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Abstract 

Literature data on glioblastoma ongoingly underline the link between 

metabolism and cancer stemness, the latter one responsible for potentiating the 

resistance to treatment, inter alia due to increased invasiveness. In recent years of 

glioblastoma stemness research, a key aspect of cytoskeletal rearrangements has 

been bashfully introduced, whereas the impact of the cytoskeleton on 

invasiveness is well-known. Although non-stem glioblastoma cells are less 

invasive than glioblastoma stem cells (GSCs), these cells also acquire stemness 

with greater ease if characterized as invasive cells and not tumor core cells. This 

suggests that glioblastoma stemness should be further investigated for any 

phenomena related to the cytoskeleton and metabolism, as they may provide 

new invasion-related insights. Previously, we proved that interplay between 

metabolism and cytoskeleton exists in glioblastoma. Despite searching for 

cytoskeleton-related processes in which the investigated genes might have been 

involved, not only did we stumble across the relation to metabolism but also 

reported genes that were found to be implicated in stemness. Thus, dedicated 

research on these genes in the subject of GSCs seems justifiable and might reveal 
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novel directions and/or biomarkers that could be utilized in the future. Herein, 

we review the previously identified cytoskeleton/metabolism-related genes 

through the prism of glioblastoma stemness. 

 

Key words: Glioblastoma; Stemness; Cytoskeleton; Metabolism; Biomarkers; 

Therapy 

 

Kałuzińska-Kołat Ż, Kołat D, Kośla K, Płuciennik E, Bednarek AK. Delineating 

the glioblastoma stemness by genes involved in cytoskeletal rearrangements and 

metabolic alterations 

 

Core tip: Glioblastoma stemness intensifies the resistance to treatment via 

increased invasiveness. Among the processes crucial for glioblastoma stem cells, 

metabolism is known to influence invasion. However, the cytoskeleton is 

currently negligent in glioblastoma stemness research, while it also regulates 

invasion. Herein, we review the link between stemness and 

cytoskeleton/metabolism-related genes that we previously identified in 

glioblastoma. These genes influence stemness via numerous biological processes; 

for some genes, clinical trials are currently ongoing. Others were connected to 

glioblastoma stemness for the first time. Future glioblastoma-related research 

should delve into the cytoskeleton since the concept is already encouraging. 
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INTRODUCTION 

Despite decades, glioblastoma (GBM) remains an incurable condition with 

increasing incidence in many countries [1,2]. Although GBM is less prevalent than, 

e.g., breast, colon, or lung cancer, it outperforms other tumors by affecting 

patients in the prime of their lives and causing them to lose many years of life [3]. 

The initial intervention in newly diagnosed GBM includes a surgical approach, 

with post-surgery temozolomide (TMZ) and radiation therapy [4]. Adding tumor-

treating electric fields (TTFields) to maintenance TMZ chemotherapy was found 

to prolong progression-free and overall survival but is currently limited due to 

the lack of a method to predict or quantify the efficacy of TTFields (the imaging 

features associated with treatment response are unclear and there are no 

predictive neuroimaging markers). Moreover, the treatment device is required to 

be worn for a predetermined period (typically ~75% of the time) or until there is 

a clinical progression of the disease, which introduces a delay in getting used to 

the device and makes patients anxious with regard to the intended therapy effect 
[5]. Strong motivation to predict TTField efficacy in a patient-specific manner was 

provided [6]. Nevertheless, glioblastoma recurrence is practically inevitable 

which, combined with a grim prognosis and ineffective treatment, underlines the 

importance of further research into this one of the deadliest tumors [3,7]. 

One of the GBM traits that implicate the lack of effective treatment is the 

heterogeneity that can be explained by both clonal evolution and the presence of 

stem cells [8]. Stemness refers to the molecular events that underlie the essential 

characteristics of self-renewal and differentiation into daughter cells [9]. On the 

cellular level, some processes were indicated as crucial for GBM stemness, 

namely epigenomic regulation, posttranscriptional regulation, and metabolism 
[10]. In recent years of glioblastoma stemness research, a key aspect of cytoskeletal 

rearrangements has also been bashfully introduced [11,12] while it is long time 

since this machinery is well-known for controlling two processes that influence 

cancer malignant behavior, i.e., cellular division and invasion [13]. The stemness 

itself is also responsible for potentiating the resistance to treatment [14,15], inter alia 

due to increased invasiveness [16]. In addition, more recent studies have 
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identified the role of metabolism in GBM invasion [17]. Although non-stem 

glioblastoma cells are less invasive than GBM stem cells (confirmed by, e.g., 

sevenfold reduced cell migration through the Matrigel, or 3.8-times and 6.8-times 

lower expression of matrix metalloproteinase-14 and -16) [18], the same cells also 

acquire stemness with greater ease if they are characterized as invasive cells and 

not tumor core cells [19,20].  

The above-mentioned data implies that GBM stemness should be further 

explored for any phenomena related to the cytoskeleton and metabolism, as they 

may provide the missing puzzle from the point-of-view of invasion. Moreover, 

the cytoskeleton and metabolism are related; for instance, the cytoskeleton is 

involved in carbohydrate metabolism [21] and at the same time the actin and 

tubulin require energy from nucleotide hydrolysis to maintain structural 

dynamics [22]. Cytoskeletal rearrangements and metabolic alterations are 

important not only for GBM cells but also for neuronal and glial progenitors. For 

example, cytoskeleton dynamics underlie the cellular asymmetry while 

metabolic reprogramming ensures a transition in energy production from 

glycolytic to oxidative [23,24]. Nevertheless, it is possible to discriminate normal 

glial cells from glioblastoma; the cancerous cells present decreased cortical but 

increased intracellular stiffness, as well as preferentially metabolize glucose into 

lactate despite the abundance of oxygen [17,25]. Stiffness and metabolic 

adaptations can also influence stem cell differentiation [26,27]. Moreover, the 

cellular cross-talk that utilizes cytoskeleton or metabolites affects physical 

dynamics and signaling of various cell types including astrocytes, neurons, and 

oligodendrocytes [28,29]. In cancer, such cross-talk renders abnormal protrusions 

or extensions termed as tumor microtubes that contribute to, e.g., glioma 

resistance [30]. These structures are rich in cytoskeletal proteins like actin and 

tubulin, as well as are known to modify energetic metabolism of the receiving 

cells via transport of mitochondria [31]. 

Our previous research has proved that interplay between metabolic 

alterations and cytoskeletal rearrangements exists in GBM [32]. Of genes 

described below in the present review (some previously identified genes were 
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not included if their implication in stemness was not found in the literature; see 

Supplementary Table 1 [33-37]), the example of a relationship between metabolism 

and cytoskeleton can be visualized (Figure 1) using literature on 

methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) [38-41] and ribonucleotide 

reductase subunit M2 (RRM2) [42-45]. In our previous research, despite searching 

for cytoskeleton-related processes in which the investigated genes might have 

been involved, not only did we stumble across the relation to metabolism, but we 

also reported some genes which were found to be implicated in glioblastoma 

stemness. Thus, the dedicated work on these genes in the subject of GBM stem 

cells (GSCs) seems justifiable and might reveal novel therapeutic directions 

and/or biomarkers that could be utilized in the future. Herein, we review the 

previously identified cytoskeleton/metabolism-related genes through the prism 

of GBM stemness. Literature screening allowed the decision to split these genes 

based on whether their role in stemness is known from GBM or another tumor, 

the latter suggesting an urgent need to experimentally verify the observations in 

the glioblastoma context. 

GENES WITH CONFIRMED ROLE IN GLIOBLASTOMA STEMNESS 

Bone morphogenetic protein 4 (BMP4) 

Based on the literature abundance, the best-known from its implication in 

glioblastoma stemness is BMP4. The bone morphogenetic proteins are growth 

factors from the TGF-β superfamily that undergo expression during 

embryogenesis and control development. Initially denoted as crucial for 

osteogenesis, they are now described as regulators of gastrulation, neurulation, 

mesoderm patterning, proliferation, and differentiation in many tissues [46]. 

About 15 years ago, it was found that the signaling via BMPs and their cognate 

receptors (BMPRs) influences the activity of normal brain stem cells but can also 

inhibit the cancer-initiating GBM stem-like cells [47]. Later the same year, these 

authors confirmed that in vivo delivery of BMP4 blocks the tumor growth and 

associated mortality, which occur in all mice following intracerebral grafting of 

human glioblastoma [48]. This protein was suggested as a non-cytotoxic 

therapeutic agent that can be utilized in combination with stem cell-based 
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therapy [49]; this complements its usage as an agent used to differentiate GSCs 

into normal glial cells [50]. BMP4 has been found promising to the extent that it 

entailed the development of novel therapies. For example, one that utilizes the 

oncolytic vaccinia virus was developed to alleviate glioblastoma and prevent its 

recurrence [51]. Later on, the cell-based treatment option of BMP4-secreting 

human adipose-derived mesenchymal stem cells was found to reduce 

proliferation and migration both in vitro and in vivo, as well as prolonged 

survival in a murine model [52]. Still, Richardson et al admitted that little is known 

about this morphogen regarding triggered cellular events, which prompted the 

authors to establish several GSC-enriched cell lines growing as adherent 

monolayers and not floating neurospheres [53]. Distinct lineage preferences were 

noticed depending on the expression pattern of BMP signaling – astrocyte fate or 

neuronal commitment was noticed and, under certain conditions, even a smooth 

muscle-like phenotype [53]. Providing new findings to the available data, BMP4-

overexpressing neural stem cells were found to promote, e.g., GSCs apoptosis via 

Smad1/5/8 signaling [54]. Moreover, recent studies indicate a formerly 

underestimated link between BMP4 and metabolism or mechanotransduction 

which affects oxygen consumption or matrix stiffness [55]. The latter is known to 

be associated with cytoskeletal remodeling [56,57]. With regard to the cytoskeleton, 

BMP4 was found to re-organize actin dynamics via activation of Rac1, Rho, and 

Cdc42 [58]. The impact of BMP4 in inducing asymmetric cell division was also 

noted, limiting the GSCs expansion [59]. The newest literature data on BMP4 

consider it on a broader scale, either evaluating other GBM aspects and referring 

to BMP4, or investigating upstream/downstream molecules. Ciechomska et al 

explored EGFR alterations in glioblastoma since GSCs with various EGFR levels 

respond differently to therapy; the authors found that EGFR/FOXO3a/BIM 

signaling pathway determines chemosensitivity of BMP4-differentiated GSCs to 

TMZ [60]. On the other hand, Wu et al identified BIRC3 as an inducer of 

glioblastoma stemness via downstream BMP4 inactivation [61]. At last, the most 

recent paper by Verploegh et al summarized the cellular viability variance in 

response to BMP4 and proposed early-response markers for sensitivity to BMP4 
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[62]. Three cultures with the highest sensitivity for BMP4 revealed a new cell 

subpopulation that presented a reduced cell proliferation but an elevation of 

apoptosis. These changes in composition correlated with treatment efficacy; the 

latter was found to be predicted using OLIG1/2 expression. Furthermore, 

upregulated RPL27A and RPS27 were considered early-response markers. 

Interestingly, RPS27 is one of the genes identified in our previous study that 

prompted us to investigate the aspects issued in this review. This gene will be 

described below in a separate subsection. 

 

Glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B) 

GRIN2B encodes one subtype of glutamate-binding GluN2 subunit, which is a 

part of the N-methyl-D-aspartate receptor (NMDAR). Ionotropic glutamate 

receptors from this family mediate Ca2+, i.e., the permeable component of 

excitatory synaptic transmission in the central nervous system (CNS) [63]. 

NMDARs assemble from four subunits: two GluN1 and two GluN2. The former 

subunits are widely expressed in the nervous system, while four subtypes of 

GluN2 subunits (from “A” to “D”) are characterized by various expression 

patterns [64]. GRIN2B encodes the GluN2B subunit, which is abundantly 

expressed in the prenatal period, then declines in most brain parts [65]. The 

presence of GluN2B in such an early stage implies that it contributes to brain 

development, circuit formation, synaptic plasticity, as well as migration, and 

differentiation [66]. Glutamate-dependent synaptic transmission is frequently 

dysfunctional in gliomas [67], and regarding this specific subunit, an enrichment 

of expression was noticed in GSCs [68]. In our previous research, with the use of 

literature data, we related this gene with the cytoskeleton since GluN2B interacts 

with cytoskeletal protein α-actinin-2 via the carboxyl-terminal domain [63]. It 

might be of importance as α-actinin-2 is closely associated with multimerins 

which are possible markers and therapeutic targets in low-grade glioma [69]. 

Moreover, one of the multimerins encoded by the MMRN1 gene was found to be 

correlated to stemness and chemoresistance, although these observations were 

based on the leukemia model [70]. Nevertheless, GRIN2B is confirmed to influence 
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stemness not only in glioblastoma but also in lung cancer – She et al identified 

GRIN2B expression to be higher in primary tumors than in normal tissues, and at 

the same time elevated in metastatic lesions than in primary tumors which 

contributed to poorer prognosis [71]. Moreover, the same authors observed 

inhibition of tumorsphere formation during GRIN2B silencing. 

 

Homeobox protein A10 (HOXA10) and A1 (HOXA1) 

The homeotic genes, in vertebrates denoted as homeobox, are highly conserved 

and regulate the proper development of various body segments during ontogeny 
[72]. HOXA10 is implicated in the embryogenesis of the uterine epithelium, 

stroma, and muscle [73]. In response to hormones, it undergoes periodical 

expression in the mature endometrium, controlling receptivity during the 

implantation window [74]. Concerning GBM stemness, the functionality of 

HOXA10 was presented as a direct result of the activation of protein from the 

Trithorax family, which serves as a histone methyltransferase, i.e., MLL. 

Afterward, HOXA10 activated other HOXA genes, e.g., HOXA7 and HOXC10 [75]. 

In another study, HOXA10 was marked as one of the strongest candidates 

(alongside the HOX -A9, -C4, and -D9 genes), having value as a therapeutic 

target and biomarker for both GBM and GSCs [76]. Our previous research echoed 

the data that HOXA10 facilitates cytoskeleton remodeling (via CK15) [77], 

promotes tumorigenesis in glioma [78], and regulates homologous recombinant 

DNA repair and subsequently temozolomide resistance in GBM [79]. Since 

stemness also contributes to treatment resistance [14], the last two events 

complement each other mutually. Another homeotic gene that we identified in 

our previous study was HOXA1, a homeobox that is abundantly expressed in the 

mesoderm and neuroectoderm at the level of the brainstem precursor [80]. 

Upregulation of HOXA1 was noted in GBM, which inversely correlated with the 

survival of patients [81]. This homeotic member was also implicated in regulating 

the cytoskeleton via E-cadherin. Namely, CDH1-dependent signaling was found 

to increase HOXA1 expression through Rac1, i.e., the same pathway that 

regulates actin cytoskeleton at cadherin adhesive contacts [79]. With regard to 



 

GBM stemness, Schmid et al observed upregulated HoxA locus (encompassing, 

e.g., HOXA1) after they dedifferentiated murine astrocytes into GSCs via Rb 

knockout, Kras activation, and Pten deletion. These cells were sufficient to form 

GBMs in their transplant mouse model [82]. Although the insights did not provide 

further mechanistic details, the regulation loop of HOXA1 and HOXA transcript 

antisense RNA (HOTAIRM1) was found to be involved in stemness maintenance 
[81,83]. This was presented in colorectal carcinoma and uveal melanoma. Still, 

taking into account the Schmid et al study, the profound investigation of HOXA1 

in GSCs in this aspect should be considered. 

 

Matrix metalloproteinase 13 (MMP13) 

Matrix metalloproteinases are constituents of extracellular matrix (ECM) 

belonging to the zinc-containing endopeptidases family that encompasses 23 

members [84]. Functionally, these calcium-dependent molecules are responsible 

for the degradation and remodeling of other proteins that constitute ECM. 

Moreover, their role in various biological and physiological processes dependent 

on hormones, growth factors, and cytokines were described [85]. It is known that 

different ECM components modulate cancer stem cells’ properties; regarding 

glioblastoma, the confirmed ones were type I collagen, laminin α2, fibronectin, 

periostin, decorin, and lumican [86]. MMP13 is a collagenase almost universally 

upregulated in the pan-cancer view [87]; in GBM, its overexpression increases 

migration and invasion [88], as well as confers poor prognosis [89]. The 

relationships between MMP13 and the cytoskeleton [33] or metabolism [90] are 

known. In terms of stemness, Inoue et al suggested that highly invasive potential 

GSCs depended on MMP13 enzymatic activity; the authors also proposed 

MMP13 as a potential therapeutic target [91]. 

 

Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) 

The folate cycle is responsible for appropriate cellular metabolism by regulating 

ATP production, methylation reactions for DNA/protein synthesis, or 

developing immunomodulatory molecules that orchestrate signaling and 
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cytotoxicity [92]. The differences between MTHFD1 and MTHFD2, two enzymes 

implicated in the folate pathway, include the use of different co-enzyme (NADP 

vs. NAD), functionality (MTHFD1 has three distinct enzymatic activities while 

MTHFD2 is bifunctional), and location (cytoplasm vs. mitochondria). Compared 

to MTHFD1, which generates NADPH and formate for purine biosynthesis, 

MTHFD2 is overexpressed in rapidly proliferating malignant tumors. It is 

considered the “main switch” that enables mitochondria to produce additional 

growth-facilitating one-carbon units and generates NADH necessary for 

protection from reactive oxygen species [93]. MTHFD2 is also an excellent 

example to present the link between metabolism and cytoskeleton; Lehtinen et al 

found that MTHFD2 depletion leads to vimentin organization defects and 

identified this gene as a regulator of cell migration and invasion [39]. Regarding 

glioma, MTHFD2 was found to be associated with tumor grade and prognosis [38]. 

Inhibition of this enzyme in GSCs induced apoptosis and affected not only 

central carbon metabolic pathways (e.g., glycolysis, pentose phosphate pathway, 

and tricarboxylic acid cycle) but also unfolded protein response, highlighting a 

novel connection between one-carbon metabolism and reaction to cellular stress 
[94]. Nishimura et al suggested that the purine synthesis pathway, as well as 

folate-mediated one-carbon metabolism, seem to be crucial for the maintenance 

of tumor-initiating cells. The same authors also concluded that EGF-induced 

expression of MTHFD2 may be mediated by Myc, with the latter regulating the 

expression of metabolic enzymes for the maintenance of brain tumor-initiating 

cells [95]. 

 

PHD finger-like domain-containing protein 5A (PHF5A) 

Alternative splicing maintains post-transcriptional gene regulation, which 

enables a single gene to be transcribed into various RNAs, diversifying the 

proteome. Abnormal splicing function can lead to tumor-related processes, e.g., 

proliferation, angiogenesis, and metastasis [96]. Spliceosome, a dynamic 

machinery responsible for splicing, is made of small nuclear ribonucleoproteins 

(snRNPs; five molecules are known: U1, U2, U4, U5, and U6) and numerous non-
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snRNP proteins [97,98]. U2 snRNP comprises U2 snRNA, SF3a complex, and SF3b 

complex, which are responsible for recognizing branchpoint sequences during 

initial spliceosome assembly stages [99]. Splicing factors comprising the SF3b 

complex include, e.g., PHF5A, which facilitates interactions between the U2 

snRNP and RNA helicases [100] but can also bind chromatin via its plant 

homeodomain (PHD) that is composed of a small zinc finger structural fold 
[101,102]. The knockdown of PHF5A results in reduced GBM viability and cell cycle 

arrest [103]. Trappe et al revealed that systematic deletion of its yeast homolog is 

lethal, showing that PHF5A is crucial for cell viability [104]. The flagship paper on 

PHF5A in brain tumor [105] indicates that the gene is required to expand GSCs 

and that in these tumor-initiating cells, but not untransformed neural stem cells, 

PHF5A contribute to the identification of exons having unusual C-rich 3' splice 

sites in thousands of essential genes. The same authors inhibited PHF5A, which 

reduced GSCs-driven tumor formation in vivo and inhibited the growth of 

established GBM patient-derived xenograft tumors.  

 

Ribosomal protein S27 (RPS27) 

One of the most dynamic and largest molecular motors (driven by a complex 

thermal ratchet translocation mechanism) are ribosomes [106]. 

Metallopanstimulin-1, also known as RPS27, is a constituent of the human 40S 

ribosome that is mainly found in the cytoplasm while it can also relocate to the 

nucleus [107] or even extracellular space [108]. Regarding the nuclear location, it is 

able to interact with DNA via its C4-type zinc finger [109]. In glioblastoma, RPS27 

was found to be correlated with age in IDH-mutated glioma patients and with 

Ki67 in GBM patients. Interestingly, it is detected in astrocytic tumors but not in 

normal astrocytes unless the tissue was inflamed [109]. This allowed the same 

authors to emphasize that in comparison to inflammatory tissue (in which only a 

small number of macrophages were positive for RPS27), almost all macrophages 

in tumor tissue were distinctly enriched in RPS27 expression. As for GSCs, the 

ribosomes and related proteins were generally found to reprogram glioma cells 

to induce plasticity and stemness [110]. Among these molecules, RPS27 was 
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considered oncogenic with higher expression at the GSC-dominant area [111]. 

Inquisitive findings revealed that RPS27 is also detected in the microvascular 

proliferation area and pseudopalisading cells around necrosis [110]. It is worth 

underlining that aberrant vessels are crucial for the development of 

pseudopalisading necrotic regions that provide shelter for residing cancer stem 

cells from anti-tumor agents, which enable these cells to expand and promote 

proliferation and growth [112]. As mentioned above, upregulated RPL27A and 

RPS27 were considered to be early-response markers related to the presence of 

BMP4, suggesting a link that should be further investigated. This is especially 

since the signaling of ribosome translation was found to be overexpressed during 

the response to stress in glioblastoma [62]. 

 

Ribonucleotide reductase subunit M2 (RRM2) 

A balanced supply of deoxyribonucleotide triphosphates (dNTPs) is a 

prerequisite of DNA synthesis. Still, de novo synthesis of dNTP is also possible via 

the reaction catalyzed by the ribonucleotide reductase (RR) that reduces the C2′-

OH bond of the four ribonucleotides triphosphates to form corresponding 

dNTPs [113]. RRM2 encodes the β subunit of RR; each RRM2 monomer contains 

the tyrosyl radical and non-heme iron [114]. Since a sufficient supply of dNTPs 

drives an uncontrolled DNA replication in cancer [115], it is not surprising that 

RRM2 was frequently subjected to molecular therapy [116,117]. Currently, several 

RRM2 inhibitors have been developed, e.g., radical scavengers, iron chelators, 

subunit polymerization inhibitors, or expression silencers [118-120]; this is to inhibit 

proliferation, division, but also invasion [32]. In glioblastoma, RRM2 is 

responsible for the advancement of GBM tumorigenicity and protection from 

endogenous replication stress via the BRCA1-RRM2 axis [45]. For glioma in 

general, regulation of proliferation and migration via ERK1/2 and AKT signaling 

was noted [44]. Available literature also links the RRM2 to the cytoskeleton via 

hPLIC1; the latter decreases during RRM2 downregulation, which entails actin 

cytoskeleton re-organization [42]. Perrault et al suggested that RRM2 can be a 

chemoresistance driver that dictates how GBM cells respond to TMZ [121]. The 
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same authors further verified that RRM2-overexpressing cells had enhanced 

DNA repair efficiency. Moreover, the use of a selective FDA-approved RRM2 

inhibitor, 3-AP Triapine, enabled Perrault et al to observe that in comparison to 

both TMZ and control, glioblastoma treated with the 3AP + TMZ formed fewer 

neurospheres that were also significantly smaller. Another group found that 

RRM2 expression dramatically declined after 12 days of dasatinib treatment 

compared to naïve GSCs of the GSC8 cell line [122]. 

 

Serum amyloid A protein 2 (SAA2) 

In order to re-establish homeostasis, both adaptable and primordial mechanisms 

exist; the latter comprises the acute-phase response (APR) that is a set of changes 

that occur after, e.g., inflammation, infection, or trauma [123]. During APR, the 

changes include the altered levels of serum proteins, with the most notable being 

C-reactive protein and serum amyloid A (SAA) [124]. Being an apolipoprotein, 

SAA is related to plasma high-density lipoprotein (HDL) and is implicated in the 

cholesterol transport to the liver for excretion as bile [125]. Its other functions 

include regulation of amyloidogenesis, tumor pathogenesis, anti-bacterial events, 

and inflammatory response [126]. The role of SAA in tumor progression was 

suggested owing to its cytokine-like properties that influence the course of 

inflammation [127]. SAA2 is one of the paralogs of the family and was investigated 

as a lung cancer biomarker a few years ago [128]. The description of its role in 

glioblastoma is limited, yet it is already known that SAA2 increases GBM 

proliferation and invasion [129]. Knebel et al confirmed that SAA production 

occurs not only in the liver but also in tumor cells; the authors emphasized that 

exploring the SAA influence on the cytoskeleton and invasiveness using more 

complex assays is needed [130]. In terms of GBM stemness, Adamski et al recently 

compiled the literature data and stated that SAA2 is implicated in a drug-

promoted cellular dormancy, with the latter being closely connected to stem cell 

characteristics [131]. The group also indicated the ability of SAA2 to sustain 

inflammatory conditions in the brain, which consequently supports TMZ 

resistance and induces the expression of stemness markers in glioblastoma. 
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Wilms’ tumor protein 1 (WT1) 

The 5-methylcytosine (5mC) and its derivatives have altered patterns in a range 

of tumors. 5mC can be recognized and oxidized to 5-hydroxymethylcytosine, 5-

formylcytosine, and 5-carboxylcytosine by Ten-Eleven Translocation (TET) 

enzymes [132,133]. One of the transcription factors that directly interacts with TET 

proteins is WT1 – a master regulator essential for urogenital, epicardium, and 

kidney development that can act as a tumor suppressor or oncoprotein in 

multiple tumors [134,135]. Initially cloned as a suppressor of Wilms’ tumor, WT1 is 

now considered to be an oncoprotein in hematologic malignancies and a variety 

of solid tumors, as well as the protein with the highest potential for cancer 

immunotherapy [136-138]. According to the phase I/II clinical trial, WT1 peptide-

based vaccine among glioblastoma patients was considered safe and induced 

cellular and humoral immune response [139]. This is important due to the fact that 

WT1 is involved in GBM tumorigenicity via increasing proliferation and 

decreasing apoptosis [140]. As for the impact on the cytoskeleton, this protein was 

found to interact with actin both in the cytoplasm and nucleus, as well as 

supposedly binds to RNA in a cytoskeleton-dependent regulation manner [141]. 

Focusing on GBM stemness, Mao et al found WT1 to be expressed predominantly 

in mesenchymal GSCs which, compared to proneural stem cells subtype, are 

characterized by higher proliferation, greater radioresistance, and implication in 

worse patients’ prognosis [142]. Uribe et al reviewed that mesenchymal GSCs 

develop tumors having more blood vessels, hemorrhagic lesions, and necrotic 

areas; the expression pattern in these stem cells generally facilitates inflammation, 

angiogenesis, migration, invasion, and glycolysis-mediated metabolism [143]. 

Undoubtedly, more insights are needed concerning GBM molecular pathways in 

which WT1 is implicated. 

 

GENES WITH STILL UNCONFIRMED ROLE IN GLIOBLASTOMA 

STEMNESS 

Chemokine-like factor superfamily 6 (CMTM6) 
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Cytokines are soluble proteins that are secreted by immune and non-immune 

cells in response to stimulants such as immunogens or mitogens; this allows 

them to maintain the immune response and homeostasis [144]. Chemokines 

constitute a specific type of small (8-13 kDa) cytokines that promote the directed 

chemotaxis of nearby cells [145]. Consisting of nine members, the chemokine-like 

factor superfamily (CMTM) is expressed throughout the human tissues and 

regulates immune, circulatory and muscular systems, as well as the 

hematopoiesis [146-149]. The aberrant CMTM expression is implicated in various 

diseases, e.g., rheumatoid arthritis, atopic dermatitis, focal cerebral ischemia, 

male infertility, as well as tumorigenesis and metastasis [150-153]. The influence of 

CMTM6 on glioblastoma is known, but the research in this entity seems to be in 

the initial state. Guan et al [154] revealed that the highest CMTM6 expression was 

noted in the glioblastoma (WHO grade IV) compared with WHO grade II and III 

gliomas. Enrichment was also observed in both microvascular proliferation and 

hyperplastic blood vessels, which are both essential for tumor progression. In 

GBM, CMTM6 was also associated with one of the genes of immune checkpoints, 

i.e., TIM-3. From a broader glioma scale, the same authors summarized it as a 

molecule diminishing T-lymphocyte-dependent anti-tumor immunity, reducing 

patient survival and indicating poor prognosis. However, it is still yet to be 

elucidated what role CMTM6 may play in the GBM stemness. Currently, its 

contribution to such characteristics is confirmed on the basis of data from head-

and-neck squamous cell carcinoma. Chen et al [155] observed poorer patient 

prognosis during CMTM6 overexpression that correlated with overactive 

Wnt/β-catenin signaling, i.e., the pathway crucial for tumorigenesis, epithelial-

to-mesenchymal transition (EMT) and cancer stem cells maintenance. Silencing 

of CMTM6 led to PD-L1 downregulation, decreased tumor growth, and 

increased CD8+ and CD4+ T-cell infiltration. Eventually, the authors not only 

suggested the therapeutic suitability of CMTM6 but also concluded that this 

protein is implicated in EMT, stemness, and T-cell dysfunction. Similar research 

in the glioblastoma context is advisable, especially since CMTM6 can stabilize 

PD-L1 protein to impair T-cell function [156,157], as well as their combined 
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expression had prognostic significance in pancreatic ductal adenocarcinoma and 

triple-negative breast cancer [158]. Nowadays, the role of PD-L1 in cancer and 

immunotherapy is unquestionable [159]; focusing on another protein related to 

this well-established molecule might bring novel strategies.  

 

Dual specificity phosphatase 7 (DUSP7) 

Signal transduction is based on phosphorylation and dephosphorylation events 

performed by kinases and phosphatases, leading to a cellular program relevant 

to the encountered stimulus [160]. Dual specificity phosphatases are responsible 

for the dephosphorylation of threonine and tyrosine residues on mitogen-

activated protein kinases, rendering them inactive [161]. Even if DUSP7 was only 

noted as downregulated in glioblastoma, whereas DUSP1, DUSP5, and DUSP6 

were induced within pseudopalisading and perinecrotic GBM regions [162], the 

role of DUSP7 in preserving the pluripotency of non-cancerous stem cells was 

certified in a murine model [163]. However, its contribution could be distinct from 

DUSP1, DUSP5, and DUSP6 but similar to DUSP2, DUSP8, and DUSP9 which 

were clustered together with DUSP7 in Mills et al study [162]. At last, it is worth 

noting that DUSP7 guides chromosome dynamics which is known for being 

regulated by cytoskeletal proteins [164,165]. The study linking this phosphatase to 

metabolism revealed that DUSP7 knockout accelerates metabolic disorder and 

insulin resistance in mice with a high-fat diet [166]. 

 

Kinesin family member 20A (KIF20A) 

Cytoskeletal elements that act as scaffolds for intracellular cargo transport are 

microtubules. Motor proteins known as kinesins and dyneins orchestrate 

microtubule-related transport that is essential for cell differentiation or survival 
[167]. Kinesins constitute a large superfamily responsible for cargo trafficking, as 

well as controlling microtubule growth and stability [168]. Increased expression of 

kinesin superfamily representatives KIF4A, -9, -18A, and -23 was associated with 

poor prognosis in low-grade glioma and glioblastoma [169]. The pro-cancerous 

characteristics of KIF20A were noted more than 15 years ago in pancreatic cancer, 
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which presented a reduction of proliferation once KIF20A was downregulated 
[170]. Currently, accumulating evidence shows that this kinesin is overexpressed 

in multiple tumors [171]. In glioblastoma, KIF20A downregulation induces cell 

cycle arrest and apoptosis via suppressing PI3K/AKT pathway [172]. Regarding 

cytoskeleton-related events, it is not only essential for cytokinesis but also 

interacts with Rab6 to regulate Golgi-related vesicle trafficking [173]. Although the 

role of KIF20A in GBM stemness has not yet been confirmed, it was suggested 

outside of the glioblastoma context in a study by Qiu et al. The authors conceived 

the importance of KIF20A in controlling proliferation vs. differentiation of tumor-

initiating cells, based on both the fact that cancer stem cells share many 

mechanisms with neural progenitors, as well as their observations where KIF20A 

was implicated in balancing symmetric and asymmetric divisions during 

cerebral cortical development [174]. The KIF20A inactivation affected cortical 

neural progenitor cells that switched from proliferative to differentiative mode. 

During divisions, daughter cell-fate specification was controlled by KIF20A in 

coordination with RGS39 and SEPT710 [175,176]. 

 

Neurofibromatosis type 2 protein (NF2) 

Neurofibromatoses (type 1, type 2, schwannomatosis) are distinct, dominantly 

inherited disorders that have in common the occurrence of nerve sheath tumors 
[177]. Type 1 neurofibromatosis presents with neurofibromas, cafe-au-lait 

spots/macules, freckling, and optic gliomas, whereas type 2 neurofibromatosis is 

characterized by bilateral vestibular schwannomas, ependymomas, and 

meningiomas [178]. Each disease has a different underlying genetic alteration: type 

1 neurofibromatosis is related to the NF1 gene, type 2 is linked to NF2, while 

schwannomatosis to integrase interactor 1 (INI1, also known as SMARCB1). The 

protein product of NF2 has the same name as its gene but can also be referred to 

as Merlin. Although this tumor suppressor is not mutated in GBMs, it exhibited 

oncogenic properties in glioblastoma when phosphorylated at serine 518; this 

post-translational modification inactivates Merlin’s anti-cancer capabilities, 

which affects the expression of EGFR or Notch1 and its downstream targets, i.e., 
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HES1 or CCND1 [179]. Other authors demonstrated that upon NF2 re-expression, a 

regulation of YAP, cIAP1/2, and the Hippo signaling pathway led to the 

inhibition of glioma growth and progression [180]. Merlin is also known for 

regulating cell morphology or motility, and its loss renders dramatic changes in 

cellular adhesion and cytoskeleton organization [181,182]. Specifically, this protein 

is closely related to ezrin, radixin, and moesin (collectively denoted as “ERM”), 

i.e., critical proteins that enable the anchorage between membrane proteins and 

cortical cytoskeleton [183]. Ultimately, the link between NF2 and stemness might 

be related to CD44, the receptor of which cytoplasmic tail can interact with both 

Merlin and “ERM” proteins [184,185]. Literature data states that NF2 exhibits tumor 

suppressor function, e.g., via negative regulation of CD44 [186], whereas this 

receptor has been repeatedly indicated as a marker of cancer stem cells in various 

tumors, e.g., leukemia and carcinoma of breast, colon, ovarian, prostate, or 

pancreas [187-191]. Knowing that CD44 is also an upstream regulator of the 

aforementioned Hippo signaling pathway [192], of which components regulate the 

stem cell niche, self-renewal, maintenance, and differentiation [193-196], one could 

investigate Merlin in the GBM stemness context taking into the account the NF2-

ERM-CD44-Hippo regulation network. 

 

Retinoid X receptor gamma (RXRG) 

The signal transduction molecules being vitamin A derivatives are retinoids – 

they regulate cellular differentiation and proliferation via members of the nuclear 

receptors superfamily, i.e., retinoic acid receptors (RARs) and retinoid X 

receptors (RXRs) [197]. The RXR family members (RXRA, RXRB, and RXRG) form 

heterodimers within the superfamily, e.g., with vitamin D, retinoic acid, or 

peroxisome proliferator-activated types of receptors [198,199]. RXRs have tumor 

suppressor properties and, as partners of RARA and RARB, they are implicated 

in the anti-proliferative effects of retinoic acid [197]. RXRG was found to modulate 

differentiation and apoptosis in various tumors, indicating its function in cancer 

pathogenesis [200]. Glioblastoma-related research certifies the general view that 

RXRG contributes to anti-neoplastic effect via its ligands; in study by Papi et al, 

Żaneta Kałuzińska-Kołat
�Comment to Reviewers 1 and 2:

Thanks to a native speaker, English is now improved. Previously the highlighted part was

“from”

Żaneta Kałuzińska-Kołat
�Comment to Reviewers 1 and 2:

Thanks to a native speaker, English is now improved. Previously the highlighted part was:

“lost”

Żaneta Kałuzińska-Kołat
�Comment to Reviewers 1 and 2:

Thanks to a native speaker, English is now improved. Previously the highlighted part was not in the text.



 

the treatment of GBM with 6-OH-11-O-hydroxyfenantrene led to anti-

proliferative and anti-invasive effects [201]. However, the literature data on 

glioblastoma stemness seems to be focused on RARs rather than RXRs. Ying et al 

evaluated the cellular and molecular responses of GSCs to all-trans retinoic acid; 

this treatment changed cells morphology (e.g., decreased neurosphere-forming 

capacity), caused growth arrest at G1/G0 to S transition, reduced cyclin D1 

expression, and elevated p27 expression [202]. Moreover, differentiation markers 

such as Tuj1 and GFAP were induced, while stem cell markers, e.g., CD133, Msi-1, 

Nestin, and Sox-2, had decreased expression. Friedman et al provided similar 

observations with regard to Nestin level or neurosphere formation but also 

indicated that GBM differentiation induced by all-trans retinoic acid is executed 

via the ERK1/2 pathway [203]. Evidently, retinoid-related research in the GBM 

context frequently focuses on all-trans retinoic acid while this isomer is bound 

only by RARs and not by both RARs and RXRs, as is the case with another 

retinoic lipid: 9-cis [204]. Even if two of the best-known retinoid receptors (RARA 

and RXRA) are described in detail by Rodriguez et al in the GBM stemness 

context [205], the literature is still lacking data on RXRG and should begin with, 

e.g., evaluation of whether 9-cis retinoid acid is able to manifest the anti-

glioblastoma effects via RXRG and subsequently ERK1/2 pathway.  

 

SPARC/Osteonectin, CWCV, Kazal-like domains 1 (SPOCK1) 

ECM is a component containing elastin, collagen, laminins, glycoproteins, 

fibronectin, and proteoglycans. Together, these elements bind via cell adhesion 

receptors and form a complex macromolecular network [206]. Matricellular 

proteins are made of matrix-binding proteins and cytokines that can be located 

within the cell or secreted outside [207]. SPOCK1, also referred to as testican-1, is 

an ECM proteoglycan from a matricellular family of proteins that regulate matrix 

remodeling and affects tumor progression [208-210]. As the interplay between ECM 

and cytoskeleton is known [211], it is not surprising that changes in SPOCK1 lead 

to alterations in cytoskeletal components. For example, Schulz et al noticed that 

SPOCK1 upregulation paralleled that of EPB41L4B, the latter being a cortical 
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cytoskeleton protein underlying cellular membrane [212]. With regard to brain 

tumors, testican-1 contributes to GBM metastasis and resistance to temozolomide, 

as well as promotes glioma invasion, migration, and proliferation via Wnt/β-

catenin and PI3K/AKT pathways [213,214]. Mediating TMZ chemoresistance via 

SPOCK1 in GBM was independently confirmed by Sun et al [215]. Although not 

yet directly concluded by any scientific group, it is conceivable that the impact of 

SPOCK1 on TMZ resistance renders a similar GSCs-related effect as SAA2 which 

was described in one of the previous sections.  

 

Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) 

The proteins’ turnover and degradation depend on ubiquitination that is 

orchestrated by the ubiquitin-proteasome system (UPS) [216], of which alterations 

can lead to several tumor types [217,218]. One of the ubiquitin-protein ligases 

responsible for the UPS specificity is UHRF1 [219], a molecule also interacting with 

DNA methyltransferase 1, which together constitute the main regulatory axis of 

cellular senescence [220]. UHRF1 was already identified as a novel oncogene 

and/or druggable epigenetic target for various tumors [221-223], and Jung et al 

suggested its role as a switch molecule between senescence and cancer [220]. In 

GBM, UHRF1 is overexpressed by upstream CD47 and regulates downstream 

silencing of tumor suppressor gene p16INK4A, leading to increased proliferation 
[224]. Regarding cytoskeleton, UHRF1 contributes to microtubule organization 

through its downstream targets: BRCA2, HOOK1, KIF11, and KIF18A [225]. The 

role of UHRF1 in different types of stem cells is documented but overlooks GSCs. 

Namely, it was found to be required for the proliferative potential of basal stem 

cells in response to airway injury [226], as well as regulated the transcriptional 

marks at bivalent domains in pluripotent stem cells [227]. On the other hand, 

UHRF1 decrease was found to be a major cause of DNA demethylation in 

embryonic stem cells [228] and led to the activation of retroviral elements and 

delayed neurodegeneration [229]. It is evident that research in the glioblastoma 

context should be pursued in the future, especially since some epigenetic 

features, next to transcriptional ones, are unique in GSCs compared to neural 
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stem cells and may include druggable targets for new therapeutic approaches 
[230].  

 

DISCUSSION 

Despite molecular advancements, there is still a considerable need for 

glioblastoma biomarkers [231], especially since the relatively ineffective treatment 

leaves the patients with a very dismal chance of survival [232]. One of the 

glioblastoma traits involved in the absence of effective treatment is tumor 

heterogeneity which can be explained by clonal evolution and the presence of 

stem cells [8].  

Literature data states that many independent studies on various tumor types 

have reported common genes as potential therapeutic or diagnostic biomarkers 
[233]. Al-Fatlawi et al contemplated that biomarker signatures for different cancer 

types should be similar, owing to the fundamental mechanisms shared between 

tumors, e.g., survival, tumor growth, or invasion [234]. Thus, we presume that our 

description of stemness-related genes, especially those still unconfirmed in GBM, 

brings significant value to the current knowledge and can enable novel 

therapeutic or diagnostic directions. 

For clarity, a graphical presentation was prepared to emphasize the role of 

described genes specifically in stem cells, setting aside the rest of the information 

provided for each gene (Figure 2). At first glance, the most frequently regulated 

processes are proliferation and chemoresistance, followed by differentiation, 

tumor growth, invasion, and apoptosis. Except for BMP4 (increase in asymmetric 

cell division and apoptosis), NF2 (reduced self-renewal, tumor growth, stemness 

maintenance), RXRG (decrease in invasion and proliferation), and DUSP7 

(insufficient data for a definite conclusion), the remaining genes exhibit pro-

cancerous properties. This corresponds to what was described in subsections, 

separately for each gene. Interestingly, two genes that promote invasiveness of 

stem cells (SPOCK1, MMP13) are known to affect the cytoskeleton [33,212] and, in 

terms of MMP13, also the metabolism [90]. Two genes that were also found to 

regulate both the cytoskeleton and metabolism were MTHFD2 and RRM2. On 
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the one hand, they control the organization of vimentin and actin; these proteins 

are known for influencing glioblastoma migratory potential [235,236]. On the other 

hand, the contribution of MTHFD2 and RRM2 to metabolism is related to folate 

and glutathione cycles that are implicated in the resistance of GBM to therapy 
[237,238]. 

In order to gravitate towards the link between metabolism, cytoskeleton, and 

GBM stemness, the appropriate representatives of each process (including the 

most frequently regulated processes that were mentioned above), were compiled 

into a cross-talk network. This allowed us to integrate the aim of our review with 

the main processes that are regulated by genes described in this work, 

additionally with the inclusion of GBM biomarkers (acquired from review by 

Sasmita et al [231]). Prevalent interaction types include co-expression and physical 

interaction between these representatives, there is also a high interconnectivity of 

the entire network, confirming that these molecular events are related. The cross-

talk is visualized in Supplementary Figure 1, whereas the datasets used in the 

workflow are summarized in Supplementary Table 2. 

The narrative of this review was intended to elaborate on the background of 

the biological machinery in which each successive gene is involved, then proceed 

with details regarding the regulation of glioblastoma, cytoskeleton/metabolism, 

and stemness (GBM-related or, if not present in the literature, any available). It is 

worth emphasizing that the herein described genes constitute more than half of 

the “top genes” that we established in our previous in silico study via a multi-

stage methodology that included, e.g., enrichment analysis, machine learning 

algorithm, and differential expression analysis [32]. The remainder was not 

presented due to a lack of stemness-related literature data (Supplementary Table 

1). For the part available in this paper, the majority of genes (BMP4, GRIN2B, 

HOXA10, HOXA1, MMP13, MTHFD2, PHF5A, RPS27, RRM2, SAA2, WT1) were 

confirmed to influence GSCs. The attempt to associate CMTM6, DUSP7, KIF20A, 

NF2, RXRG, SPOCK1, and UHRF1 with glioblastoma stemness revealed the 

promising implication in crucial biological processes that should be validated in 

future experiments. For BMP4, WT1, and RXRG, their contribution to novel 
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therapeutic strategies was above-mentioned on the basis of literature data, 

prompting us to investigate whether any clinical trials utilize the products of 

described genes as drug components or targets. According to the ClinicalTrials 

website (https://clinicaltrials.gov/), cancer-related data can be found for six 

genes (Table 1); however, the seventh trial on GRIN2B was also included because 

it focused on brain research and highlights that selective GRIN2B antagonist is 

already developed. Moreover, the details on NF2-related intervention are not yet 

disclosed [239]. Collectively, these studies are in the early phases, certifying that 

there is still a room for further research. 

 

CONCLUSION 

Taken together, a promising set of genes involved in cytoskeletal rearrangements 

and metabolic alterations were found to influence glioblastoma stemness via a 

plethora of biological processes. Most of the described genes exhibit pro-

cancerous properties; among them, clinical trials on GRIN2B, RRM2, WT1, and 

KIF20A are ongoing and focus on selective inhibitors or peptide-based vaccines. 

Concerning tumor suppressors, the anti-cancer effect can also be achieved via 

delivery of recombinant proteins (BMP4), ligands for tumor suppressors (RXRG), 

or counteracting the pathways that become hyperactive following an anti-

oncogene loss (NF2). The cytoskeletal phenomena currently linked to the 

described genes require experimental verification of their contribution to GSCs 

expansion. Future GBM stemness-related research should generally delve into 

cytoskeleton and related molecular events, since the concept is already 

encouraging.  
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Figures 

 
Figure 1 Example of the interplay between cytoskeleton and metabolism using 

the biological function of MTHFD2 and RRM2 enzymes. Typically, MTHFD2 

dehydrogenase is known for its activity in folate metabolism, whereas RRM2 

reductase is known for the conversion of ribonucleotide triphosphates (NTPs) to 

deoxyribonucleotide triphosphates (dNTPs) which requires metabolic resources 

supplied by reduced glutathione. However, these two enzymes (encircled in red) 

are also involved in cytoskeletal rearrangements that are summarized on the 

right side of the figure. Literature data indicate that they also affect the same 

pathway (i.e., ERK1/2 signaling) but render various outcomes. Moreover, their 

role in glioma has already been proposed (bottom-right panel). Figure created 

using Inkscape and GeneMania (MTHFD2 and RRM2 as query genes; five 

“resultant” genes included to highlight interconnectivity; exemplary 

metabolism-related processes included from the built-in functional analysis). 
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Example presenting the interplay between metabolism and cytoskeleton is now visualized. This is in response to your Question 1. Previously, the figure and its legend were not included in the manuscript.



 

 
Figure 2 Impact of described genes on biological processes related to stem cells. 

The “↑” or “⇡” symbol indicates activation of the process while “↓“ denotes 

inhibition. The impact of genes on processes (numbered from 1 to 19) is either 

directly confirmed (solid arrow next to the number) or recapitulated based on 

available data from various literature sources (dashed arrow next to the number). 

The “⇣” symbol was not required as any gene inhibited the given process in an 

indirect manner. The white dashed line dividing the stem cell into two halves 

separates the genes with a confirmed role in glioblastoma stem cells (above the 

line) from those involved in cancer stemness outside the glioblastoma context 

(below the line). Figure created using Inkscape. 
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The figure is now redrawn. This is in response to Question 1 of Reviewer 1, and Question 2 of Reviewer 2. To conform with new scheme, some changes in figure’s legend were required; they are now implemented in the text.

Previously, the figure’s legend was:

Figure 1 Impact of described genes on biological processes related to stem cells. The “+” symbol indicates activation of process while “–“ denotes inhibition. The impact of genes on processes is either directly confirmed (black solid lines) or recapitulated based on available data from various literature sources (black dashed lines). (/entirely new sentence is put here/). The white dashed line dividing the stem cell into two halves, separates the genes with confirmed role in GSCs (above the line) from those involved in cancer stemness outside glioblastoma context (below the line). (/entirely new sentence is put here/).

(locations where some changes were applied are in bold and underlined)



 

Tables 

Table 1 Clinical trials that utilize the products of described genes as drug 

components or targets. 

 Gene Compound Condition Trial number 
and phase Intervention details 

 BMP4 hrBMP4 Glioblastoma NCT02869243  
(phase I) 

Delivery of human recombinant 
BMP4 

 GRIN2B EVT 101 

Healthy 
volunteers  

(brain function 
assessment) 

NCT00526968  
(phase I) 

Delivery of selective GRIN2B 
antagonist 

 RRM2 COH29 Solid tumors NCT02112565  
(phase I) 

Delivery of ribonucleotide 
reductase inhibitor 

 WT1 DSP-7888 Gliomas  
(incl. GBM) 

NCT02750891  
(phase I/II) 

Delivery of WT1 peptide-based 
cancer vaccine 

 KIF20A KIF20A 
peptide 

Small cell lung 
cancer 

NCT01069653 
(phase I) 

Delivery of KIF20A peptide-based 
vaccination 

 NF2 IAG933 Solid tumors NCT04857372 
(phase I) 

Not yet disclosed (the drug 
presumably counteracts the 

YAP/TAZ hyperactivity that 
occur following NF2 loss) 

 RXRG 9-cis retinoic 
acid Breast cancer NCT00001504 

(phase I) Delivery of RXRG ligand 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary materials 

 
Supplementary Figure 1 Cross-talk network between described genes, the 

processes that are frequently regulated by them, as well as glioblastoma 

biomarkers, cytoskeleton, and metabolism. The list of genes per process (except 

for the glioblastoma biomarkers and genes included in this review) were 

acquired from few databases (see Supplementary Table 2) and further narrowed 

to five representatives using the maximal clique centrality (MCC) method of 

cytoHubba. Collectively, all representatives were compiled into cross-talk 

network with the use of GeneMania (no “resultant” genes included). Figure 

created using Cytoscape and Inkscape. 

 

 

 



 

Supplementary Table 1 Summary of the previously identified genes included 

or excluded from the present review based on its known role in stemness 

regulation. 

 Gene 
Included in the present review?  

(i.e., implicated in stemness 
regulation in any tissue?) 

Regulates the 
cytoskeleton? 

Regulates the 
metabolism? 

 BMP4 ✓ * ✓ ✕ 

 GRIN2B ✓ * ✓ ✕ 

 HOXA10 ✓ * ✓ ✕ 

 HOXA1 ✓ * ✓ ✕ 

 MMP13 ✓ * ✓ ✓ 

 MTHFD2 ✓ * ✓ ✓ 

 PHF5A ✓ * ✕ ✓ 

 RPS27 ✓ * ✓ ✕ 

 RRM2 ✓ * ✓ ✓ 

 SAA2 ✓ * ✓ ✕ 

 WT1 ✓ * ✓ ✕ 

 CMTM6 ✓ ✓ ✕ 

 DUSP7 ✓ ✓ ✕ 

 KIF20A ✓ ✓ ✕ 

 NF2 ✓ ✓ ✕ 

 RXRG ✓ ✕ ✓ 

 SPOCK1 ✓ ✓ ✕ 

 UHRF1 ✓ ✓ ✕ 

 C15orf48 ✕ ✕ ✕ 

 CCL11 ✕ ✓ ✕ 

 COL3A1 ✕ ✕ ✕ 

 CUX2 ✕ ✓ ✕ 

 FAM92B ✕ ✓ ✕ 

 GCSH ✕ ✕ ✓ 

 GLB1 ✕ ✕ ✕ 

 LBP ✕ ✕ ✕ 
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 PLEK2 ✕ ✓ ✕ 

 RNF141 ✕ ✕ ✕ 

 TAF10 ✕ ✕ ✕ 

 TTR ✕ ✓ ✕ 
 

Supplementary Table 2 The datasets used in the workflow of cross-talk 

network development. 

 Biological process  Dataset unique identifier and database 
 Chemoresistance M12825 and M12618 (Molecular Signatures Database) 

 Differentiation M4547 (Molecular Signatures Database) 

 Tumor growth MP_0003447 and MP_0003721 (Mammalian Phenotype Ontology) 

 Proliferation M4627 (Molecular Signatures Database) 

 Invasion M2572 (Molecular Signatures Database) 

 Apoptosis M5902 (Molecular Signatures Database) 

 Metabolism R-HSA-1430728 (Reactome) 

 Cytoskeleton GO_0005856 (Gene Ontology Resource) 

 Stemness M30411 (Molecular Signatures Database) 
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The list of datasets that enabled to create a cross-talk network is now provided. This is related to your Question 6.


