuing ferroptosis[167]. Chen et al[168] reported that curcumin could induce 
ferroptosis in colorectal cancer by modulating expression of key ferroptotic markers Fer1, SLC7A11, 
GSH, MDA, and ROS through PI3K/mTOR pathway.

The mechanisms orchestrating ferroptosis has been the subject of interest in several cancers. Many 
investigators have contributed to identifying key molecules that regulate ferroptosis in GI tumors[169]. 
The above findings are helpful in understanding the mechanism of many synthetic and natural 
compounds in inducing iron-dependent cell death in GI cancers. There are ample avenues to further 
elucidate the mode of action and mechanistic aspects of how natural compounds could be synergist-
ically used to induce ferroptosis.

CONCLUSION
The increasing incidence and mortality imposed by GI cancers, a dangerous malignancy, warrants novel 
therapeutic strategies. Ferroptosis, a form of non-apoptotic RCD, has been found to play a significant 
role in regulating the progression of GI cancers. This review delineated the major regulatory 
mechanisms involved in ferroptosis for better understanding to create a new opportunity for diagnosis 
and therapeutic intervention. The involvement of ferroptosis-associated factors and the effect of several 
drugs, including the first discovered ferroptotic inducers erastin, sorafenib, cisplatin, artesunate, 
piperlongumine, haloperidol, baicalein, bromelain, and saponins have been found to induce ferroptotic 
cancer cell death in GI cancers. Ferroptotic inducers synergized with various anticancer drugs in clinical 
trials have demonstrated effective therapeutic results in GI cancers. Thus, inducing ferroptosis may 
have significant potential for treating GI cancers and related malignancies. Overall, this review provides 
insights into the regulatory mechanisms involved in ferroptotic cell death for development of novel 
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Table 2 Conventional drugs and their mode of action in ferroptosis

GI cancer Drugs Pathway involved Mode of action Ref.

Paclitaxel p53, SLC7A11 Lipid peroxidation by suppressing GPX4 
expression

[156]

5-fluorouracil Lipocalin2 (LCN2), xCT Stimulates GPX4 expression by diminishing 
circulating iron levels

[157]

Cisplatin Ferrostatin-1 Conjugates with GPX and GSH modulation [158]

Cetuximab GSH, GPX4, HO-1, SLC7A11, 
KRAS, RSL3

Through β-elemene synergism by inducing iron 
dependent ROS, GSH accumulation, and EMT 
regulation

[159]

Colorectal cancer

Dihydro-artemisinin 
(DAT)

Iron metabolism, GPX4 Sensitizes cells to ferroptosis by iron overload and 
lysosomal degradation

[160]

Artesunate Ferritin Elevates lysosomal degradation partially through 
autophagy along with sorafenib; it induces 
cathepsin activation

[161]

Sorafenib Nrf2 Through metallothionein-1 activation (MT-
1G–Nrf2) axis

[162,125]

Hepatocellular carcinoma

Deferoxamine Iron metabolism Through peroxidation and iron storage depletion [163]

Gastric cancer Cisplatin Nrf2/Keap1-xCT Through transcription factor ATF3 overexpression [164]

ATF3: Activating transcription factor 3; EMT: Epithelial-mesenchymal transition; GI: Gastrointestinal; GPX4: Glutathione peroxidase 4; GSH: Glutathione; 
HO-1: Heme oxygenase-1; Keap1: Kelch-like ECH-associated protein 1; Nrf2: Nuclear factor erythroid 2–related factor 2; ROS: Reactive oxygen species; 
RSL3: Ras-selective lethal 3; SLC7A11: Solute carrier family 7 member 11.

therapeutic strategies. The mechanism of ferroptosis with other RCD, such as autophagy and apoptosis, 
to induce cancer cell death may also provide new development in the therapeutic aspects of treating GI 
tumors. Therefore, further investigation of ferroptosis in GI cancers will improve the prognosis and 
therapeutic aspects of GI cancers.
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